Modifying Lennard-Jones Parameters in the Amberff14SB force field

In this tutorial you will learn to:

- Modify the self-interaction Lennard-Jones parameters of oxygens of carboxylate groups in proteins.
- Modify the Lennard-Jones parameters defining the interaction between sodium ions and the oxygens of carboxylate groups in proteins.

Hosein Geraili Daronkola Ana Vila Verde

Max Planck Institute of Colloids and Interfaces Theory & Bio-systems department March 2019

Introduction

• The Amber formulation of the 6-12 Lennard-Jones (LJ) potential, V_{ii}, between 2 atoms *i* and *j* is:

$$V_{i,j} = \varepsilon_{i,j} \left(\left(\frac{R_{\min,i,j}}{r_{i,j}} \right)^{12} - 2 \left(\frac{R_{\min,i,j}}{r_{i,j}} \right)^{6} \right)$$
 (eq. 1)

- Here $R_{min,i,i}$ is the center-to-center distance between *i* and *j* at which the potential is at the minimum $\varepsilon_{i,i}$.
- Van der Waals data in Amber force field files are given for each atom *i* as a single data pair: a radius R_{min,i,i}/2 ('van der Waals' radius of atom *i*, in Å) and the energy ε_{i,i} (the minimum interaction energy between 2 atoms *i*, in kcal/mol). These parameters are also called the self-interaction parameters.
- For Amber force fields, cross terms involving different atom types *i* and *j* are typically evaluated according to the Lorentz/Berthelot mixing rules:

- In the first part of this tutorial you will learn how to modify self-interaction LJ parameters, using as example the parameters for the oxygens of carboxylate groups in proteins. Notice that, by modifying the self-interaction parameters of these oxygens, you are in fact modifying the LJ interactions of *every atom type with these oxygens*, via the mixing rules given by eqs. 2,3.
- The mixing rules have been shown to poorly represent the van der Waals interactions in certain cases. In the second part of this tutorial you will learn how to override the mixing rules for specific pairs of atoms *i* and *j*, and to use instead values of R_{min,i,j} and/or ε_{ij} optimized for that interaction. Specifically, you will modify the LJ parameters for the interaction between Na⁺ and the oxygens in the carboxylate groups of proteins.
- The new parameters are from Kashefolgheta, S. & Vila Verde, A. PCCP, 2017, 19, 20593-20607, doi: 10.1039/ C7CP02557B. They yield better agreement with experiment for the hydration free energy of acetate and the solution activity derivative of 0.5 m sodium acetate in TIP3P water. The same paper also reports optimized parameters for the NH₃⁺ group of lysine, which we recommend using to obtain a better description of salt bridges in proteins.

- The original parameter files for the AMBER force field are in a directory which in our system can be found via environmental variable \$AMBERHOME. The path to this directory is specific to each installation. If \$AMBERHOME is not defined in your system and you don't know the path, you will need to ask your local IT support for help. You will leave the original files unchanged, and you will do modifications on local copies.
- Create a directory Tutorial/ at a location of your choice. Copy the necessary files from \$AMBERHOME to Tutorial/ using the commands shown in fig. A.

24	Terminal - geraili@hot:/cl	uster/apps/amber18/gnu/amber18/dat/leap/cmd	↑ _ J ×
File Edit View Terminal Tabs	Help		
[geraili@hot cmd]\$	cd \$AMBERHOME		
[geraili@hot amber1	.8]\$ cd dat/leap/cmd		
[geraili@hot cmd]\$	ls		
leaprc.conste	leaprc.gaff	leaprc.music	leaprc.protein.ff15ipq
leaprc.constph	leaprc.gaff2	leaprc.phosaa10	<pre>leaprc.protein.ff15ipq-vac</pre>
<pre>leaprc.DNA.bsc1</pre>	leaprc.GLYCAM 06EPb	leaprc.protein.fb15	leaprc.RNA.OL3
leaprc.DNA.OL15	leaprc.GLYCAM_06j-1	leaprc.protein.ff03.r1	leaprc.RNA.ROC
leaprc.ff14SB.redq	leaprc.lipid14	leaprc.protein.ff03ua	leaprc.RNA.YIL
leaprc.ffAM1	leaprc.lipid17	leaprc.protein.ff14SB	leaprc.water.fb3
leaprc.ffPM3	leaprc.modrna08	<pre>leaprc.protein.ff14SBonlysc</pre>	leaprc.water.fb4
[geraili@hot cmd]\$	cp leaprc.protein.ff1	4SB /usr/data/bgfs1/geraili/S	imulation_area/Tutorial/
[geraili@hot cmd]\$	cp leaprc.water.tip3p	/usr/data/bgfs1/geraili/Simu	lation_area/Tutorial/
			—

3

• Once this step is complete, your Tutorial/ directory should have the files shown in Fig. B.

Fig. B: content of Tutorial/

• Copy the remaining necessary files following the commands in Fig. C.

Terminal - geraili@hot:/cluster/apps/amber18/gnu/amber18/dat/leap/lib

File Edit View Terminal Tabs Help

N27

[geraili@hot lib]\$ cd \$AMBERH	HOME/dat/leap/parm		
[geraili@hot parm]\$ ls			
all_modrna08.frcmod	frcmod.ions1lm_126_tip3p	frcmod.parmbsc1	GLYCAM_06h.dat
frcmod.chcl3	frcmod.ions1lm_126_tip4pew	frcmod.parmCHI_YIL	GLYCAM_06j.dat
frcmod.chi0L4	frcmod.ions1lm_iod	frcmod.phmd	lipid11.dat
frcmod.conste	frcmod.ions234lm_1264_spce	frcmod.phosaa10	lipid14.dat
frcmod.constph	frcmod.ions234lm_1264_tip3p	frcmod.pol3	lipid17.dat
frcmod.dc4	frcmod.ions234lm_1264_tip4pew	<pre>frcmod.protonated_nucleic</pre>	lj_1264_pol.dat
frcmod.DNA.OL15	frcmod.ions234lm_126_spce	frcmod.qspcfw	music.dat
frcmod.fb15	frcmod.ions234lm_126_tip3p	frcmod.ROC-RNA	nucgen.dat
frcmod.ff02pol.r1	frcmod.ions234lm_126_tip4pew	frcmod.ROC-RNA_const	opls.info
frcmod.ff03	frcmod.ions234lm_hfe_spce	frcmod.spce	opls_parm.dat
frcmod.ff03ua	frcmod.ions234lm_hfe_tip3p	frcmod.spceb	parm10.dat
frcmod.ff12SB	frcmod.ions234lm_hfe_tip4pew	frcmod.spcfw	parm14ipq.dat
frcmod.ff14SB	frcmod.ions234lm_iod_spce	frcmod.tip3p	parm15ipq_10.3.dat
frcmod.ff99bsc0CG	frcmod.ions234lm_iod_tip3p	frcmod.tip3pf	parm91.dat
frcmod.ff99SB	frcmod.ions234lm_iod_tip4pew	frcmod.tip3pfb	parm91X.dat
frcmod.ff99SB14	frcmod.ionsff99_tip3p	frcmod.tip4p	parm91X.ua.dat
frcmod.ff99SBildn	frcmod.ionsjc_spce	frcmod.tip4pew	parm94.dat
frcmod.ff99SBnmr	frcmod.ionsjc_tip3p	frcmod.tip4pfb	parm96.dat
frcmod.ff99SP	frcmod.ionsjc_tip4pew	frcmod.tip5p	parm98.dat
frcmod.ions1lm_1264_spce	frcmod.meoh	frcmod.urea	parm99.dat
frcmod.ions1lm_1264_tip3p	frcmod.nma	frcmod.vdWall	parm99EP.dat
frcmod.ions1lm_1264_tip4pew	frcmod.opc	frcmod.xFPchromophores	parmAM1.dat
frcmod.ions1lm_126_hfe_opc	frcmod.opc3	gaff2.dat	parmPM3.dat
frcmod.ions1lm_126_iod_opc	frcmod.parmbsc0	gaff.dat	toyrna.dat
frcmod.ions1lm_126_spce	frcmod.parmbsc0_ez0L1	GLYCAM_06EPb.dat	<pre>validate_torsions.py</pre>
[geraili@hot parm]\$ cp parm10	0.dat /usr/data/bgfs1/geraili/S	imulation_area/Tutorial/	
[geraili@hot parm]\$ cp frcmo@	d.ff14SB /usr/data/bgfs1/gerail	i/Simulation_area/Tutorial/	
[geraili@hot parm]\$ cp frcmo@	d.ionsjc_tip3p /usr/data/bgfs1/	geraili/Simulation_area/Tut	orial/
[geraili@hot parm]\$ cd \$AMBEF	RHOME/dat/leap/lib		
[geraili@hot lib]\$ cp amino12	2.lib /usr/data/bgfs1/geraili/S	imulation_area/Tutorial/	
[geraili@hot lib]\$ cp aminoct	t12.lib /usr/data/bgfs1/geraili	/Simulation_area/Tutorial/	
[geraili@hot lib]\$ <u>cp</u> aminon1	t12.lib /usr/data/bgfs1/geraili	/Simulation_area/Tutorial/	
[geraili@hot lib]\$			

- Once you've copied all the files, Tutorial/ should have the content shown in Fig. D.
- The files *leaprc.water.tip3p* and *leaprc.protein.ff14SB* are loaded into "tleap" to build topology and coordination files for simulations of proteins in water. These files contain, among other things:
 - a list of atom types;
 - the path to the parameter files that will be loaded by "tleap":
 - *leaprc.protein.ff14SB* calls parameter files *parm10.dat* and *frcmod.ff14SB* and topology files *amino12.lib, aminoct12.lib, aminont12.lib;*
 - *leaprc.water.tip3p* calls several parameter and topology files for TIP3P water and TIP3P-compatible ions; one of the files called is *frcmod.ionsjc_tip3p*, which we have copied. We will not change anything in *leaprc.water.tip3p* or in *frcmod.ionsjc_tip3*. We copied these files because 1) we want to view the original Na+ parameters for the second part of the tutorial, and 2) it is convenient to have in a single directory all the files necessary to run a simulation in the AMBER MD software.
- Now that we have all the files necessary, we need to modify them one by one. You will only modify files inside Tutorial/.

ta/bgfs1/geraili/Simulat	tion_area/Tutorial/		
amino12.lib	aminoct12.lib	aminont12.lib	frcmod.ionsjc_tip
		Mini di administrativa di una di	

Fig. D: content of Tutorial/

- Our first, and most complex, task is to modify the self-interaction parameters of the oxygens in the carboxylate groups of proteins. Carboxylates exist in side chain of Asp (Asparate) and Glu (Glutamate) residues, and in any uncapped amino acid forming the C-terminus of the protein.
- In general, the difficulty in creating new atom types for a specific functional group is to make sure that we change the parameters of only the atom type on those functional groups, while leaving oxygens with the same original atom type but not belonging to the same functional group with the original parameters. In our specific example this problem does not arise because we only have these type of oxygens on the carboxylates in the side chain of Asp (aspartate) and Glu (glutamate) residues, and in any uncapped amino acid forming the C-terminus of the protein. We nevertheless follow a standard procedure to create a general tutorial for any other kind of optimization that might need to consider this important point.

• Open file *amino12.lib* with your favorite text editor and go to the entry for aspartate ("ASP"). The carboxylate oxygen has type "O2". An example section of the unmodified version of this file is in Fig. E.; the red boxes show you the lines containing "O2" for ASP.

Fig. E: original *amino12.lib*

- In *amino12.lib*, change the atom type of the oxygens in the side chain of ASP from "O2" to a new type; we chose "90". • See Fig. F for the modified entries for ASP.
 - It is indispensable that the new atom type: 1) has only 2 letters; 2) is not already used for other atoms. You can check whether your new atom type is not being used by searching through this file.
- Search through this file and double check that atom type "O2" is changed to "9O" for every entry for ASP. Repeat the • procedure for glutamate ("GLU"). Save and close the file when you are done.

Fig. F: modified amino12.lib

- Amino acids forming the C- or N-terminus of a protein have separate entries in the AMBER force field. The C-terminus entries are in file *aminoct12.lib*; the N-terminus entries are in file *aminort12.lib*. You will need to modify these files as well.
- An example section of the unmodified version of *aminoct12.lib* is shown in Fig. G. Notice that you now have 2 carboxylates for CGLU (red boxes): one in the side-chain and one forming the C-terminus.

Fig. G: original aminoct12.lib

For the C-terminus (*aminoct12.lib*): ٠

٠

- Search for CGLU and change atom type "O2" to "9O", similarly to what you did before. Fig H shows an example section of the modified aminoct12.lib.

- Repeat for CASP.	emacs@lbox157.mpikg.mpg.de File Edit Options Buffers Tools Help	+ - @ ×
- Every other terminal	° 🖴 💥 🎍 Save 🥱 Undo 🐰 🗐 😭 🔍	
amino acid has one	!entry.CGLU.unit.atoms table str name str type int typex int resx int flags int seq int elmnt dbl	chg
carboxylate group; you	"H" "H" 0 1 131072 2 1 0.305500	
will need to change "O2"	"CA" "CX" 0 1 131072 3 6 -0.205900 "HA" "H1" 0 1 131072 4 1 0.139900	
to "90" for all those	"CB" "2C" 0 1 131072 5 6 0.007100 "HB2" "HC" 0 1 131072 6 1 -0.007800	
carboxylates too (examples	"HB3" "HC" 0 1 131072 7 1 -0.007800	
not shown).	"HG2" "HC" 0 1 131072 9 1 -0.054800	
- Save and close the file	"HG3" "HC" 0 1 131072 10 1 -0.054800 "CD" "CO" 0 1 131072 11 6 0.818300	
when you are done.	"0E1" "90" 0 1 131072 12 8 -0.822000 "0E2" "90" 0 1 131072 13 8 -0 822000	
	"C" "C" 0 1 131072 14 6 0.742000	
For the N-terminus	"0XT" "90' 0 1 131072 16 8 -0.793000	
(aminont12.11b):	<pre>!entry.cgLU.unit.atomspertinfo table str pname str ptype int ptypex int pelmnt dbl pchg "N" "N" 0 -1 0.0</pre>	
- Repeat the procedure to	"H" "H" 0 -1 0.0	
modify the side-chain	"HA" "H1" 0 -1 0.0	
oxygens in NASP and	"CB" "2C" 0 -1 0.0 "HB2" "HC" 0 -1 0.0	
NGLU (images not shown).	"HB3" "HC" 0 -1 0.0 "CG" "2C" 0 -1 0.0	
Only these amino acids	"HG2" "HC" 0 -1 0.0	
need to be modified in this	"HG3" "HC" 0 -1 0.0 "CD" " <u>C0"</u> 0 -1 0.0	
file, because N-terminus	"0E1" "90' 0 -1 0.0 "0E2" "90' 0 -1 0.0	
amino acids do not contain		
extra carboxylate groups.	"0XT" "90' 0 -1 0.0	
- Save and close the file	!entry.CGLU.unit.boundbox array dbl -1.000000	
when you are done.		
	-: aminoct12.lib 26% L913 (Fundamental +1)	
	wrote /usr/data/bgisi/geraiti/Simulation_area/lutoriat/aminocti2.lib	11

Fig. H: modified section of *aminoct12.lib*

- In the *leaprc.protein.ff14SB* file, copy the line where "O2" is defined (green box in Fig. I), and paste it directly below it as a new line.
- In the new line, change the "O2" to "YOUR NEW NAME" (in our example, the new name is "90"; red box in Fig. I).
- Save and close the file.

3	emacs@lbox157.mpikg.mpg.de	×
File Edit Options Buffers Tools Help		
🍄 🖴 💥 🎍 Save 🥱 Undo 💥 🗐 😭	Q	
# load atom type hybridizations		
#		
addAtomTypes {		
{ "H" "H" "sp3" }		
{ "HO" "H" "sp3" }		
{ "HS" "H" "sp3" }		
{ "HI" "H" "Sp3" }		
{ ns n sps } { "H/" "H" "en3" }		
{ "H5" "H" "sp3" }		
{ "HW" "H" "sp3 }		
{ "HC" "H" "sp3" }		
{ "HA" "H" "sp3" }		
{ "HP" "H" "sp3" }		
{ "HZ" "H" "sp3" }		
{ "OH" "O" "sp3" }_		
{ "0S" "0" "sp3" }		
{ "0" "0" "sp2" }		
{ "02" "0" "sp2" }		
{ "90" "0" "sp2" }		
{ "OP" "O" "sp2" }		
{ "OW" "O" "Sp3" } { "CT" "C" "cp3" }		
{ CI C SP3 }		
{ CA C Sp3 } { "C8" "C" "sp3" }		
{ "2C" "C" "sp3" }		
{ "3C" "C" "sp3" }		
{ "CH" "C" "sp3" }		
{ "CS" "C" "sp2" }		
{ "C" "C" "sp2" }		
{ "CO" "C" "sp2" }		
{ "C*" "C" "sp2" }		
-: leaprc.protein.ff14SB 4% L23 (Fundamental +2)		

- The actual parameter values atomic masses, charges, Lennard-Jones, bonds, angles, dihedral and improper potentials for each interaction between 2 or more atoms are in files *parm10.dat* and *frcmod.ff14SB*.
 - *parm10.dat* is the main file; it contains the parameters for most interactions, and it is **never** modified.
 - *frcmod.ff14SB* supplements *parm10.dat* in two different ways: 1) it contains parameters for any new interaction;
 2) it may also contain new parameters for any interaction that is already defined in *parm10.dat* but which we wish to override.
 - "tleap" reads *parm10.dat* first and *frcmod.ff14SB* afterwards; if it finds parameters for the same interaction in both files, it will use those from *frcmod.ff14SB* only.
 - In the next few slides we will illustrate the procedure to include in *frcmod.ff14SB* parameters for all interactions involving our new atom type "9O". In general, the steps in the procedure are (do not worry if you do not understand the procedure at this point; the examples will clarify it):
 - step 1: for each reference to carboxylate-"O2" in *parm10.dat*, check if the same interaction has been defined in *frcmod.ff14SB*.
 - If yes, duplicate the line in *frcmod.ff14SB* and past the duplicate directly below the original line; in the duplicate line, change "O2" to "9O".
 - if no, copy the line in *parm10.dat*, paste it at the end of the corresponding section in *frcmod.ff14SB*; in the copy, change "O2" to "9O".
 - by following these instructions, you make sure that all parameters in *parm10.dat* for carboxylate-"O2" are put into *frcmod.ff14SB*, without overwriting newer parameters for the same interaction if they exist in *frcmod.ff14SB*.
 - step 2: once you're done with step 1, you need to search for all references to carboxylate-"O2" in *frcmod.ff14SB*, and make sure that equivalent information is defined for "9O". This step is necessary because some interactions may only be defined in *frcmod.ff14SB*.

- Entering mass information for "90":
 - Look for the mass of "O2" in *parm10.dat* (Fig. J, red box).
 - Inspect the MASS section in *frcmod.ff14SB*. There is no entry for "O2" there.
 - Copy the line containing the mass information from *parm10.dat*, paste it at the end of the MASS section in *frcmod.ff14SB* and change the atom type from O2 to "9O" (Fig. K, red box).

	Applicat	tions :	3 em	🕒 em		o.p	[(9)	Cora Ora	🔯 [Do	luto	[Am	2 THV		ier	9 0	1 13:11
8									emacs@lbo	157.mpikg.ı	mpg.de					
File	Edit	Options	Buffers	Tools	Help											
9			X 🛃	Save		ido 🏻 🌡	6 2	- 🖻	Q							
NC	14.	01		Θ.	530				sp2 N i	n 6 mer	mb.rir	ng w/	LP	(ADE,	GUA)	
N2	14.	01		Θ.	530				sp2 N i	n amino	o grou	ıps				
N3	14.	01		Θ.	530				sp3 N f	or chai	rged a	amino	gro	oups	(Lys,	etc)
NT	14.	01		Θ.	530				sp3 N f	or amir	no gro	oups	ami	no gro	oups	
N*	14.	01		Θ.	530				sp2 N							
NY	14.	01		Θ.	530				nitrile	N (How	ward e	et al	.JC	C,16,3	243,19	995)
0	16.	00		<u>0</u> .	134		-		carbony	l group	o oxyg	gen				
02	16.	00		Θ.	434				carboxy	l and p	phosph	nate	grou	up oxy	ygen	
OW	16.	00		0.	000				oxygen	in TIPS	3P wat	ter				
OН	16.	00		Θ.	465				oxygen	in hydı	roxyl	grou	р			
0S	16.	00		Θ.	465				ether a	nd este	er oxy	/gen				
0P	16.	00		Θ.	465				2- phos	phate d	oxyger	า				
Ρ	30.	97		1.	538				phospha	te,pol:	: JACS ,	,112,	8543	3,90,1	K.J.M:	iller
s	32.	06		2.	900				S in di	sulfide	e link	kage,	pol	:JPC,	102,23	399,98
SH	32.	06		2.	900				S in cy	stine						
CU	63.	55							copper							
FE	55.	00							iron							
Zn	65	5.4							Zn2+							
EΡ	Θ.	00		Θ.	000				extra p	oint						
c	ц	ЦО	N	NA	NR	NC	N2 -	NT		N* 0	01	05	D	02		
	니니	552	0			NC I		יוויו הערס		N 0	ОН	05	F	02		
	- HW	553	.0	1.5	126	:		op wa	ter							
nw-	-Hw	223	.0	1.0	130		11P3	SP Wa	ter 10	00						
	- C	310	.0	1.5	220		Juni		et at, 19	99						
L C	-CA	469	.0	1.4	109		JCC,	, / , (]	986),230	; (not	used	any	more	e in	IYR)	
	- C R	44/	(-)	4	.19			/ (1	9861 230	• (11)A						

3			emacs@lbox157.mpikg.mpg.de
File Edit	t Options	Buffers Tools	Help
<u> </u>		🗶 🎍 Save	🥱Undo 🕌 🖶 💼 🔍
ff14SE	3 protei	n backbone	and sidechain parameters
MASS CO 12.	01	0.616	! sp2 C carboxylate group
2C 12	01	0.878	sp3 aliphatic C with two (duo) heavy atoms
3C 12.	01	0.878	sp3 aliphatic C with three (tres) heavy atoms
C8 12.	01	0.878	sp3 aliphatic C basic AA side chain
90 16.	00	0.434	carboxyl group sp2 oxygen, PCCP 2017, 19, 20593
BOND			
C - 2C	317.0	1.5220	
C*-2C	317.0	1.4950	
C8-C8	310.0	1.5260	
C8-CX	310.0	1.5260	
C8-H1	340.0	1.0900	
C8-HC	340.0	1.0900	
C8-HP	340.0	1.0900	
C8-N2	337.0	1.4630	
C8-N3	367.0	1.4710	
CA-2C	317.0	1.5100	
CC-2C	317.0	1.5040	

Fig. K: modified section of *frcmod.ff14SB*

Fig. J: Original parm10.dat

- Entering parameters for bonds involving "90":
 - locate bond parameters involving "O2" in *parm10.dat*. Here is the relevant line:
 - C -O2 656.0 1.250 JCC,7,(1986),230; GLU,ASP (line 81)
 - O2-P 525.0 1.480 JCC,7,(1986),230; NA PHOSPHATES (line 173)
 - locate bond parameters involving "O2" in *frcmod.ff14SB*. There is only one line:
 - CO-O2 656.0 1.2500

- (line 20)
- Interactions "C –O2" and "O2-P" are only defined in *parm10.dat*. Copy the line for "C –O2" from *parm10.dat*, paste it at the end of the bond section in *frcmod.ff14SB* and change "O2" to "9O" (Fig. L, green box).
 - Note that you should **not** insert a line for the "9O-P" bond in *frcmod.ff14SB*. We developed these oxygen parameters specifically for carboxylates. Because of their high specificity, these parameters should not be used for anything other than the intended functional groups.
- Interaction "CO-O2" only exists in *frcmod.ff14SB*. Duplicate this line, past it directly below the original and change "O2" to "9O" (Fig. L, red box).
 - Note: if "CO-O2" had simultaneously existed in *parm10.dat*, you would have ignored the *parm10.dat* data and would have done exactly the same.

	8												emacs@	lpo	x157.mpikg	.mpg.d	e				
	File	Edit	Options	Buff	ers To	ols	Help														
	2	<u>-</u>	22	×	🛃 Save	e	⇔Un	do	X		Ê		Q								
	ff1	4SB	prote	in b	ackbo	one	and	side	echa	in p	bara	ame	ters								
	MAS	S										_		-							
	C0	12.0	01		0.6	16				sp	02 (C C	arboxy	yla	ate grou	p		h			
	20	12.	01 01		0.8	/8 70				sp	03 0	ali	phatic		with t	WO ((100) (+r/	neav	y at	oms	me
S		12.	01 01		0.0	/0 78				2	13 0	ali	phatic nhatic		basic	AA e'	ida d	s) n Shain	leavy	all	JIII S
	90	16.0	00		0.43	34				ica	rho	evi a		20	xvaen PC(CP 20	17 19	2059	3		
		_								00	100	-y- 9	roup op	20,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 20	11, 10	, 2000			
	BON	ID																			
	С-	20	317.0		1.522	20															
	C*-	20	317.0		1.49	50															
r	C8-	68	310.0		1.520	60															
-	C8-		310.0		1.520	60															
	C8-	нс	340.0		1 090	00															
	C8-	HP	340.0		1.090	00															
	C8-	N2	337.0		1.46	30															
	C8-	NЗ	367.0		1.47	10															
	CA-	2C	317.0		1.51	00															
	CC-	2C	317.0		1.504	40								_							
	C0-	02	656.0		1.25	00															
	C0-	90	656.0		1.25	00		new	par	amet	ter										
	CO-	20	317.0		1.52	20															
	ст-	20	310.0		1.520	60 60															
	CX-	20	310.0		1 520	60 60															
	cx-	30	310.0		1.520	60															
1	H1-	2C	340.0		1.090	00															
,	H1-	3C	340.0		1.090	00															
	HC-	2C	340.0		1.090	00															
	HC -	3C	340.0		1.090	00															
	OH-	20	320.0		1.41	00															
	OH-	30	320.0		1.41	00															
	S -	20	227.0		1 91/																
	20-	20	237.0		1 520	60															
	20-	30	310.0		1.520	60															
	6	00	CEC O		1 250	0		nout													

Fig. L: modified section of *frcmod.ff14SB*

- Entering parameters for angles, dihedrals or impropers involving carboxylate-"O2":
 - To make these changes, you follow the same procedure we have exemplified for inserting parameters for bonds involving "9O", with one difference: when you are changing the carboxylate-"O2" angle, dihedral, or improper, you must change them in a way to be able to consider any combination of interactions in the future.
 - search for carboxylate angles with "O2" in *parm10.dat*. There are multiple lines:

—	CT-C -O2	70.0	117.00			(line 237)
-	CX-C -O2	70.0	117.00	(was CT-C	-O2)	(line 238)
-	02-C -02	80.0	126.00	AA GLU	(SCH JPC 79,2379)	(line 254)
-	02-P -OH	45.0	108.23			(line 539)
_	02-P -02	140.0	119.90			(line 540)
_	02-P -0S	100.0	108.23			(line 543)

- do the same thing in *frcmod.ff14SB*. Here are the lines:
 - O2-CO-O2 80.0 126.00
 - O2-CO-2C 70.0 117.00
- Notice that each angle interaction is defined in only one file.
- Duplicate the line with the "O2-CO-2C " interaction in *frcmod.ff14SB* and paste it directly below the original. In the duplicate, change "O2" to "9O" (green box in Fig. M)
- Duplicate the line with the "O2-CO-O2" interaction in *frcmod.ff14SB* and paste it twice directly below the original. In the duplicates, change "O2" to "9O" to allow all possible combinations of "O2" and "9O" (red box in Fig. M)
 - For our specific application, it would have been sufficient to insert only a line with "9O-CO-9O" in *frcmod.ff14SB* because the *lib files we modified do not have an "O2-CO-O9" angle. We nevertheless suggest always including the combinations in *frcmod.ff14SB* to avoid unexpected problems if an angle "9O-CO-O2" ever becomes necessary.
- Copy each of the lines from *parm10.dat* with angle interactions involving carboxlyate-"O2" and paste them one or more times (as necessary) at the end of the ANGLE section in *frcmod.ff14SB*. Make the necessary changes from "O2" to "9O" (images not shown).
- Angle potentials involving the "O2-P" bond (in red above) should **not** be updated to "9O" in *frcmod.ff14SB*, for the reasons explained in the previous slide.
- Follow the same procedure to update dihedral and impropers (images not shown).

	E	Edit	Option	s Bu	ffers Tool	s Help				emac
	9	-		×	🛃 Save	⇔Undo	8			Q
1	NB-	CC-	2C	70.	Θ	120.00				
I	02-	C0 -	02	80.	0	126.00				
I	90-	C0 -	90	80.	Θ	126.00	new	par	amet	er
I	02-	C0-	90	80.	0	126.00	new	par	amet	er
I	02-	CU-	2C	70.	0	117.00				
I	90-	C0-	2C	70.	0	117.00	new	par	amet	er
I	HC-	CT-	2C	50.	Θ	109.50				
1	HC-	CT-	3C	50.	Θ	109.50				
1	с -	CX-	C8	63.	Θ	111.10				
	<u>, , , , , , , , , , , , , , , , , , , </u>		2C	ASR	58 1 53	111 10 (Eundam	ontal +1)			
			chied. III	1430	3% L33	(Tunualii	entat +1/			

- We will now input the new Lennard-Jones (LJ) parameters for atom type "90". LJ parameters exist in *parm10.dat* (Fig. N; red box shows parameters for "O2"), and in *fremod.ff14SB*, in the "NONB" and "LJEDIT" sections (Fig. O, red boxes).
 - The "NONB" section will contain the new self-interaction parameters.
 - the "LJEDIT" will contain LJ parameters for those pairs of atoms for which we want to override the Lorentz-Berthelot combination rules.

💓 Appli	ications 🗄 🧕	9 ema 🔇) ema 📀	[(9) 🖸 Oracl	[Dow	🛅 Tutor 📄 (Amb 🥻 THV 🕅 (Ter 📮 🚺 3 19:16 📢 🄇	🎙 🎝 🕨 Hosein Geraili 📕	8						emacs@lbox157.m	oikg.mpg.de	
8					emac	s@lbox157.mpikg.mpg.de	* - 8 ×	File Edit Op	tions	Buffers To	ols Help					
File Ed	lit Options	Buffers Too	ols Help					🕒 🖴 🕯		🗶 🔡 Sav	e 🥱U	ndo 😽	Pa 💼	Q		
<u></u>		🗶 🔡 Save		6 📈 🖷 💼	Q			CX-2C-	S-	- S	1	0.666	5	0.0		-2.
HW	OW 6	0000.	0000).		flag for fast water		CX-2C-	s-	- S	1	0.056	5	0.0		1.
								2C-S -	s-	- 2C	1	0.379	9	0.0		-4.
N I	NA N2	N* N	C NB	NT NY				2C-S -	s -	-20	1	0.682)	0.0		-3.
C* (CA CB	CC CI	D CK	CM CN CQ	CR (CV CW CY CZ CP CS		20-5 -	s.	-20	1	4 480	-	0.0		-2
MOD 4								20-5 -	s.	-20	1	0 420		0.0		1
H004	F	<u>۱</u>	000 O	0157		Ferguson hase pair geom		20-5 -	5	20	1	0.420	,	0.0		τ.
но		0.0	000 0.	0000		OPLS Jorgensen, JACS, 110, (1988), 1657		тмрр								
HS		0.6	000 0.	0157		W. Cornell CH3SH> CH3OH FEP			~~	0.2		10 E		100		2
HC		1.4	870 0.	0157		OPLS		X -02-	CU-	-02		10.5		180.		2.
H1		1.3	870 0.	0157		Veenstra et al JCC,8,(1992),963		20-0 -	с	- UH		10.5		180.		2.
H2		1.2	870 0.	0157		Veenstra et al JCC,8,(1992),963		CA-CA-	CA-	- 2C		1.1		180.		2.
H3		1.1	870 0.	0157		Veenstra et al JCC,8,(1992),963										
HP		1.10	000 0.	0157		Veenstra et al JCC,8,(1992),963		NONB								
		1.4	590 U.	0150		Spellmeyer Spellmeyer one electrowithdr neighbor		2C			1.908	30 0.	.1094		Spellm	leyer
H5		1.40	590 0. 590 0	0150		Spellmeyer, one electrowithdr, neighbor		3C			1.908	30 0	.1094		Spellm	leyer
HW		0.0	000 0.	0000		TIP3P water model		C8			1.908	30 0	.1094		Spellm	leyer
HZ		1.4	590 0.	0150		H bonded to sp C (Howard et al JCC 16)		C0			1.908	30 0.	0860		0PLS	
0		1.6	612 0	2100		OPLS										
02		1.6	612 0.	2100		OPLS										
OW		1.7	683 0.	1520		TIP3P water model		LJEDIT								
OH		1.7	210 0.	2104		OPLS		LUEDI								
05		1.6	837 0.	1700		OPLS ether										
		1.8	500 U.	1/00		Steinbrecher/Latzer for 2- phosphate										
		1 9	080 0.	1004		parmbsco										
C5		1.9	080 0. 080 0.	0860		Spellmever										
C4		1.9	080 0.	0860		Spellmeyer										
СТ		1.9	080 0.	1094		Spellmeyer										
	parm10.dat	96% L966	6 (Fundam	ental +2)												
NY with							I REALT I TAN LAND MI				26 (5					
1810								Tr'clied	1.1114	SO BOT LS	20 (Fund	amental +:	57	1/frend ff145D		

• Download the *zip file that you'll find as supporting information of the article we mentioned in the introduction (doi: 10.1039/C7CP02557B). Open file Parameters/Acetate.top. This file contains the LJ parameter information in gromacs format; amber format parameters are given as comments. The relevant lines for this tutorial are:

Rij(AMBER; A) epsilon ij(AMBER, kcal/mol)

-	;name	bond_type	mass	charge	ptype	sigma (nm)	epsilon (kJ/mol))	r(AMBER; A)	epsilon	(AM	BER; kcal/mol)
-	OACE	OACE	0.00000	0.0000) A	2.95992e-01	6.76553e-01	;	1.6612	0.1617	;	0.77x Original epsilon

epsilon

- OACE NA+ 1 2.75899e-1 4.97508e-1 ; 3.0969

sigma

0.1189 ; 1.022 times Original sigma (Rij in AMBER) ;

OACE self iteraction correction for epsilon included

"OACE" corresponds to our "90". "r(AMBER)" and "epsilon (AMBER)" are the optimized self-interaction parameters. "r(AMBER)" is $R_{min,i,i}/2$ and "epsilon(AMBER)" is $\epsilon_{i,i}$ in the notation of eq. 1 of this tutorial.

func

:i

i

- "Rij(AMBER)" and "epsilon_ij(AMBER)" are the optimized LJ parameters for the interaction between "O9" and Na⁺. Notice that "Rij(AMBER)" is R_{min,i,j} in the notation of eq. 1.
- Notice that "r(AMBER)" is the same as in *parm10.dat* (Fig. N) but that "epsilon (AMBER)" is different: the optimized "r(AMBER)" is 0.77 times the original "r(AMBER)".
- Insert the new LJ self-interaction parameters ("r(AMBER)" and "epsilon (AMBER)") for "90" into *frcmod.ff14SB* as shown in Fig. P.

-								
8	emacs@lbox157.mpikg.mpg.de							
File Edit Optio	ons Buffe	rs Tools	Help					
🕒 🖴 🗎	×	Save	⇔Undo	¥ 🖣 💼	Q			
N3-CX-2C-S	1 0	. 323	Θ.Θ	-3.				
N3-CX-2C-S	1 0	.021	180.0	-2.				
N3-CX-2C-S	1 0	.469	Θ.Θ	1.				
CX-2C-S -S	1 0	. 135	180.0	-4.				
CX-2C-S -S	1 0	.302	Θ.Θ	-3.				
CX-2C-S -S	1 0	.666	0.0	-2.				
CX-2C-S -S	1 0	.056	Θ.Θ	1.				
2C-S -S -2C	1 0	.379	0.0	-4.				
2C-S -S -2C	1 0	.682	Θ.Θ	-3.				
2C-S -S -2C	1 4	.480	0.0	-2.				
2C-S -S -2C	1 0	.420	Θ.Θ	1.				
TMPR								
X -02-C0-02	1	0.5	180.	2.				
2C-0 -C -OH	ĩ	0.5	180	2.				
CA-CA-CA-2C	-	1.1	180.	2.				
NONR								
20	1 9898	0 100/	4	Spollmover				
20	1 0000	0.109	4	Spectmeyer				
C	1 0000	0.109		Spellmover				
co	1.9080	0.1094	•	opic				
00	1.9080	0.0860	7	DCCD 2017	10 20502			
90	1.6612	0.161	/	PCCP, 2017,	19, 20593			

Fig. P: modified frcmod.ff14SB

- Now for the second (and shorter) part of this tutorial: modifying the LJ interactions between "90" and Na⁺:
- We will start by examining the original ion parameters (from JPCB 2008, 112, 9020-9041) typically used with TIP3P water. Open file Tutorial/*frcmod.ionsjc_tip3p*. The values under the NONBON section are $R_{min,i,i}/2$ (in A) and $\varepsilon_{i,i}$ (in kcal/mol). This file is loaded in "tleap" following the indications in *leaprc.water.tip3p*; to confirm this information, open *leaprc.water.tip3p* and search for the text string "frcmod.ionsjc_tip3p".

Applications : 🙆 em.	🗿 em	= [9.p	(9)	🔂 Ora	🔯 [Do	Tuto	. 📄 Am	🎇 тнv	图 [Ter	₽.	0	3 19
3					emacs⊛lb	ox157.mp	ikg.mpg.de					
File Edit Options Buffe	ers Tools H	elp			-							
🕒 🖾 🔛 🗶 .	Save 🤇	JUndo	% 4		Q							
Rb+ 85.47						I	rubid:	ium				
Cs+ 132.91						(cesiu	m				
F- 19.00		Θ.3	320				fluor	ine				
Cl- 35.45		1.9	910			(chlor	ine	(Appl	.eqı	iis	t)
Br- 79.90		2.8	880				bromi	ne	(Appl	.eqı	iis	t)
I- 126.9		4.0	690			:	iodin	e	(Appl	.eqı	iis	t)
NONBON												
Li+	1.025	(0.027	9896								
Na+	1.369	(0.087	4393								
K+	1.705	(0.193	6829								
Rb+	1.813	(0.327	8219								
Cs+	1.976	(0.406	5394								
F-	2.303	(0.003	3640								
	2.513		0.035	5910								
Br-	2.608		0.058	6554								
1-	2.860		0.053	6816								
freezed log-to-the	Det 110	15	amontal	2]								
remod.ionsjc_tip	sp BOT LIG	(Fund	amental •	3)								
11 1 11 11 11 11 11 11 11 11 11						Q		M 🖻				

Fig. Q: original *frcmod.ionsjc_tip3p*

- Entries in the "LJEDIT" section in *frcmod.ff14SB* have the following (unexpected!) format:
 - atom_type_A atom_type_B $d_A = E_A = d_B = \frac{1}{2}$; "d" in angstrom; E in kcal/mol
 - these parameters are *exclusively* used to define the interactions between atom type A and atom type B as

$$R_{\min,A,B} = d_A + d_B \qquad \qquad \varepsilon_{A,B} = \sqrt{E_A E_B}$$

- Notice that *any* combination of d_A and d_B , and of E_A and E_B , that yields the correct values $R_{\min,A,B}$ and $\varepsilon_{A,B}$ is allowed. d_A, E_A and e_B, E_B are, by themselves, meaningless; only $R_{\min,A,B}$ and $\varepsilon_{A,B}$ have meaning.
- In the "LJEDIT" section of *frcmod.ff14SB*, add the new parameters for the "90"..."Na+" interaction (red box, Fig. R).
- Notice that you could have also written:
 90 Na+ 1.54845 0.1189 1.54845 0.1189
 or
 90 Na+ 0 1 3.0969 0.01414
 where 0.01414=0.1189*0.1189

٠

- Save and close *frcmod*.*ff14SB* when you are done.

8	emacs@lbox157.mpikg.mpg.de						
File Edit Option	ns Buffers Tools	Help					
	🗙 🛃 Save	€∋Undo	» F	Q			
2C-0 -C -OH	10.5	180.	2.				
CA-CA-CA-2C	1.1	180.	2.				
NONB							
2C	1.9080 0.109	4	Spellmeyer				
3C	1.9080 0.109	4	Spellmeyer				
C8	1.9080 0.109	4	Spellmeyer				
CO	1.9080 0.086	0	0PLS				
90	1.6612 0.161	/	PCCP, 2017,	19, 20593			
LJEDIT							
90 Na+	3.0969 0.11	89 0 0.118	9				

- The final step is to update the paths to your modified parameter and topology files so they are loaded by "tleap".
 - Open Tutorial/*leaprc.protein.ff14SB* and update the paths of *parm10.dat*, *frcmod.ff14SB*, amino12.lib, *aminoct12.lib* and *aminont12.lib* to your Tutorial/ directory, as exemplified in Fig. S. We did not modify *parm10.dat* but it is convenient to call it also from Tutorial/ rather than from \$AMBERHOME. Save and close *leaprc.protein.ff14SB* when you are done.
 - Create a new file (we called it *ff14_tleap_-f_ThisName.in*; Fig T) and add the following command: source /your/path/to/Tutorial/leaprc.protein.ff14SB
 - if you had made modifications in any of the water files, you could also add the command:

source /your/path/to/Tutorial/leaprc.water.tip3p

- save and close *ff14_tleap_-f_ThisName.in*.
- To build topology (.prmtop) and coordination (.inpcrd) files using the new parameters, open "tleap" with the following command:

\$ tleap -f "YOUR DIRECTORY"/ ff14_tleap_-f_ThisName.in

💥 Applications : 🔇 e 🔇 e 🗨 10 🕼 [(9 🔯 Or 💿 [D 📄 Tut 📄 [A 🚔 Tut 🐹 TH 🔤 [Te 🐺 🚺	3 19:20 🌒 💽 🧔 🕨 Hosein Geraili 💻 🚺	emacs@lbox157.mpikg.mpg.de	• - D
emacs@lbox157.mpikg.mpg.de	↑ - ♂ ×	File Edit Options Buffers Tools Help	
File Edit Options Buffers Tools Help		📴 🔚 💥 💾 Save 🥱 Undo 💥 🦷 🎁 🔍	
🕐 🖴 📓 🗶 🏥 Save 🥱 Undo 🖌 🖡 💼 🔍		<pre># sourcing the Amber protein ff14Sb and water tip3p</pre>	
<pre>{ "SH" "S" "sp3" } { "P" "P" "sp3" } { "LP" "P" "sp3" } { "LP" "" "sp3" } { "EP" "" "sp3" } { "Cl" "Cl" "sp3" } { "Cl" "Cl" "sp3" } { "Br" "Br" "sp3" } { "I" "I" "sp3" } { "I" "I" "sp3" } } # # Load the main parameter set. parm10 = loadamberparams /usr/data/bgfs1/geraili/Simulation_area/Tutorial frcmod14SB = loadamberparams /usr/data/bgfs1/geraili/Simulation_area/Tutorial frcmod14SB = loadamberparams /usr/data/bgfs1/geraili/Simulation_area/Tutorial # Load main chain and terminating amino acid libraries # loadOff /usr/data/bgfs1/geraili/Simulation_area/Tutorial/amino12.lib loadOff /usr/data/bgfs1/geraili/Simulation_area/Tutorial/aminot12.lib loadOff /usr/data/bgfs1/geraili/Simulation_area/Tutorial/aminot12.lib loadOff /usr/data/bgfs1/geraili/Simulation_area/Tutorial/aminot12.lib</pre>	./parm10.dat orial/frcmod.ff14SE	<pre>source /usr/data/bgfs1/geraili/Simulation_area/Tutorial/leapro otein.ff14SB source /usr/data/bgfs1/geraili/Simulation_area/Tutorial/leapro ter.tip3p</pre>	c.pr
Fig. Coundated lagrana anatain ff14CD		Fig. T. now file ((14 dlaws of Thin))	

٠

- It is always useful to verify if you've made the correct the modifications. To do so, download *wt1mg.pdb* from "ambermd.org" (<u>http://ambermd.org/tutorials/advanced/tutorial8/files/wt1mg.pdb</u>). This is a protein that has already been prepared for simulation. Put the pdb file in a "new_folder".
- Go to "new_folder", open a terminal there, and type all the commands in Fig. U (use your own path to Tutorial/, where you've saved all the modified topology and parameter files). After all the commands are executed, type "quit".

- Now we will use "Parmed" (<u>https://parmed.github.io/ParmEd/html/index.html</u>) to inspect the "mol.prmtop" topology file. Type the following commands in the terminal
 - \$ parmed -p mol.prmtop
 \$ printLJMatrix :ASP
 \$ printLJMatrix :Na+
 - The last column shows $\varepsilon_{i,j}$ in kcal/mol; the second-from-last column shows $R_{min,i,j}$ in angstrom.

Take a look at the self-interaction parameters involving "9O" (Fig. V, red box) and at the interaction parameters between "9O" and "Na+" (Fig. V, green box). Compare them with those in file acetate.top, and with the parameters for "O2". Make sure there are no mistakes.

File Edit View Terminal Table Construction of the product of the pro	Terminal - geraili@lbox157/usr/neonle/home/geraili/Documents/Tutorial/new/Tutorial						
International and the construction of the	File Felit View Terminal Take Help	iai - geralli@ibox131/faai/people/itoine/gerall	I/Documents/ratorianite	W/Tutonal			
<pre>M H (11) HW (20) 0.000000 0.000000 0.000000 0.000000 0.000000</pre>	File Edit View ierminal labs Herp	011 [13]	03111.330000	110.207000	3.233300	0.070031	
<pre>M, M2, M3, M4, M8 [1] 90 [14] 532490. 597000 594.258905 3.457200 0.165798 2C, 3C, CB, CT, CX [3] 90 [14] 900.209543 1.3.470034 2.261200 0.056385 2C, 3C, CB, CT, CX [3] 90 [14] 990.209543 1.3.470034 2.261200 0.056385 2C, 3C, CB, CT, CX [3] 90 [14] 990.444940 44.66639 3.559200 0.133004 H1 [5] 90 [14] 990.444940 44.66639 3.559200 0.0558385 C, C*, CA, CB, CC, CN, CO, CR, CV, CW [7] 90 [14] 141 32420.995100 88.841213 3.661200 0.958385 C, C*, CA, CB, CC, CN, CO, CR, CV, CW [7] 90 [14] 141 33340.107000 445.6551343 3.322400 0.11925 0.11925 0.11925 0.11925 0.1192 0.119 0.111 90 [14] 413380.00000 552.20000 0.049249 0.11925 0.00000 455.6272 3.070200 0.049249 0.11925 0.101 90 [14] 413366.00000 655.20000 0.049249 0.0141 90 [14] 41336.00000 6552.20000 0.049249 0.0141 90 [14] 90 [14] 97788.712000 0.849249 0.04000 0.049249 90 [14] 90 [14] 90 [14] 925584.273000 424.062208 3.322400 0.161700 90 [14] 90 [14] 90 [14] 229504.877000 434.062208 3.322400 0.049249 90 [14] 90 [14] 90 [14] 229504.877000 434.062208 3.322400 0.049424 90 [14] 90 [14] 90 [14] 22759.9000 82.541620 3.102000 0.949249 90 [14] 90 [14] 90 [14] 22759.9000 82.541620 3.102000 0.949249 90 [14] 90 [14] 90 [14] 92558.42300 299.785247 3.0005000 0.118090 90 [14] 90 [14] 912775.910000 0.049617 9.3002000 0.049617 90 [14] 94 91 92 10.00000 0.00000 0.00000 0.00000 0.118090 90 [14] 96 112 927594.8310 299.785247 3.005000 0.118090 90 [14] 96 [14] 9755.42300 299.785247 3.005000 0.118090 90 [14] 96 [14] 9755.42300 299.785247 3.005000 0.121921 90 [14] 96 [14] 9755.42300 290.785247 3.005000 0.118090 90 [14] 96 [14] 9755.42300 290.785247 3.005000 0.118090 90 [14] 96 [14] 9755.42300 290.785247 3.005000 0.121921 90 [14] 96 [14] 9755.42300 290.785247 3.005000 0.121921 90 [14] 96 [14] 9755.42300 290.785247 3.005000 0.121921 90 [14] 96 [14] 9755.42300 290.785247 3.005000 0.037651 90 [14] 96 [14] 9772.745000 2556.405223 3.3130000 0.121921 90 [14] 96 [14] 9755.42300 290.785247 3.006000 0.037651 90 [14] 96 [14] 9772.745000 2556.405203 3.777000 0.037651 90 [14] 96 [14] 9772.745000 256.76</pre>	HC [11]	HW [20]	0.00000	0.00000	0.000000	0.00000	
H, HS [2] 90 [14] 900 [2059543 13.470834 2.261200 0.050385 2C, 3C, CB, CT, CX [3] 90 [14] 90664.44940 44.66333 2.761200 0.050385 HI [5] 90 [14] 9806.444940 44.66333 2.761200 0.050385 C, C*, CA, CB, CC, CN, CO, CR, CV, CW [7] 90 [14] 1564282.214000 486.793330 3.562200 0.17925 0 181 90 [14] 133340.187000 495.685439 3.322400 0.184274 0 181 90 [14] 13333.787000 95.223123 3.382200 0.184450 0 181 90 [14] 13333.787000 95.223123 3.382200 0.44450 H (11) 90 [14] 47758.712600 98.1937.13.44200 0.60235 0.44224 H (11) 90 [14] 47758.712600 98.1937.3.42200 0.60235 101 90 [14] M2 24554.275000 28.49577.3.072200 0.646617 90 [14] M2 24554.275000 249.75503 2.092766 0.172400 0.646617	N,N2,N3,NA,NB [1]	90 [14]	532490.587000	594.258905	3.485200	0.165798	
2C, 3C, CB, CT, CX [3] 90 [14] 566478.812000 540.944639 3.652208 0.133004 H1 [5] 90 [14] 9206.444940 44.66339 2.761208 0.050385 S, SH [6] 90 [14] 32420.95100 80.334282 3.0482208 0.050385 C, C*, CA, CB, CC, CN, CO, CR, CY, CV [7] 90 [14] 166229,750409 468.4319 3.56240 0.117925 0 [3] 90 [14] 33340.187000 469.63439 3.322408 0.148274 0 [19] 90 [14] 111 540428.214800 449.593318 3.56240 0.117925 0 [11] 90 [14] 41303 0707000 552.209132 3.382260 0.184274 0 [19] 90 [14] 41303 0707000 552.209132 3.382260 0.184274 0 [11] 90 [14] 47758,712600 98,108071 3.148208 0.050385 H4 [12] 90 [14] 47758,712600 98,108071 3.148208 0.050385 H4 [12] 90 [14] 47758,712600 98,108071 3.148208 0.050385 H4 [12] 90 [14] 47758,712600 882,495772 3.076200 0.049249 90 [14] 90 [14] 4192 22504 827000 882,495773 3.076200 0.049249 90 [14] 90 [14] 90 [14] 242504 827000 882,495773 3.076200 0.049249 90 [14] 90 [14] 90 [14] 242504 827000 882,495773 3.076200 0.049249 90 [14] 90 [14] 90 [14] 241596.423300 240.78524 3.322400 0.046517 90 [14] 90 [14] 90 [14] 90 [14] 92554 0.174200 0.075862 90 [14] 90 [14] 90 [14] 90 [14] 92596 0.05625 4.174200 0.075862 90 [14] 90 [14] 90 [14] 90 [14] 92596 0.05625 4.174200 0.075862 90 [14] 90 [14] 90 [14] 90 [14] 92596 0.05625 4.174200 0.075862 90 [14] 90 [14] 90 [14] 90 [14] 91 [15] 91 [16] 937000 91 [16] 9258 [16] 91 [16] 91 [16] 91 [16] 91 [16] 937000 91 [16] 90 [16] 90 [16] 91 [16] 91 [16] 91 [16] 937000 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 925 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 926 [16] 91 [16] 91 [16] 91 [16] 91 [16] 91 [16] 90 [16] 91 [1	H,HS [2]	90 [14]	900.269543	13.470034	2.261200	0.050385	
HP [4] 90 [14] 9806 444940 44.666339 2.761260 0.050385 K S, SH [6] 90 [14] 1166289 750800 966.491310 3.661280 0.201060 C, C*, CA, CB, CC, CN, CO, CR, CV, CW [7] 90 [14] 33340.187000 495.685439 3.322400 0.144774 H0 [10] 90 [14] 433303.767000 955.20123 3.322400 0.144450 H0 [10] 90 [14] 433303.767000 95.18213 3.322400 0.144450 H0 [10] 90 [14] 47758.71260 9.609213 3.422400 0.609285 H1 [12] 90 [14] 47758.71260 9.62310 3.422400 0.60385 H1 [12] 90 [14] 47758.71260 9.672143 3.072400 0.643249 H1 [12] 90 [14] 41236 7.43080 7.44749 0.72268 0.64617 H0 [14] Max [16] 292555.428100 243.452245 3.322460 0.64	2C,3C,C8,CT,CX [3]	90 [14]	568478.812000	549.944639	3.569200	0.133004	
H [5] 90 [14] 32420.995100 80.834/82 3.048200 0.050385 S,SH [6] 90 [14] 1166289.750000 908.401319 3.661200 0.201060 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] 90 [14] 504080 495.568439 3.322400 0.184274 0H [9] 90 [14] 4133340.870000 552.209132 3.382200 0.184274 0H [9] 90 [14] 41303.070000 552.209132 3.382200 0.184274 0H [9] 90 [14] 4130.070000 6.000000 0.000000 0.000000 HC [11] 90 [14] 47758.712600 98.108971 3.148200 0.650385 H4 [12] 90 [14] 43546.229008 82.495572 3.070200 0.049249 00 [14] 90 [14] 427594.877000 434.962208 3.322400 0.649249 00 [14] 90 [14] 429254.877000 434.962208 3.322400 0.649249 00 [14] 90 [14] 4292544.877000 434.962208 3.322400 0.649249 90 [14] M22+ [16] 23488.714906 61.774949 3.021200 0.049249 90 [14] M22+ [16] 23488.714906 61.774949 3.021200 0.049249 90 [14] M22+ [16] 23488.714906 61.774949 3.021200 0.049617 90 [14] M22+ [16] 23488.714906 61.774949 3.021200 0.049617 90 [14] M22+ [16] 23488.714906 61.774949 3.021200 0.049617 90 [14] M22+ [16] 1.92535.428300 209.785247 3.085900 0.189900 90 [14] M22+ [16] 1.92535.428300 209.785247 3.195000 0.000000 9.000000 0.000000 0.000000 0.000000 0.000000	HP [4]	90 [14]	9896.444940	44.660339	2.761200	0.050385	
<pre>c, c+, cA, CB, CC, (N, CO, CR, CV, CW [7] 90 [14] 1166299 750000 968.491319 3.661200 0.201060 C, C+, CA, CB, CC, (N, CO, CR, CV, CW [7] 90 [14] 504028.214000 447 595330 3.559200 0.117925 H0 [10] 90 [14] 413333.707060 552.209132 3.322400 0.184456 H0 [10] 90 [14] 413333.707060 552.209132 3.322400 0.069000 HC [11] 90 [14] 47758.712600 98.108971 3.148200 0.069000 H4 [12] 90 [14] 41936.27900 90.201203 0.069030 H4 [12] 90 [14] 41936.27900 90.201203 0.069030 H4 [12] 90 [14] 41936.27900 90.201203 0.069030 H4 [12] 90 [14] 41936.27900 90.20120 0.049249 90 [14] 90 [14] 41936.27900 90.20120 0.049249 90 [14] 90 [14] 292540.877000 434.962208 3.322400 0.049249 90 [14] 90 [14] 222540.877000 61.775573 3.027000 0.049249 90 [14] M2 + [15] 28368.023500 74.755793 3.027000 0.049249 90 [14] M2 + [16] 234387.14900 61.774549 3.027200 0.0496417 90 [14] Ma + [18] 92535.428300 720.785427 3.0969000 0.118900 0.069000 0.069000 0.069000 0.069000 0.069000 0.069000 > printLJMatrix :Na+ A tom Type 1 Atom Type 2 A coefficient B coefficient R 1,1 Eps 1,1 N,N2,N3,MA,NB [1] Na+ [18] 136919.347000 258.495233 3.193000 0.121921 H,H5 [2] Na+ [18] 1259.8270601 4.318247 1.969000 0.0715057 90 [14] HW [20] 0.000000 0.069000 0.0697005 HP [4] Na+ [18] 13991.347000 252.422368 3.277000 0.037051 C, C+, CA, CB, CC, CN, CO, CR, CV, CW [7] Na+ [18] 136197.919000 432.237832 3.359000 0.121921 H1 [5] Na+ [18] Na+ [18] 1316197.919000 432.237832 3.359000 0.0174551 C, C+, CA, CB, CC, CN, CO, CR, CV, CW [7] Na+ [18] 1316197.919000 422.242668 3.2771000 0.037051 HC [11] Na+ [18] 132910.267000 214.778698 3.2771000 0.037051 H1 [5] Na+ [18] 132910.267000 24.247268 3.2778000 0.037051 H1 [5] Na+ [18] 132910.267000 40.21472 2.856000 0.037051 H3 [18] Na+ [18] 0W [20] 0.000000 0.000000 0.000000 0.037051 H4 [12] Na+ [18] 000 [19] 104209 337.02960 22.778000 0.037551 Na+ [18] Na+ [18] 0W [20] 0.000000 0.000000 0.000000 0.037651 Na+ [18] 0W [19] 10420.861000 29.637570 3.137300 0.015266 Na+ [18] 0W [19] 10420.861000 0.9193777 3.137300 0.015266 <td>H1 [5]</td><td>90 [14]</td><td>32420.995100</td><td>80.834282</td><td>3.048200</td><td>0.050385</td></pre>	H1 [5]	90 [14]	32420.995100	80.834282	3.048200	0.050385	
C, C+, CA, CB, CC, CN, CO, CR, CV, (W [7] 90 [14] 50428.214060 487.595330 3.559200 0.117925 0 [8] 90 [14] 333340.117060 487.595.685439 3.322400 0.1844750 0H [9] 90 [14] 41333340.117060 495.52.20132 3.332200 0.184459 0H [11] 90 [14] 41333.707060 552.20132 3.332200 0.184459 HG [11] 90 [14] 41433.707060 95.108971 3.148200 0.060308 HG [11] 90 [14] 435456.220600 82.495572 3.070200 0.049249 90 [14] 90 [14] 4134546.220600 95.108971 3.148200 0.049249 90 [14] 90 [14] 4134546.220600 95.201912 3.120200 0.049249 90 [14] HS [15] 22886.023560 74.755793 3.020206 0.049249 90 [14] HS [15] 228486.714960 61.774494 3.120200 0.049249 90 [14] Mg2+ [16] 23488.714960 61.774949 3.120200 0.049249 90 [14] CL : 171 212275.910060 8802.591625 4.174206 0.045617 90 [14] 0.0411 Mg2+ [16] 23488.714960 60.2591625 4.174206 0.075662 90 [14] 0.0411 HW [20] 0.060060 0.0600600 0.18990 90 [14] 0.060060 0.0600600 0.18990 90 [14] 0.0113 41950.405066 5.16.142006 0.200060 0.121921 N,N2,N3,NA,NB [1] Na+ [18] 136019.347060 256.405233 3.193000 0.121921 N,N2,N3,NA,NB [1] Na+ [18] 136019.347060 256.405233 3.193000 0.2121921 N,N2,N3,NA,NB [1] Na+ [18] 136019.347060 256.405233 3.193000 0.02121921 N,N2,N3,NA,NB [1] Na+ [18] 13617.09006 42.242666 3.277000 0.097851 2C, 3C, 6, CT, CX [3] Na+ 181 13909.267860 2.373733 3.39000 0.037651 C, C+, CA, CB, CC, CN, CO, CR, CV (W [7] Na+ 118] 136197.90006 42.247666 3.277000 0.097851 C, C+, CA, CB, CC, CN, CO, CR, CV (W [7] Na+ 118] 136197.90000 42.247460 1.2778000 0.037651 HI [5] Na+ [18] 1001 Na+ [18] 131017.652760 2.2778000 0.037651 HI [5] Na+ [18] 1000 Na+ [18] 31211.662800 2.078050 0.037651 HI [5] Na+ [18] 1000 Na+ [18] 131000000 0.000000 0.037651 HI [13] Na+ [18] 000000 0.0381844565 3.882000 0.037651 HI [14] Na+ [18] 0072.727292 0.978534	S,SH [6]	90 [14]	1166289.750000	968.491319	3.661200	0.201060	
0 [8] 90 [14] 90 [14] 413303.70060 455.209132 3.322406 0.184474 H0 [10] 90 [14] 413303.70060 55.209132 3.322406 0.184450 H0 [11] 90 [14] 47756.712660 90.1089757 3.070200 0.090249 H4 [12] 90 [14] 3456.229060 82.495572 3.070200 0.049249 90 [14] 90 [14] 41936.27200 -0.091210 -3.120200 0.049249 90 [14] 90 [14] 41936.27200 -0.091210 -3.120200 0.049249 90 [14] H5 [15] 28368.02560 434.965208 3.322400 0.161700 90 [14] H6 [15] 28368.02560 434.965208 3.322400 0.049249 90 [14] H7 [2122775.91000 66] 5.91625 4.174200 0.049617 90 [14] H8 [15] 24388.714900 61.774949 3.021200 0.049617 90 [14] H8 [15] 414950.45060 5.10142006 0.342949 90 [14] H8 [13] 414950.45060 5.10142006 0.012975 90 [14] H8 [19] 414950.45060 5.10142006 0.010275 90 [14] H8 [19] 414950.45060 5.10142006 0.010275 90 [14] H8 [19] 414950.45060 5.10142006 0.010275 90 [14] H8 [20] 0.000000 0.000000 0.000000 0.000000 9.000000 0.000000 0.000000 0.000000 0.000000	C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7]	90 [14]	504028.214000	487.595330	3.569200	0.117925	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 [8]	90 [14]	333340.187000	495.685439	3.322400	0.184274	
H0 [16] 90 [14] 0.000000 0.000000 0.000000 H4 [12] 90 [14] 47758.712600 98.108971 3.142200 0.050305 H4 [12] 90 [14] 44956.27900 08.049572 3.070200 0.049249 90 [14] 09 [14] 44956.27900 08.049572 3.070200 0.049249 90 [14] 09 [14] 496228 3.322400 0.161700 90 [14] M02+1161 23488.743000 61.774949 3.021200 0.049249 90 [14] Mar [18] 92535.428300 209.785247 3.096500 0.118960 90 [14] Na+ [18] 129535.428300 209.785247 3.096600 0.189765 90 [14] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H HX Na+ [18] 136919.347000 258.405233 3.193000 0.21921 H, HS [2] Na+ [18] 14995.56700 22.840563	OH [9]	90 [14]	413303.707000	552.209132	3.382200	0.184450	
HC [11] 90 [14] 47758.712600 98.108971 3.148200 0.050385 H4 [12] 90 [14] 34546.22900 90.091910 -3.120200 -0.049249 90 [14] 90 [14] 90 [14] 292504.827000 434.962208 3.322400 0.161700 90 [14] H5 [15] 28368.023500 74.755793 3.020200 0.049249 90 [14] Mg2+ [16] 23488.714900 61.77494 3.021200 0.0409249 90 [14] Mg2+ [16] 23488.714900 61.77494 3.021200 0.0409249 90 [14] Mg2+ [16] 23488.714900 61.77494 3.021200 0.0409249 90 [14] Mg2+ [16] 23488.714900 0.075862 90 [14] Mg2+ [16] 23485.748300 299.785247 3.0905900 0.118900 90 [14] Mg2+ [16] 414996.4955000 510.142000 0.000000 0.000000 0.000000 90 [14] Mg2+ [18] 125.82660 510.142000 0.000000 0.000000 0.000000 90 [14] Mg2+ [18] 125.82660 510.142000 0.000000 0.000000 0.000000 90 [14] Mg2+ [18] 125.826601 4.318247 1.965900 0.121921 N,N2,N3,NA,NE [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H,H5 [2] Na+ [18] 1905.867000 242.24266 3.277000 0.037651 H7 [4] Na+ [18] 1901.324490 16.786482 2.469000 0.037651 H1 [5] Na+ [18] 1909.267000 242.24266 3.277000 0.067765 H7 [4] Na+ [18] 1901.324490 16.786482 2.469000 0.037651 H1 [5] Na+ [18] 1901.324490 16.786482 2.469000 0.37651 H1 [5] Na+ [18] 1901.324490 24.737832 3.309000 0.147551 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 19290.267000 241.4776590 3.277000 0.066717 0 [8] Na+ [18] 102772.745000 236.132213 3.039000 0.147551 H1 [1] Na+ [18] 190772.745000 236.132213 3.039000 0.147651 H1 [2] Na+ [18] 102772.745000 236.132213 3.039000 0.35567 0 H [9] Na+ [18] 102772.745000 236.132324 3.039000 0.35567 0 H [9] Na+ [18] 102772.745000 236.132324 3.039000 0.37561 H1 [12] Na+ [18] 10278.542330 297.955770 3.137300	HO [10]	90 [14]	0.00000	0.00000	0.000000	0.00000	
H4 112 90 141 34546.229000 82.495572 3.070200 0.049249 90 114 90 114 192504.827000 434.962208 3.322400 0.161700 90 114 Mg2+ 115 28368.023500 74.755793 3.020200 0.049249 90 114 Mg2+ 116 23488.714900 61.774949 3.021200 0.040617 90 114 CL- 117 2122775.910000 802.591625 4.174200 0.075862 90 114 CL- 117 2122775.910000 6.000000 0.000000 0.000000 90 114 CL- 117 2122775.910000 0.000000 0.000000 0.000000 0.000000 90 114 HW 20 0.000000	HC [11]	90 [14]	47758.712600	98.108971	3.148200	0.050385	
MA [13] 90 [14] 41036.272900 90.901010 3.12000 0.040249 90 [14] 90 [14] 915 [15] 28368.023500 74.755793 3.021200 0.040249 90 [14] Mg2.1161 2122775.910800 802.591655 4.174200 0.040617 90 [14] C1- [17] 2122775.910800 802.591655 4.174200 0.078562 90 [14] OH 1181 92535.428300 209.785247 3.096090 0.118000 90 [14] OH 119 414390.43900 516.142600 5.16.142600 5.16.775 90 [14] OH 119 414390.439000 209.785247 3.096090 0.100000 90 [14] OH 119 414390.439000 258.405233 3.193000 0.121921 NATON Type 1 Atom Type 2 A coefficient B coefficient R 1, J 69000 0.037051 18 20, 2, 2, 3, NA, NB [1] Na+ [18] 136919.347000 228.405233 3.193000 0.21921 19, 14, 19, 12, 12, 14, 136 Na+ [18] 136291.347000 258.405233 3.193000 0.21921 19, 14, 19, 14,	H4 [12]	90 [14]	34546.229000	82.495572	3.070200	0.049249	
90 [14] 90 [14] H2 292504.827000 434.962208 3.322400 0.161700 90 [14] Mg2+1[16] 23488.714900 61.774949 3.021200 0.049249 90 [14] Cl-1171 2122775.910000 802.591625 4.174200 0.049249 90 [14] Na+ [18] 92355.428300 200.785247 3.096900 0.118900 90 [14] OW [13] 414990.465600 310.412000 3.4257000 0.100000 90 [14] OW [13] 414990.465600 310.412000 0.00000 0.000000 90 [14] OW [13] 414990.465600 310.412000 0.00000 0.00000 90 [14] HW [20] 0.000000 0.00000 0.00000 0.00000 90 [14] Nat [18] 136919.347000 258.405233 3.193000 0.121921 H HS12 Nat [18] 136919.347000 258.405233 3.193000 0.121921	HA [13]	90 [14]	41936.272900	90.891910	3.120200	0.049249	
90 14] H5 15 28368.023500 74.755793 3.020200 0.049249 90 141 C1- [17] 2122775.910000 802.591625 4.174200 0.075862 90 141 C1- [17] 2122775.910000 802.591625 4.174200 0.075862 90 141 NH 181 92535.428300 209.785247 3.095000 0.190000 90 141 NH 120 0.000000 0.000000 0.000000 0.000000 90 141 HW [20] 0.000000 0.000000 0.000000 0.000000 90 141 HW [20] 0.000000 0.000000 0.000000 0.000000 90 141 HW [20] 0.000000 258.405233 3.193000 0.121921 N,N2,N3,NA,NB [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H,HS [2] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 L,HS [2] Na+ [18] 136919.347000 263.405061 3	90 [14]	90 [14]	292504.827000	434.962208	3.322400	0.161700	
90 [14] M2+ [16] 23488.714900 61.774949 3.021200 0.040617 90 [14] Cl- [17] 212775.910000 802.5916.25 4.174200 0.075862 90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 90 [14] WH [20] 0.000000 0.000000 0.000000 0.000000 0.000000	90 [14]	H5 [15]	28368.023500	74.755793	3.020200	0.049249	
90 [14] C.L. [17] 2122775.910000 802.591625 4.174200 0.075862 90 [14] Na+ [18] 92535.428300 209.785247 3.90600 0.118900 90 [14] HW [20] 0.000000 0.000000 0.000000 0.000000 90 [14] HW [20] 0.000000 0.000000 0.000000 0.000000 N,N2,N3,NA,NB [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H,HS [2] Na+ [18] 125.820601 4.318247 1.999000 0.037051 2C,3C,CB,CT,CX [3] Na+ [18] 19995.867000 242.242668 3.277000 0.097805 HP [4] Na+ [18] 1901.324490 16.786482 2.469000 0.037051 HH [5] Na+ [18] 1146.52960 32.471955 2.755000 0.037051 S,SH [6] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.086717 0 [8] Na+ [18] 102772.745000 230.133213 3.090000 0.135507 0 H [9] Na+ [18] 102772.745000 230.133213 3.090000 0.135507 0 H [10] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 10911.930700 40.214472 2.78000 0.037051 H4 [12] Na+ [18] 00000 0.000000 0.000000 0.000000 HC [11] Na+ [18] 10911.930700 40.214472 2.78000 0.037051 H4 [12] Na+ [18] 000000 0.000000 0.000000 0.0000000 H6 [10] Na+ [18] 000000 0.000000 0.000000 0.0000000 H6 [10] Na+ [18] 000000 0.000000 0.000000 0.0000000 0.000000	90 [14]	Mg2+ [16]	23488.714900	61.774949	3.021200	0.040617	
90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 90 [14] 0W [19] 414996.465600 510.142060 3.429500 0.000000 90 [14] HW [20] 0.000000 0.000000 0.000000 0.000000 > printLJMatrix :Na+ Atom Type 1 Atom Type 2 A coefficient B coefficient R i, j Eps i, j N,N2,N3,NA,NB [1] Na+ [18] 12520601 4.31827 1.969000 0.097805 2C, 3C, C8, CT, CX [3] Na+ [18] 149995.867000 228.405233 3.193000 0.121921 H H5 Na+ [18] 149995.867000 248.471 1.969000 0.097805 2C, 3C, C8, CT, CX [3] Na+ [18] 14995.867000 24.471855 2.756000 0.097805 H1 [5] Na+ [18] 7114.652960 32.471955 2.756000 0.037651 C, C*, CA, CB, CC, CN, CO, CR, CV, CW I71	90 [14]	<u>Cl-[17]</u>	2122775.910000	802.591625	4.174200	0.075862	
90 [14] 0W [19] 414936.465000 510.142660 3.429500 0.150775 - 90 [14] HW [20] 0.000000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000<	90 [14]	Na+ [18]	92535.428300	209.785247	3.096900	0.118900	
90 [14] HW [20] 0.000000 0.000000 0.000000 > printLJMatrix :Na+ Atom Type 1 Atom Type 2 A coefficient B coefficient R 1,j Eps 1,j N,N2,N3,NA,NB [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H,HS [2] Na+ [18] 125.820601 4.318247 1.969000 0.037051 2C,3C,C8,CT,CX [3] Na+ [18] 149995.867000 242.242668 3.277000 0.097805 H1 [5] Na+ [18] 7114.652960 32.471955 2.756000 0.037051 H1 [5] Na+ [18] 7114.652960 32.471955 2.756000 0.037051 H1 [5] Na+ [18] 1316107.989000 432.373822 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 13211.682800 209.807371 3.030200 0.135563 0H [9] Na+ [18] 102772.745000 236.132213 3.990600 0.37051 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 0.000000 0.0362216 2.	90 [14]	OW [19]	414998.465000	510.142660	3.429500	0.156775	
<pre>> printLJMatrix :Na+</pre>	90 [14]	HW [20]	0.00000	0.00000	0.000000	0.000000	
Atom Type 1 Atom Type 2 A coefficient B coefficient R i,j Eps i,j N,N2,N3,NA,NB [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H,HS [2] Na+ [18] 125.820601 4.318247 1.969000 0.037051 2C,3C,C8,CT,CX [3] Na+ [18] 149995.867000 242.242668 3.277000 0.097805 HP [4] Na+ [18] 1901.324490 16.786482 2.469000 0.037051 HJ [5] Na+ [18] 1901.324490 16.786482 2.469000 0.037051 S,SH [6] Na+ [18] 16107.989000 432.373832 3.59000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.086717 0 [8] Na+ [18] 102772.745000 236.133213 3.090000 0.1355367 0H [9] Na+ [18] 10911.937070 40.21472 2.856000 0.037051 H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 <	> printLJMatrix :Na+						
Atom type 1 Atom type 2 Atom type 2 Atom type 2 Atom type 2 Atom type 1 R 1, j Lps 1, j N,N2,N3,NA,NB [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H,HS [2] Na+ [18] 125.820601 4.318247 1.969000 0.037051 2C,3C,C8,CT,CX [3] Na+ [18] 1991.324490 16.786482 2.469000 0.037051 HI [4] Na+ [18] 7114.652960 32.471955 2.756000 0.037051 H1 [5] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 112990.267000 214.778698 3.277000 0.0866717 0 [8] Na+ [18] 1211.682800 209.807371 3.030200 0.135507 0H [9] Na+ [18] 0.000000 0.000000 0.000000 0.000000 0.000000 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.37051 H4 [12] Na+ [18] 0911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 092535.428			A coefficient		Dii	Enc i i	
N, N2, N3, NA, NB [1] Na+ [18] 136919.347000 258.405233 3.193000 0.121921 H, HS [2] Na+ [18] 125.820601 4.318247 1.969000 0.037851 2C, 3C, C8, CT, CX [3] Na+ [18] 149995.867000 242.242668 3.277000 0.037051 H1 [5] Na+ [18] 1901.324490 16.786482 2.469000 0.037051 H1 [5] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C, C*, CA, CB, CC, CN, CO, CR, CV, CW [7] Na+ [18] 131210.682800 209.807371 3.036200 0.135507 O [8] Na+ [18] 102172.745000 236.133213 3.090000 0.000000 O [8] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.030051 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 0475.584230 37.51866 2.778000 0.036216 H5 Na+ [18] <t< td=""><td>Асот туре т</td><td>Alom Type 2</td><td>A coefficient</td><td>B coefficient</td><td>К 1, ј</td><td>Eps I,J</td></t<>	Асот туре т	Alom Type 2	A coefficient	B coefficient	К 1, ј	Eps I,J	
H,HS [2] Na+ [18] 125.820601 4.318247 1.969000 0.037051 2C,3C,C8,CT,CX [3] Na+ [18] 149995.867000 242.242668 3.277000 0.097805 HP [4] Na+ [18] 1901.324490 16.786482 2.46000 0.037051 H1 [5] Na+ [18] 1901.324490 16.786482 2.45000 0.037051 S,SH [6] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.086717 0 [8] Na+ [18] 102772.745000 236.133213 3.090000 0.135536 0H [9] Na+ [18] 102772.745000 236.133213 3.090000 0.135636 H0 [10] Na+ [18] 10911.930700 40.214472 2.856000 0.036216 H4 [12] Na+ [18] 0476 584230 37.951466 2.828000 0.036216 H4 [13] Na+ [18] 0476 584230 37.951466 2.828000 0.036216 H5 [15] Na+ [18] 0476 5	N,N2,N3,NA,NB [1]	Na+ [18]	136919.347000	258.405233	3.193000	0.121921	
2C, 3C, C8, CT, CX [3] Na+ [18] 149995.867000 242.242668 3.277000 0.097805 HP [4] Na+ [18] 1901.324490 16.786482 2.469000 0.037051 H1 [5] Na+ [18] 7114.652960 32.471955 2.756000 0.037051 S, SH [6] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C, C*, CA, CB, CC, CN, CO, CR, CV, CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.0866717 0 [8] Na+ [18] 102772.745000 236.13213 3.090000 0.135507 0H [9] Na+ [18] 102772.745000 236.13213 3.090000 0.135636 H0 [10] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 0476.584230 37.951466 2.828000 0.036216 H4 [13] Na+ [18] 0476.584230 37.951466 2.828000 0.036216	H,HS [2]	Na+ [18]	125.820601	4.318247	1.969000	0.037051	
HP [4] Na+ [18] 1901.324490 16.786482 2.469000 0.037051 H1 [5] Na+ [18] 7114.652960 32.471955 2.756000 0.037051 S,SH [6] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 31211.682800 209.807371 3.030200 0.135507 O [8] Na+ [18] 102772.745000 236.133213 3.090000 0.135636 HO [10] Na+ [18] 0.000000 0.000000 0.000000 0.000000 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 0476.584230 37.951466 2.828000 0.036216 H4 [12] Na+ [18] 0476.584230 37.951466 2.828000 0.036216 H4 [12] Na+ [18] 0476.584230 37.951466 2.828000 0.036216 H4 [12]	2C.3C,C8,CT,CX [3]	Na+ [18]	149995.867000	242,242668	3.277000	0.097805	
H1 [5] Na+ [18] 7114.652960 32.471955 2.756000 0.037051 S,SH [6] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.086717 O [8] Na+ [18] 81211.682800 209.807371 3.030200 0.135507 OH [9] Na+ [18] 102772.745000 236.133213 3.09000 0.135636 H0 [10] Na+ [18] 0.000000 0.000000 0.000000 0.000000 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 0476.584230 37.951466 2.828000 0.036216 HA [13] Na+ [18] 9476.584230 2.728000 0.036216 H4 [12] Na+ [18] 052.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+	HP [4]	Na+ [18]	1901.324490	16.786482	2.469000	0.037051	
S,SH [6] Na+ [18] 316107.989000 432.373832 3.369000 0.147851 C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.086717 O [8] Na+ [18] 81211.682800 209.807371 3.030200 0.135507 OH [9] Na+ [18] 102772.745000 236.133213 3.090000 0.136366 HO [10] Na+ [18] 100000 0.000000 0.000000 0.000000 HC [11] Na+ [18] 10911.930700 40.214472 2.856000 0.37051 H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 9152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 C1- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 1552.0581800 73.677916 2.738000 0.087439	H1 [5]	Na+ [18]	7114.652960	32.471955	2.756000	0.037051	
C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7] Na+ [18] 132990.267000 214.778698 3.277000 0.086717 0 [8] Na+ [18] 81211.682800 209.807371 3.030200 0.135507 OH [9] Na+ [18] 102772.745000 236.133213 3.090000 0.135636 HO [10] Na+ [18] 0.000000 0.000000 0.000000 0.000000 HC [11] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 HA [13] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 C1- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 1550.581800 73.677916 2.738000 0.087439 Na+ [18] 0W [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000 0.000000	S,SH [6]	Na+ [18]	316107.989000	432.373832	3.369000	0.147851	
Na+ 18] Na+ 18] 81211.682800 209.807371 3.030200 0.135507 0H [9] Na+ 18] 102772.745000 236.133213 3.090000 0.135636 H0 [10] Na+ [18] 0.000000 0.000000 0.000000 0.000000 HC [11] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 10911.930700 40.214472 2.856000 0.036216 H4 [13] Na+ [18] 9476 584230 37.951466 2.828000 0.036216 H4 [13] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.029868 C1- [17] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 C1- [17] Na+ [18] 552.0581800 73.677916 2.738000 0.057786 Na+ [18] <	C,C*,CA,CB,CC,CN,CO,CR,CV,CW [7]	Na+ [18]	132990.267000	214.778698	3.277000	0.086717	
0H [9] Na+ 18] 102772.745000 236.133213 3.090000 0.135636 H0 [10] Na+ [18] 0.000000 0.000000 0.000000 0.000000 HC [11] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 H4 [13] Na+ [18] 9476 584230 37<451466	0 [8]	Na+ [18]	81211.682800	209.807371	3.030200	0.135507	
H0 [10] Na+ [18] 0.000000 0.000000 0.000000 HC [11] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 HA [13] Na+ [18] 9476 584230 37.051466 2.828000 0.036216 90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 0152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 C1- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 15520.581800 73.677916 2.738000 0.087439 Na+ [18] OW [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000 0.000000	OH [9]	Na+ [18]	102772.745000	236.133213	3.090000	0.135636	
HC [11] Na+ [18] 10911.930700 40.214472 2.856000 0.037051 H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 HA [13] Na+ [18] 9676.584230 37.951466 2.828000 0.036216 90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 C1- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 15520.581800 73.677916 2.738000 0.087439 Na+ [18] 0W [19] 104820.861000 219.857570 3.137300 0.152286 Na+ [18] HW [20] 0.000000 0.000000 0.000000	HO [10]	Na+ [18]	0.00000	0.000000	0.000000	0.000000	
H4 [12] Na+ [18] 7650.430290 33.290660 2.778000 0.036216 HA [13] Na+ [18] 9476 584230 37 051466 2 828000 0 036216 90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 Cl- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 15520.581800 73.677916 2.738000 0.087439 Na+ [18] OW [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000	HC [11]	Na+ [18]	10911.930700	40.214472	2.856000	0.037051	
HA 13 Na+ 18 9476 584230 37 951466 2 828000 0 936216 90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 Cl- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 15520.581800 73.677916 2.738000 0.087439 Na+ [18] OW [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000	H4 [12]	Na+ [18]	7650.430290	33.290660	2.778000	0.036216	
90 [14] Na+ [18] 92535.428300 209.785247 3.096900 0.118900 H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 C1- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] 15520.581800 73.677916 2.738000 0.087439 Na+ [18] 0W [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000	HA [13]	Na+ [18]	9476 584230	37 051466	2 828000	0 036216	
H5 [15] Na+ [18] 6152.212920 29.853493 2.728000 0.036216 Mg2+ [16] Na+ [18] 5096.198070 24.674882 2.729000 0.029868 Cl- [17] Na+ [18] 653416.059000 381.844565 3.882000 0.055786 Na+ [18] Na+ [18] 15520.581800 73.677916 2.738000 0.087439 Na+ [18] 0W [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000	90 [14]	Na+ [18]	92535.428300	209.785247	3.096900	0.118900	
Mg2+[16]Na+[18]5096.19807024.6748822.7290000.029868Cl-[17]Na+[18]653416.059000381.8445653.8820000.055786Na+[18]Na+[18]15520.58180073.6779162.7380000.087439Na+[18]0W[19]104820.861000219.8575703.1373000.115286Na+[18]HW[20]0.0000000.0000000.000000	H5 [15]	Na+ [18]	6152.212920	29.853493	2./28000	0.036216	
Cl-[17]Na+[18]653416.059000381.8445653.8820000.055786Na+[18]Na+[18]15520.58180073.6779162.7380000.087439Na+[18]OW[19]104820.861000219.8575703.1373000.115286Na+[18]HW[20]0.0000000.00000000.000000	Mg2+ [16]	Na+ [18]	5096.198070	24.674882	2.729000	0.029868	
Na+[18]Na+[18]15520.58180073.6779162.7380000.087439Na+[18]OW[19]104820.861000219.8575703.1373000.115286Na+[18]HW[20]0.0000000.00000000.0000000	Čl- [17]	Na+ [18]	653416.059000	381.844565	3.882000	0.055786	
Na+ [18] 0W [19] 104820.861000 219.857570 3.137300 0.115286 Na+ [18] HW [20] 0.000000 0.000000 0.000000 0.000000	Na+ [18]	Na+ [18]	15520.581800	73.677916	2.738000	0.087439	
Na+ [18] HW [20] 0.000000 0.000000 0.000000 0.000000	Na+ [18]	OW [19]	104820.861000	219.857570	3.137300	0.115286	
	Na+ [18]	HW [20]	0.00000	0.00000	0.000000	0.000000	

٠

٠

Well done; you're good to go!