ORGANOTRANSITION METAL COMPLEXES: HISTORY, STRUCTURE AND BONDING

Dr. Dario Cambié
Max Planck Institute of Colloids and Interfaces
Biomolecular Systems
Dario.Cambie@mpikg.mpg.de

1.1.1 HISTORY - COMPLEX STRUCTURES

$\mathrm{CoCl}_{3} \cdot 6 \mathrm{NH}_{3}$?

$\mathrm{ClH}_{3} \mathrm{~N}^{\prime}$
Blomstrand-Jorgensen
chain theory
prevailing belief 1890s
oxidation state $=$ coordination number

POD \#1
Using chemistry knowledge at 1890, which experiment could support Werner's proposed structure?
Conductivity studies $\rightarrow 3 \mathrm{Cl}^{-}$

$$
\mathrm{AgNO}_{3} \downarrow \mathrm{AgCl}
$$

[^0]
1.1.1 HISTORY - WERNER COMPLEXES

Werner complexes (Alfred Werner - Nobel prize 1913)

$$
\begin{gathered}
\mathrm{ML}_{\mathrm{n}} \text { generic representation } \\
\text { e.g. } \mathrm{ML}_{6} \text { : } \\
{\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { hexaaquanickel }} \\
\mathrm{Mo}(\mathrm{CO})_{6} \text { molybdenum hexacarbonyl }
\end{gathered}
$$

1.1.2 HISTORY - ZEISE'S SALT

Zeise, a pharmacist, in 1831:

Structural debate in the $19^{\text {th }}$ century
Single-crystal XRD only in 1969

Zeise, W. C. Annalen der Physik und Chemie 1831, 97, 497. DOI: 10.1002/andp. 18310970402.
Owston, P. G. et al., Acta Crystall. B 1969, 25 (9), 1753. DOI: 10.1107/S0567740869004699.

1.1.3 HISTORY - SALVARSAN

Paul Ehrlich's Salvarsan - "magic bullet" 1910s $1^{\text {st }}$ antimicrobial drug (syphilis)

1.1.4 HISTORY

1951, Paulson and Kealy:

POD \#2

Which analytical techniques from 1950 would you use to identify and characterize it?

1.1.4 HISTORY - FERROCENE

The above analytical data leave no doubt that this compound is dicyclopentadienyl iron (I), formed according to the equation

$$
2 \mathrm{KMgBr}+\mathrm{FeCl}_{2} \rightarrow R \mathrm{Fe} R+\mathrm{MgBr}_{2}+\mathrm{MgCl}_{2}
$$

after initial reduction of the ferric salt by the Grignard reagent.

II

II

III

Iron biscyclopentadienyl is diamagnetic, with $\chi_{\text {mole }}^{25^{\circ}}=-125 \times 10^{-6} \mathrm{cgsu}$. The infrared absorption spectrum contains in the $3-4 \mu$ region a single sharp band at 3.25μ, which indicates the presence in the compound of $\mathrm{C}-\mathrm{H}$ bonds of only one type.
matic substance. We now wish to record experiments which demonstrate typically aromatic properties of this unique iron compound, for which we propose the name ferrocene.
Winkilson, Woodward et al., JACS 1952, 74 (8), 2125.
Woodward et al., JACS 1952, 74 (13), 3458.

Zur Frage der Bindung im Dicyclopentadienyl-eisen
Von E. Ruch und E. O. Fischer

Physikalisch-chemisches und Anorganisch-chemisches Laboratorium der Technischen Hochschule München

$$
\text { (Z. Naturforschg. 7b, } 676 \text { [1952]; eingeg. am 13. Nov. 1952) }
$$

Das kürzlich von Kealy und $\mathrm{Pauson}{ }^{1}$ erstmals dargestellte Dicyclopentadienyl-eisen $\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{\text {, }}$ ist seine Struktur nach ungewöhnlich und gab hinsichtlich seiner Bindungsverhältnisse zu verschiedenen Deutungen An laß. Nach der einen handelt es sich um eine chemische

(Ernst Otto Fischer and Geoffrey Winkilson
 Nobel prize 1913)

Ruch and Fischer, Z. Naturforsch., B 1952, 7, 676.

DOI: $10.1515 / z n b-1952-1209$.

1.2.1 STRUCTURE - 18 ELECTRON "RULE"

18 electron "rule" (aka effective atomic number or noble-gas rule)

Stable, diamagnetic, mononuclear organotransition metal complexes almost always contain 18 (or fewer) valence electrons.

- works best for small, high-field, monodentate ligands, such as H and CO .
- group 11 the highest tendency to become 16e. When these metals are 16e, they normally become square planar, as in $\mathrm{RhClL}_{3}, \operatorname{IrCl}(\mathrm{CO}) \mathrm{L}_{2}, \mathrm{PdCl}_{2} \mathrm{~L}_{2},\left[\mathrm{PtCl}_{4}\right]^{2-}$, and $\left[\mathrm{AuMe}_{4}\right]^{-}\left(\mathrm{L}=\mathrm{PR}_{3}\right)$.

TABLE $2.4 d^{8}$ Metals that Can Adopt a 16e Square Planar Geometry

Group Number a			
8	9	10	11
$\mathrm{Fe}(0)$	$\mathrm{Co}(\mathrm{I})$	$\mathrm{Ni}(\mathrm{II})$	$\mathrm{Cu}(\mathrm{III}){ }^{b}$
$\mathrm{Ru}(0)$	$\mathrm{Rh}(\mathrm{I})$	$\mathrm{Pd}(\mathrm{II})$	-
$\mathrm{Os}(0)$	$\mathrm{Ir}(\mathrm{I})$	$\mathrm{Pt}(\mathrm{II})$	$\mathrm{Au}(\mathrm{III})$
${ }^{a} \mathrm{Group} 8$ metals prefer 18e to 16e. In group 9, tbe 16e configura-			
tion is more often seen, but 18e complexes are still common. In			
groups 10-11, tbe 16e configuration is much more often seen.			
${ }^{6} \mathrm{~A}$ rare oxidation state.			

1.2.1 STRUCTURE - LIGAND TYPES

Handout on blackboard:
"L-type" (neutral / dative)
$\mathrm{NH}_{3} \quad M<\|$
PR_{3}
OH_{2}
CO
"X-type" (anionic)
Cl-
OR-

Common Neutral Ligands

Ligand	Type	Formal Charge	\# e- Donated
NR_{3}	L	0	2
PR_{3}	L	0	2
$\mathrm{H}_{2} \mathrm{O}$	L	0	2
OR_{2}	L	0	2
SR_{2}	L	0	2
CO	L	0	2
Imine	L	0	2
Nitrile	L	0	2
CNR	L	0	2
C-H bond	L	0	2
H2	L	0	2
Diene	L_{2}	0	4
Fisher Carbene	L	0	2
NHC	L	0	2

1.2.1 STRUCTURE - OXIDATION STATE

Oxidation state

Charge left on the metal after all ligands are removed to give closed shell species
For complex ions also consider overall charge, e.g. $\mathrm{Cp}_{2} \mathrm{Fe}$ is Fe (II) but $\mathrm{Cp}_{2} \mathrm{Fe}{ }^{+}$is Fe (III)
d^{n} electron count
d-electrons = metal group - oxidation state
Overall electron count
d-electrons + ligand electrons (all $2 e^{-}$if ionic model)

Note: d-electron count in complexes != d electrons in atomic configuration (aufbau)
Cobalt: $[$ Ar $] 4 s^{2} 3 d^{7} \quad$ Co-complex: $[A r] 4 s^{0} 3 d^{9}$

1.2.2 STRUCTURE - ELECTRON COUNTING

Step 1: oxidation state

- Assign ligand type (anionic, neutral, cationic...)
- Determine the total charge of the ligands
- Add/subtract the overall charge of the metal complex to/from ligand charge
- The oxidation state will be equal, with opposite charge

Step 2: d-electron count

- From the metal group number subtract the oxidation state

Step 3: complex electron count
Add the number of electron donated by each ligand to the metal's d-electron count

9
$\mathbf{C o}$ $3 \mathrm{~d}^{9}$ $\mathbf{R h}$ $4 \mathrm{~d}^{9}$ $\mathbf{I r}$ $5 \mathrm{~d}^{9}$
1 rIII $=\mathrm{d}^{6}$

1.2.2 STRUCTURE - ELECTRON COUNTING - EXERCISE

		$\left[\mathrm{CpMo}(\mathrm{CO})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$	$\mathrm{Ru}(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{3}$
	Pd - Group 10	Mo-Group 6	Ru-Group 8
Which type of ligands?	2 L-type 2 X-type	$1 L_{2} X+3 L+1 L$	$1 X^{*}+2 L+3 X$
Oxidation state?	+2	+2	+2
d-electron count?	10-2 $=\mathrm{d}^{8}$	6-2 $=\mathrm{d}^{4}$	$8-2=d^{6}$
Total electron count?	$8+4+4=16$	$4+6+6+2=18$	$6+12=18$
			* linear form

1.2.1 STRUCTURE - ANALOGIES

Isoelectronic analogy

Complexes with the same number of d-electrons, similar ligands and geometry.
e.g. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$and $\mathrm{Ni}(\mathrm{CO})_{4}$ but, with a bit of a stretch, also $\mathrm{CpMn}(\mathrm{CO})_{3}$ and $\left[\mathrm{CpRu}(\mathrm{CO})_{3}\right]^{+}$

Isolobal analogy

Complexes with the same number, symmetry, approximate energy and shape of frontier orbitals are said to be isolobal.

1.2.1 STRUCTURE - VOCABULARY

Coordination number

Number of electron pairs donated to the metal.
e.g. $C N=4$ for $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$

Hapticity ($\mathbf{\eta}$)
Number of contiguous atoms in a ligand that are directly coordinated with the metal. e.g. η^{5} for ferrocene

Denticity (k)
Number of atoms of a ligand that is bound through non-contiguous atoms. e.g. κ^{3} for a pincer ligands

Mu(μ)

The greek letter mu indicates the number of metals to which a ligand is bound.

1.2.1 STRUCTURE - VOCABULARY - DENTICITY

$\mathrm{K}_{\text {eq }}$ monodentate vs. bidentate?
10^{5} more stable!

bipyririne bpy

terpyridine terpy

(R)-binap

ethylenediaminetetraacetic acid EDTA

1.2.1 STRUCTURE - POD \#3

For the structures below, provide the coordination number, metal oxidation state, d-electron count, and overall electron count.

Ru Group 8
2×4 L: OS 2 CN 6
d-6
e-count 18
Noyori's catalysts

Ru Group 8
2X 2X4L 2X2L: OS 3 CN 6
d-5
e-count 18

Mn Group 7
3X 2L: OS 3 CN 5
d-4
e-count 14
Jacobsen's catalyst

1.2.1 STRUCTURE - SUMMARY OF DAY1 - POD \#1

Cyclometallated palladium species A rapidly undergoes reductive elimination to give B.

For both complexes, provide the (a) coordination number, (b) d-electron count, (c) geometry, (d) metal oxidation state, and (e) total electron count

[^1]
1.2.2 PERIODIC TRENDS IN TRANSITION METALS

- A change in the metal greatly affects the properties of the resulting complexes

Caveats:

- Most trends are not contiguous throughout transition series
- Trends in properties when comparing elements are different than for complexes

1.2.2 PERIODIC TRENDS - ELECTRONEGATIVITY

1.2.2 PERIODIC TRENDS - IONIZATION POTENTIAL

Periodic Table - IE-1

\|	$\begin{aligned} & 1 \\ & \mathbf{H} \end{aligned}$																	${ }_{2}^{2}$ $\substack{\text { 2372.0 (ev) } \\ \text { Helium }}$
II	3 Li 520.0 (ev) Lithium	Be											$\begin{aligned} & \hline 5 \\ & \mathbf{B} \\ & \text { son. (ev) } \\ & \text { Boron } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 6 \\ \text { 1087. (ev) } \\ \text { Carton } \end{array} \\ & \text { Cater } \end{aligned}$	${ }^{7}$ Nitroge		9 $1881.0(\mathrm{ev})$ Fluorine	10 Ne $2081.0(\mathrm{ev})$ Neon
III	$\begin{array}{\|l} \hline 11 \\ \mathbf{N a} \\ \begin{array}{l} 496.0(\mathrm{eV}) \\ \text { Sodium } \end{array} \\ \hline \end{array}$												$\begin{aligned} & \hline 13 \\ & \text { AI } \\ & \begin{array}{l} \text { sig.o(ev) } \\ \text { Aluminum } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline 14 \\ \mathrm{Si} \\ \substack{\text { 787.0(V) } \\ \text { Sincon } \\ \text { Sincon }} \end{array}$	$\begin{aligned} & \hline 15 \\ & \mathbf{P} \\ & 1012.0 \text { (ev) } \\ & \text { Phosphorus } \end{aligned}$	$\begin{aligned} & 16 \\ & \mathrm{~S} \\ & \text { 1000.0 (ev) } \\ & \text { Sulfir } \end{aligned}$	$\begin{aligned} & 17 \\ & \mathrm{Cl} \\ & \begin{array}{l} \text { 1251.0(ev) } \\ \text { Chlorine } \end{array} \end{aligned}$	
v	19 K $419.0(\mathrm{eV})$ Polassum	20 Ca 590.0 (eV) Calcium	Sc Es3.0(v) scandum	$\begin{aligned} & 22 \\ & \mathrm{Ti} \\ & \begin{array}{c} \text { 659.0(e) } \\ \text { Titanium } \end{array} \end{aligned}$	$\stackrel{23}{\mathbf{V}}$ E51.(VeV) Vanadium			26Fe Fe$783.0 \mathrm{ev})$Iron		$\begin{array}{\|l\|l} 28 \\ \mathbf{N i z 7} \\ \begin{array}{l} 37.0(\text { ev }) \end{array} \\ \text { Nickel } \end{array}$		$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & \begin{array}{l} \text { an. } 0 \text { (ev) } \\ \text { Znce } \end{array} \end{aligned}$	Ga 579.0 (ev) Galliu	32 Ge $762.0(\mathrm{eV})$ Germanium		34 S S41.0 (ev)Selenium		$\begin{array}{\|l} 36 \\ \mathbf{K r} \\ \text { ars.0.(ev) } \\ \text { knplen } \end{array}$
V		$\begin{array}{\|l} \hline 38 \\ \mathrm{Sr} \\ \begin{array}{l} \text { Sr0.(V) } \\ \text { Ston) } \\ \text { Stontium } \end{array} \end{array}$	$\begin{aligned} & 39 \\ & \mathbf{y} \\ & \begin{array}{l} \text { seno((ev) } \\ \text { vitrium } \end{array} \end{aligned}$	$\begin{aligned} & 40 \\ & \mathbf{Z r} \\ & \begin{array}{l} \text { S40.0.(ev) } \\ \text { Zicon } \end{array} \end{aligned}$	$\longdiv { 4 1 }$ Nb $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \substack{\text { Niobouiu) }} \end{array}$							$\begin{aligned} & 48 \\ & \text { Cd } \\ & \text { cis.o.(ev) } \\ & \text { cad } \\ & \text { Cadmum } \end{aligned}$	$\begin{aligned} & 49 \\ & \text { In } \\ & \begin{array}{l} 58.0(\mathrm{ev}) \\ \text { (ndium }) \end{array} \end{aligned}$		$\begin{aligned} & 51 \\ & \text { Sb } \\ & \begin{array}{l} \text { Sas. (ev) } \\ \text { Antimony } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline 52 \\ \mathrm{Te} \\ \begin{array}{l} \text { 8e0.(V) } \\ \text { Tellurum } \end{array} \end{array}$	$\begin{aligned} & 53 \\ & \text { I } \\ & \begin{array}{l} \text { loos. (ev) } \\ \text { lodine } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline 54 \\ \text { Xe } \\ \text { Xer } \\ \text { Xeno.0. (ev) } \\ \text { Xenon } \end{array}$
VI	55 Cs ${ }^{377.0(e v)}$ Cesium	56 Ba $503.0(\mathrm{eV})$ Barium	LA	$\begin{aligned} & \hline 72 \\ & \mathbf{H f} \\ & \begin{array}{l} \text { sig.0.(ev) } \\ \text { Hamium } \end{array} \end{aligned}$	73 Ta $761.0(\mathrm{eV})$ Tantalum	$\begin{aligned} & \hline 74 \\ & \mathbf{W} \\ & \text { Wro. (ev) } \\ & \text { Thagsen } \end{aligned}$	75 Re Teno.(ev) Rhenium	76 O	77 $\mathbf{I r}$ $880.0(\mathrm{eV})$ Iridium	$\begin{array}{\|l\|} \hline 78 \\ \mathbf{P t} \\ \text { sto. (ev) } \\ \text { Patinum } \end{array}$		80 Hg Hg Hor.7(e) Mercuyy	$\begin{aligned} & \hline 81 \\ & \mathrm{TI} \\ & \text { Sigo. (ev) } \\ & \text { Thalium } \end{aligned}$		$\begin{array}{\|l\|l} 83 \\ \mathbf{B i} \\ \begin{array}{l} \text { Pas.0.(ev) } \\ \text { Bismut } \end{array} \end{array}$	84 Po $812.0(\mathrm{eV})$ Polonium	A5 ${ }^{920.0(\mathrm{eV})}$ Astatin	
	87 Fr $380.0(\mathrm{eV})$ Francium	88 Ra Sag. (ev) Radium	AC	\square	105 Db nan (ev) Dubium	$\begin{aligned} & 106 \\ & \text { ng } \\ & \text { nan (ev) } \\ & \text { seabogium } \end{aligned}$	107 Bh nan (ev) Borium	108 Hs $\underset{\substack{\text { nan (ev) } \\ \text { Hassum }}}{ }$	$\begin{aligned} & 109 \\ & \mathbf{M l t} \\ & \begin{array}{l} \text { nat (ev) } \\ \text { Meitinerium } \end{array} \end{aligned}$	$\begin{array}{\|l\|} \hline 110 \\ \text { Ds } \\ \text { nan (ev) } \\ \text { Damstatium } \end{array}$				$\begin{array}{\|l\|l} \hline 114 \\ \text { FI } \\ \text { Fan (ev) } \\ \text { nefrovium } \end{array}$		$\begin{array}{\|l\|} \hline 116 \\ \text { Lv } \\ \text { nan (ev) } \\ \text { Livemorium } \end{array}$		$\begin{aligned} & 118 \\ & \text { Og } \\ & \text { nan (ev) } \\ & \text { Ognesson } \end{aligned}$

1.2.2 PERIODIC TRENDS - IONIZATION POTENTIAL

$\underset{\substack{\text { 659.(ev) } \\ \text { Titioniu }}}{\mathbf{T i}}$		$\begin{aligned} & 24 \\ & \mathrm{Cr} \end{aligned}$ $\begin{aligned} & 653.0(\mathrm{eV}) \\ & \text { Chromium } \end{aligned}$				28 $\mathbf{N i}$	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & \begin{array}{l} 746.0(\mathrm{ev}) \\ \text { Copper } \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & \mathbf{Z n} \\ & \substack{\text { gne.0 } \\ \text { Zinc } \\ \text { Zive }} \end{aligned}$
	$\begin{aligned} & 41 \\ & \mathrm{Nb} \end{aligned}$ $\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \substack{\text { Nobium }} \end{array}$		43 Tc $702.0(\mathrm{eV})$ Technetium Technetium	$\longdiv { 4 4 }$ Ru	$\begin{aligned} & \hline 45 \\ & \text { Rh } \\ & \begin{array}{l} \text { Ren. (ev) } \\ \text { Rhodium } \end{array} \end{aligned}$	$\begin{aligned} & \hline 46 \\ & \text { Pd } \\ & \text { Bon } \\ & \text { Pala (ev) } \\ & \text { Palaium } \end{aligned}$		
$\begin{aligned} & \hline 72 \\ & \mathbf{H f} \\ & \begin{array}{l} \text { 659.0.(ev) } \\ \text { Hafium } \end{array} \end{aligned}$	$\begin{aligned} & \hline 73 \\ & \mathrm{Ta} \end{aligned}$ $761.0(\mathrm{eV})$	74 \mathbf{W} $770.0(\mathrm{eV})$ Tungsten	75 Re Re0. (ev) Rhenium	76 Os ${ }_{844.0}(\mathrm{eV})$ Osmium	77 $\mathbf{I r}$ $880.0(\mathrm{eV})$ lididium	78 Pt $870.0(\mathrm{eV})$ Platinum	79 $\mathbf{A u}$ 890.0 (ev) Gold	80 Hg Hg

1.2.2 PERIODIC TRENDS - IONIZATION POTENTIAL

Electronegativity

- Early TM very electropositive -> often in highest oxidation state (e.g. $\mathrm{Zr}(\mathrm{IV})$ and $\mathrm{Ta}(\mathrm{V})$), if lower they are easily oxidized
- Late TM more electronegative -> $\mathrm{Pd}(\mathrm{IV})$ is harder than $\mathrm{Pd}(0)$ and $\mathrm{Pd}(\mathrm{II})$

Ionization potential

- energies of d-orbitals can be estimated from ionization potential
- Higher oxidation states are more accessible for earlier TM, (e.g. Zr^{2+} vs. Pd^{2+})
- Trends within group are more complex
- Generally, higher oxidation states are more accessible for $3^{\text {rd }}>2^{\text {nd }}>1^{\text {st }}$ row. (e.g. Pt^{4+} vs. Ni^{4+})

1.2.2 PERIODIC TRENDS - SIZE AND METAL-LIGAND BOND STRENGTH

- Which trend for size (atomic radii)? $1^{\text {st }}<2^{\text {nd }} \approx 3^{\text {rd }}$ (lanthanide contraction!)
- Which trend for $\mathrm{C}-\mathrm{X}$ bond strength for $\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$? $\mathrm{C}-\mathrm{F}>\mathrm{C}-\mathrm{Cl}>\mathrm{C}-\mathrm{Br}>\mathrm{C}-\mathrm{I}$
- Which trend for $\mathrm{M}-\mathrm{C}$ bond strength for $\mathrm{M}=1^{\text {st }} 2^{\text {nd }}$ and $3^{\text {rd }}$ row? $3^{\text {rd }}>2^{\text {nd }}>1^{\text {st }}$
- better spatial overlap between metal w/ ligand orbitals
- closer match of energies of ligand orbitals with the metal (esp. $3^{r d}$ row)

HARD/SOFT ACID/BASE THEORY (HSAB)

- Hard acids form more stable complexes with hard bases
- Soft acids form more stable complexes with soft bases
- Hard: small, densely charge, non polarizable $1^{\text {st }}$ row
- Soft: large, diffusely charged, polarizable $2^{\text {nd }} / 3^{\text {rd }}$ row

1.2.3.1 GEOMETRY - VSEPR THEORY

Coord. \# Possible geometry		Example	
2	linear	$\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-},\left[\mathrm{CuCl}_{2}\right]^{-}$	
$"$	bent	SnCl_{2}	
3	trigonal planar	$\left[\mathrm{AgCl}_{3}\right]^{2-}$	
$"$	pyramidal		Rare!
$"$	T-shaped		

1.2.3.1 EXAMPLE OF T-SHAPE

3D STRUCTURE LINK

$L^{\mathrm{Me}} \mathrm{Ni}(\mathrm{CO})$
($\mathrm{L}=$ (dipp)Nacnac)

$\mathrm{L}^{\mathrm{Me}} \mathrm{Ni}(\mathrm{CO})$
T geometry

[^2]
1.2.3.1 STRUCTURE - GEOMETRY - VSEPR THEORY

	Coord. \#	Possible geometry	Example
VSEPR is rudimentary!	2	linear	$\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-},\left[\mathrm{CuCl}_{2}\right]^{-}$
	"	bent	SnCl_{2}
	3	trigonal planar	$\left[\mathrm{AgCl}_{3}\right]^{2-}$
Limits	"	pyramidal	Rare!
- Magnetism	"	T-shaped	
- Color	4	square planar	$\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$
- Distortions	"	tetrahedral	$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{TiCl}_{4}$
	5	trigonal pyramidal	$\mathrm{Fe}(\mathrm{CO})_{5}$
- Sq. planar vs. tet.?	"	square pyramidal	$\mathrm{VO}(\mathrm{acac})_{2}$
	6	octahedral	Werner complex, $\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}$

1.2.3.2 STRUCTURE - GEOMETRY - CRYSTAL FIELD THEORY

- Developed in 1930s (Bethe and van Fleck)
- Describes breaking of degeneracies of electron orbital states due to a static electric field
- Ligands are treated as point charges (NOT a bonding description)
- Negative charge on ligand and positive charge on metal create electrostatic interaction
- As ligands approach the metal, the electrons from the ligand will be closer (repulsion) to some d-orbitals than others
- closer d-electrons have higher energy
- Splitting affected by metal oxidation state (higher ox. state -> higher splitting), ligand (higher field higher splitting) and geometry (CN)

1.2.3.2 STRUCTURE - GEOMETRY - CRYSTAL FIELD THEORY

$d_{x^{2}-y^{2}}$

$d_{z^{2}}$

$d_{x y}$

d

d
$y z$

1.2.3.2 STRUCTURE - GEOMETRY - OCTAHEDRAL LIGAND FIELD

1.2.3.2 GEOMETRY - OCTAHEDRAL LIGAND FIELD

1.2.3.2 GEOMETRY - OCTAHEDRAL LIGAND FIELD

Common for $d^{0}, d^{3}, d^{5}, d^{6}$

1.2.3.2 GEOMETRY - TETRAHEDRAL LIGAND FIELD

Common for $\mathrm{d}^{0}, \mathrm{~d}^{5}, \mathrm{~d}^{10}$
often high spin (energy for higher orbital < energy to pair two spins)

1.2.3.2 GEOMETRY - SQUARE PLANAR LIGAND FIELD

Common for d^{8}

square planar field

1.2.3.2 POD \#1 PART B

Cyclometallated palladium species A rapidly undergoes reductive elimination to give B.

$$
\begin{aligned}
& \overline{\mathrm{d}_{\mathrm{x} 2 \mathrm{y} 2}} \\
& \frac{1 \|}{\mathrm{d}_{\mathrm{xz}}}
\end{aligned}
$$

b. For both complexes, provide the d-orbital diagrams predicted from CFT.

[^3]
1.2.3.2 CFT - SPECTROCHEMICAL SERIES

Empirically derived trend of ligands

$$
\begin{aligned}
& \text { low-field } \\
& \text { low } \Delta
\end{aligned} \mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{PPh}_{3}<\mathrm{CO}<\mathrm{H} \quad \begin{gathered}
\text { high-field } \\
\text { high } \Delta
\end{gathered}
$$

1.2.3.2 CFT - HIGH-SPIN VS. LOW-SPIN

e.g. Fe^{3+}, d^{5}, octahedral

Diamagnetic no unpaired electrons Paramagnetic unpaired electrons

Aufbau principle: lower energy orbitals should be completely filled before filling higher energy orbitals
Hund's rule: if two or more orbital of equal energy are available, electrons will occupy them singly before filling them in pairs

1.2.3.3 POD \#3

$$
\begin{array}{ll}
\begin{array}{l}
\text { low-field } \\
\text { low } \Delta
\end{array} & \mathrm{I}^{-}<\mathrm{Br}^{-}<\mathrm{Cl}^{-}<\mathrm{F}^{-}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{PPh}_{3}<\mathrm{CO}<\mathrm{H} \quad \begin{array}{c}
\text { high-field } \\
\text { high } \Delta
\end{array}
\end{array}
$$

Predict whether the following complexes are high or low spin:

```
[Co(H2O)6}\mp@subsup{]}{}{3+
```

Co(III) d6 18e

low spin

$\left[\mathrm{CoF}_{6}\right]^{3-}$
Co(III) d6 18e
high spin
$\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
$\mathrm{Ni}(\mathrm{II}) \mathrm{d} 816 \mathrm{e}$
low spin

Spectrochemical series for ligands + metal nature (e.g. $1^{\text {st }}$ row vs. $2^{\text {nd }}$ row)

1.2.3.2 CFT - JAHN-TELLER EFFECT

Spontaneous symmetry breaking
e.g. d^{7} low spin

Octahedral complex with unpaired electrons given elongation of one axis -> symmetry breaking

Happens whenever a set of degenerate orbitals are unequally occupied

1.3 BONDING - SIGMA σ

1.3 BONDING - PI T

Ligand-to-metal m-bonding (" π-donating")
Metal-to-ligand π-bonding (" π-accepting")

σ-bonding

π-bonding

[Dewer-Chatt-Duncanson Model]

σ-Bonding

π-Backbonding

1.3 BONDING - PI п - PHOSPHINES, H_{2}, CO

- Phosphines
sigma: LP phosphine to M pi: $d \mathrm{M}$ to sigma*
- H_{2}
sigma: sigma H_{2} bond to M pi: $d M$ to sigma* -> H-H from $0.74 \AA\left(H_{2}\right)$ to $0.82-1.5 \AA\left(M-H_{2}\right)$
- CO
sigma: LP CO to M pi: $d \mathrm{M}$ to pi^{*}-> CO from $2143 \mathrm{~cm}^{-1}$ to... (strong bond, $10-40 \mathrm{kcal} / \mathrm{mol}$)

1.2.2 PERIODIC TRENDS - METAL-LIGAND BOND

Backdonation lowers $v(\mathrm{CO})$

Changing Metal across the Periodic Table					
$\begin{aligned} & \mathrm{V}(\mathrm{CO})_{6} \\ & 1976 \end{aligned}$	$\begin{aligned} & \mathrm{Cr}(\mathrm{CO})_{6} \\ & 2000 \\ & \mathrm{Cr}(\mathrm{CO})_{4} \\ & 1938^{c} \end{aligned}$	$\begin{aligned} & \mathrm{Mn}_{2}(\mathrm{CO})_{10} \\ & 2013(\mathrm{av})^{a} \end{aligned}$	$\begin{aligned} & \mathrm{Fe}(\mathrm{CO})_{5} \\ & 2023(\mathrm{av})^{a} \\ & \mathrm{Fe}(\mathrm{CO})_{4} \\ & 1995^{c} \end{aligned}$	$\begin{aligned} & \mathrm{Co}_{2}(\mathrm{CO})_{8} \\ & 2044(\mathrm{av})^{b} \end{aligned}$	$\begin{aligned} & \mathrm{Ni}(\mathrm{CO})_{4} \\ & 2057 \\ & \mathrm{Ni}(\mathrm{CO})_{4} \\ & 2057 \end{aligned}$
Changing Metal Down the Periodic Table					
$\begin{aligned} & \mathrm{Cr}(\mathrm{CO})_{6} \\ & 2000 \end{aligned}$		Mo 200	$\begin{aligned} & \mathrm{o}(\mathrm{CO})_{6} \\ & 04 \end{aligned}$		$\begin{aligned} & \mathrm{W}(\mathrm{CO})_{6} \\ & 1998 \end{aligned}$
Changing Ionic Charge in an Isoelectronic Series					
$\begin{aligned} & {\left[\mathrm{Ti}(\mathrm{CO})_{6}\right]^{2-}} \\ & 1747^{d} \end{aligned}$	$\begin{aligned} & {[\mathrm{V}(\mathrm{C}} \\ & 1860^{\circ} \end{aligned}$		$\begin{aligned} & \mathrm{Cr}(\mathrm{CO})_{6} \\ & 2000 \end{aligned}$	$\begin{aligned} & {[\mathrm{Mn}(\mathrm{C}} \\ & 2090 \end{aligned}$	
Replacing π-Acceptor CO by Non-r-Acceptor Amines					
$\begin{aligned} & {\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]} \\ & 2090 \end{aligned}$	$\begin{gathered} {[(\mathrm{Me}} \\ \mathrm{M} \\ 2043 \end{gathered}$	$\begin{aligned} & \left.\mathrm{I}_{2} \mathrm{~N}\right) \\ & \left.\mathrm{CO})_{5}\right]^{+} \end{aligned}$ v)	$\begin{aligned} & {\left[(\mathrm{en}) \mathrm{Mn}(\mathrm{CO})_{4}\right]} \\ & 2000(\mathrm{av}) \end{aligned}$	[(dien 1960	$\left.\mathrm{n}(\mathrm{CO})_{3}\right]^{+}$

Crabtree, Table 2.10, Effect of Changing Metal, Net Ionic Charge, and Ligand Set on $v(\mathrm{CO})$ in the Infrared Spectrum of Metal Carbonyls

POD \#2

CO is one of the most important ligands in organometallic chemistry. Draw possible isoelectronic ligands.

$$
\begin{array}{ccccc}
& \mathrm{CO}, & \mathrm{~N}_{2}, & \mathrm{CN}, & \mathrm{NO}^{+} \\
\mathrm{cm}^{-1} & 2092 & 2075 & & \mathrm{BF} \\
2056
\end{array}
$$

For the ligands above, predict if their respective σ-donating and π-accepting ability, and design an experiment to test your prediction.

IR (CO), P-NMR (phosphine), direct NMR...

Figueroa and co-workers, Science, 2019, 363, 1203. DOI: 10.1126/science.aaw6102

1.3 BONDING - DELTA Δ

Not encountered in the course, e.g. explains $\mathrm{M}-\mathrm{M}$ quadruple bond.
Via overlap of d-orbitals.

[^0]: Werner, Z. Anorg. Chem. 1893, 3, 267. DOI: 10.1002/zaac.18930030136. (EN translation in Kauffman, "Classics in coordination chemistry")

[^1]: Sanford and co-workers, JACS, 2014, 136 (11), 4097. DOI: 10.1021/ja411433f

[^2]: Holland and co-workers, Inorg. Chem. 2005, 44, 22, 7702. DOI: 10.1021/ic0510213

[^3]: Sanford and co-workers, JACS, 2014, 136 (11), 4097. DOI: 10.1021/ja411433f

