## ELEMENTARY REACTIONS

Dr. Dario Cambié
Max Planck Institute of Colloids and Interfaces
Biomolecular Systems
Dario.Cambie@mpikg.mpg.de

POD \#1

Consider the following two complexes and the ability of the metal in both cases to participate in backbonding. Provide an explanation for why one of the species results in a more stable complex than the other.


No back-bonding
possible from a do!

POD \#2

Consider the following two ligands. Which of the two ligands would be expected to give a larger equilibrium constant.

$B$ due to better backbonding.
More important than sigma for e-rich $\operatorname{Pd}(0)$.

### 2.1 LIGAND SUBSTITUTION

$\xrightarrow{\text { ligand dissociation }}$
$[\mathrm{M}]-\mathrm{L} \rightleftharpoons[\mathrm{M}]+\mathrm{L}$
ligand association

$$
\begin{array}{ll}
\text { Valence electron } & \Delta=-2 \\
\text { Coordination number } & \Delta=-1 \\
\text { Oxidation number } & \Delta=0
\end{array}
$$

### 2.1.1 LIGAND SUBSTITUTION - MECHANISM

## Associative Substitution

mechanistic continuum

## Dissociative Substitution

$$
\text { e.g. } \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{2}
$$



Favored for
$16 e^{-}$complexes [+18e- w/ polyhaptic Ls]
Sterically accessible metal centers
Basic entering ligands
Electrophilic metal centers

Favored for
Coordinatively saturated, $18 e^{-}$complexes
Sterically hindered metal centers

### 2.1.1 LIGAND SUBSTITUTION - MECHANISM

## Associative Substitution

$$
\text { e.g. } \mathrm{Pt}\left(\mathrm{PR}_{3}\right)_{2} \mathrm{Cl}_{2}
$$



Dissociative Substitution
e.g. $\mathrm{Ni}(\mathrm{CO})_{4}$


| Rate law | Rate law |
| :---: | :---: |
| $1^{\text {st }}$ order in entering ligand | 0 order in entering ligand |

## Activation parameters

large negative $\Delta S$
large negative $\Delta V$

Activation parameters
small positive $\Delta S$
small positive $\Delta \mathrm{V}$

### 2.1.1 LIGAND SUBSTITUTION - EXAMPLES

## Associative:



Dissociative:



### 2.1.2 LIGAND SUBSTITUTION - TRANS EFFECT

Ancillary ligands that are more effective at labilizing a ligand trans to themselves, usually observed in a d ${ }^{8}$ square planar complex.

Trend:
$\mathrm{H}^{-}>\mathrm{CH}_{3}^{-} \sim \mathrm{CN}^{-} \sim$ olefin $\sim \mathrm{CO}>\mathrm{PR}_{3} \sim \mathrm{NO}_{2}>\mathrm{I}^{-} \sim \mathrm{SCN}^{-}>\mathrm{Br}^{-}>\mathrm{Cl}^{-}>\mathrm{RNH}_{2} \sim \mathrm{NH}_{3}>\mathrm{OH}^{-}>\mathrm{H}_{2} \mathrm{O}$
Can be rationalized with the relative stabilization of the trigonal bipyramidal intermediate (vs. sq. pl.), two factors:


Trans effect - kinetic i.e. impact on rate of ligand substitution
Trans influence - thermodynamic i.e. effect on the bond strength (P-NMR, XRD length)

Coord Chem Rev, 1973, 10, 335. DOI: 10.1016/S0010-8545(00)80238-6

### 2.1.2 LIGAND SUBSTITUTION - TRANS EFFECT VS. CIS EFFECT

Table 5.7. Example of the trans effect on the rate of ligand substitution on organometallic platinum complexes. ${ }^{\circ}$

| trans-Pt(PEt $)_{2}(\mathrm{X}) \mathrm{Cl}+\mathrm{py}$ | $\stackrel{\mathrm{EtOH}}{=}$ trans $-\mathrm{Pt}\left(\mathrm{PEt}_{3}\right)_{2}(\mathrm{X})(\mathrm{py})^{\oplus}+\mathrm{Cl}^{\ominus}$ |  |
| :---: | :---: | :---: |
| $\mathbf{X}$ | $\boldsymbol{k}_{\text {obs }}\left(\mathbf{s}^{-1}\right)^{\boldsymbol{b}}$ | $\left.\boldsymbol{t} \mathbf{(}^{\circ} \mathrm{C}\right)$ |
| $\mathrm{H}^{-}$ | $4.7 \times 10^{-2}$ | 0 |
| $\mathrm{Me}^{-}$ | $6.0 \times 10^{-4}$ | 25 |
| $\mathrm{C}_{6} \mathrm{H}_{5}^{-}$ | $1.2 \times 10^{-4}$ | 25 |
| $\mathrm{Cl}^{-}$ | $3.5 \times 10^{-6}$ | 25 |

Table 5.8. Example of the cis effect on the rate of ligand substitution on organometallic platinum complexes. ${ }^{*}$


### 2.1.2 LIGAND SUBSTITUTION - CIS EFFECT

Cis effect for octahedral compounds comparable to trans effect in square planar (trend reverse)


### 2.1.2 HOW TO ENCOURAGE LIGAND EXCHANGE

Ligand substitution can be incomplete:

```
    L
Mo(CO)}\mp@subsup{)}{6}{}\xrightarrow{}{\mathrm{ excess }}\mathrm{ fac-Mo(CO)}\mp@subsup{3}{3}{}\mp@subsup{L}{3}{
```

Can be forced:

- Photolysis M-CO
- Affecting equilibrium via phase change (precipitation $\mathrm{AgCl}, \mathrm{H}_{2}$ evolution)
- Forcing conditions (Grignard reagents to remove halide and introduce new L)

> Spectator / ancillary ligand do not participate in reactions of the metal Actor / reactive ligand a ligand that engages in chemical change

### 2.2 OXIDATIVE ADDITION

oxidative addition


| Valence electron | $\Delta=+2$ |
| :--- | :--- |
| Coordination number | $\Delta=+2$ |
| Oxidation number | $\Delta=+2$ |

### 2.2 OXIDATIVE ADDITION - INTRODUCTION

- Metal-mediated cleavage of a bond of an organic/main group reagent and formation of 2 new M-L $\sigma$-bonds
- Metal must have d-electrons
- Metal must have at least vacant coordination site
- Electron-rich, sterically accessible $M$ centers are more reactive
- Increases oxidation state and coordination number
- Decreases d-electron count
- Good ligands: strong $\sigma$-donors, sterically small

[^0]
### 2.2.1 OXIDATIVE ADDITION - SUBSTRATE CLASSES

1. NON-POLAR - A/B non highly electronegative / not good oxidant e.g. $\mathrm{H}_{2}, \mathrm{C}-\mathrm{H}, \mathrm{S}-\mathrm{H}, \mathrm{N}-\mathrm{H}, \mathrm{S}-\mathrm{S}$

- require vacant orbital

2. POLAR - $A / B$ electronegative or good oxidant
e.g. $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{RX}, \mathrm{ArX}, \mathrm{HX}$

- does not require vacant orbital
- $L_{n} M$ is $16 e^{-}$, both coordinates
- $\mathrm{L}_{\mathrm{n}} \mathrm{M}$ is $18 \mathrm{e}^{-}$, only one coordinates

3. INTACT - A-B BOND RETAINED
e.g. $\mathrm{O}_{2}, \mathrm{R}-\mathrm{E}-\mathrm{R}$

### 2.2.2 OXIDATIVE ADDITION - CONCERTED MECHANISM



- Common for non-polar substrates
- 3c2e-TS
- Stereospecific (cis)
- Stereoretentive
- Coordinatively unsaturated metal
- Generally second order kinetics
- Generally solvent insensitive, TS not charged


### 2.2.2 OXIDATIVE ADDITION - CONCERTED MECHANISM



### 2.2.2 OXIDATIVE ADDITION - CONCERTED MECHANISM

Rate depends on ...
... halide
... ligand
... aryl
... metal

J. Organomet. Chem. 1971, 28, 287. DOI: 10.1016/S0022-328X(00)84578-7

### 2.2.3 OXIDATIVE ADDITION - NUCLEOPHILIC MECHANISM



- Common for polar substrates
- Resambles $\mathrm{S}_{\mathrm{N}} 2$
- Better LG accelerates reaction

$$
\text { R-OTs }>\mathrm{R}-\mathrm{I}>\mathrm{R}-\mathrm{Br}>\mathrm{R}-\mathrm{Cl}
$$

- A and B often trans
- Steric hindrance slows reaction
$\mathrm{Me}-\mathrm{I}>\mathrm{Et}-\mathrm{I}>$ 'Pr-I
- Stereoinvertive
- Dipolar TS
- Reaction rate sensitive to ligand environment $\mathrm{Ni}\left(\mathrm{PR}_{3}\right)_{4}>\mathrm{Ni}\left(\mathrm{PAr}_{3}\right)_{4}>\mathrm{Ni}\left(\mathrm{PR}_{3}\right)_{2}$ alkene $>\mathrm{Ni}\left(\mathrm{PAr}_{3}\right)_{2}$ alkene $>\mathrm{Ni}(\mathrm{cod})_{2}$


### 2.2.3 OXIDATIVE ADDITION - NUCLEOPHILIC MECHANISM




### 2.2.3 OXIDATIVE ADDITION - CONCERTED VS. NUCLEOPHILIC



### 2.2.4 OXIDATIVE ADDITION - RADICAL PATHWAY

- Both polar and non polar
- More common for $1^{\text {st }}$ row metals
- Reactivity follows radical stability, easier with tertiary > secondary > primary > methyl
- Racemization
- Can be chain or non-chain
- Non-chain example:
$\mathrm{PtL}_{3} \rightleftharpoons \mathrm{PtL}_{3} \xrightarrow{\mathrm{RX}} \cdot \mathrm{PtXL}_{2}+\mathrm{R} \cdot \xrightarrow[\text { fast }]{ } \mathrm{RPtXL}_{2}$
- Radical chain:


POD \#4

- Consider the cross-coupling reaction below, which is proposed to involve an oxidative addition step. Propose experiments to determine the mechanism of oxidative addition.

- Chiral substrate, kinetics (solvent effect), reactivity trend substrate, radical traps...


### 2.3 REDUCTIVE ELIMINATION

| Valence electron | $\Delta=-2$ |
| :--- | :--- |
| Coordination number | $\Delta=-2$ |
| Oxidation number | $\Delta=-2$ |

### 2.3.1 REDUCTIVE ELIMINATION - INTRODUCTION



- Microscopic reverse of OA. Same concerted, nucleophilic and radical mechanisms, reversed.
- Forms products from coupling of two covalent ligands at a single (or two) transition metal center
- Electron-poor, sterically hindered complexes are more reactive
- Decreases oxidation state and coordination number
- Increases d-electron count
- Complexes with $n=1,3$ ligands react faster than complexes $n=2,4$
- For A and $\mathrm{B}: \mathrm{H}$ reacts faster than R (i.e. $\mathrm{C}-\mathrm{H}>\mathrm{C}-\mathrm{C}$ and $\mathrm{sp}>\mathrm{sp}^{2}>\mathrm{sp}^{3}$ )
- Historically C-N, C-O, C-F harder than C-C
- $1^{\text {st }}$ row $>2^{\text {nd }}$ row $>3^{\text {rd }}$ row


### 2.3.2 REDUCTIVE ELIMINATION - H-H VS. C-H VS. C-C



### 2.3.1 POD \#1

Consider the two reductive elimination processes shown below:

a) Predict which reaction is faster and explain why.
b) The slow-reacting complex A forms ethane immediately upon methyl iodide addition at room temperature. Provide one or more mechanistic hypothesis that would explain this observation.
c) Design experiments to distinguish between the possibilities listed in b).

Stille JACS 1981 103, 14, 4182. DOI: 10.1021/ja00404a034

### 2.3.2 REDUCTIVE ELIMINATION - C-C BOND FORMATION

- Directly from tetra-coordinated biaryl complex:


Hartwig JACS 2004, 126, 13016. DOI: 10.1021/ja0480365

- After ligand dissociation

vs.



### 2.3.2 REDUCTIVE ELIMINATION - C-C BOND FORMATION


slow
fast

### 2.4 1,1-MIGRATORY INSERTION



| Valence electron | $\Delta=-2$ |
| :--- | :--- |
| Coordination number | $\Delta=-1$ |
| Oxidation number | $\Delta=0$ |

### 2.4.1 1,1-MIGRATORY INSERTION - INTRODUCTION



- No change in ox. state
- Two reacting ligands must be cisoid
- Trapping ligand often needed to coordinate the empty site
- Stereochemistry of migrating group is preserved (concerted mechanism)
- To accelerate:
- More electron-poor M
- Bulkier ligands
- More polarized M-CO (e.g. w/ LA)
- SET oxidation


### 2.4.2 1,1-MIGRATORY INSERTION - MIGRATORY APTITUDE



Anderson Acc. Chem. Res. 1984 (17) 67. DOI: 10.1021/ar00098a005
Cross J. Chem. Soc., Dalton Trans. 1981, 2317. DOI: 10.1039/DT9810002317
mAX PLANCK INSTITUTE OF COLLOIDS AND INTERFACES। DARIO CAMBIÉ, BIOMOLECULAR SYSTEMS, HOMOGENEOUS CATALYSIS। 2022

### 2.4.2 1,1-MIGRATORY INSERTION - MIGRATORY APTITUDE

1. consider thermodynamics (e.g. not thermodynamically favored $M-H, M-O R, M-N R 2 \ldots$ )
2. kinetic considerations


### 2.4.2 1,1-MIGRATORY INSERTION - KINETICS


rate $=\frac{d[P]}{d t}=-\frac{d[S]}{d t}$
s

Steady state assumption, i.e. $\frac{d[\mathrm{I}]}{d t}=0=\mathrm{k}_{1}[\mathrm{~S}]-\mathrm{k}_{-1}[\mathrm{I}]-\mathrm{k}_{2}[\mathrm{I}][\mathrm{L}]$

$$
\begin{aligned}
& k_{1}[S]=[I]\left(k_{-1}+k_{2}[L]\right) \\
& {[I]=\frac{k_{1}[S]}{k_{-1}+k_{2}[L]}} \\
& \text { rate }=k_{2}[L][I]=\frac{k_{1} k_{2}[S][L]}{k_{-1}+k_{2}[L]}
\end{aligned}
$$

- $k_{-1} \ll k_{1}, k_{2}$ then rate $=k_{1}[S]$, $1^{\text {st }}$ order in [S], "L" always traps
- $k_{-1} \gg k_{2}[L]$ then rate $=\frac{k_{1} k_{2}[S][L]}{k_{-1}}$, overall $2^{\text {nd }}$ order, almost always goes back
- Intermediate between the two


### 2.4.3 INSERTION VS. MIGRATION

Carbonyl Insertion

or

Methyl Migration

?

### 2.4.3 INSERTION VS. MIGRATION

CO and Alkyl must be cis...


### 2.4.3 INSERTION VS. MIGRATION

P-NMR studies with slightly different phosphines
(that can be distinguished by NMR)


Rh "piano-stool" complex


Van Leeuwen et al., JACS, 1994, 116, 24. DOI: 10.1021/ja00105a088

### 2.4.3 POD \#2

- Consider the following reaction. Draw all possible stereoisomers of the product and predict their ratio.



### 2.4.3 POD \#3

Consider the following manganese complex. Propose the intermediate and product (A or B).


### 2.4.3 DISPROVAL OF "OUTERSPHERE"INSERTION

$\mathrm{CH}_{3} \mathrm{Mn}(\mathrm{CO})_{5}$ exchanges CO slowly.


No proven example of insertion from uncomplexed unsaturated substrates into metal-carbon bonds.

## 2.5 の-ELIMINATION



| Valence electron | $\Delta=+2$ |
| :--- | :---: |
| Coordination number | $\Delta=+1$ |
| Oxidation number | $\Delta=0$ |

### 2.5.1 $\alpha$-ELIMINATION - INTRODUCTION

- Reverse of migratory insertion
- Two main example:
- Decarbonylation
- Carbene formation


### 2.5.2 $\alpha$ - ELIMINATION - TSUIJ-WILKINSON DECARBONYLATION



Angew. Chem. Int. Ed., 2014, 53, 11557

### 2.5.3 $\alpha$ - ELIMINATION - CARBENE FORMATION



POD \#4

In solution in $\mathrm{C}_{6} \mathrm{D}_{6}$, the following tantalum complex is in equilibrium with a tautomeric form, A. Predict the structure of $\mathbf{A}$ and propose a mechanism to form it.


### 2.6 1,2-MIGRATORY INSERTION

1,2-migratory insertion

$\beta$-elimination

| - Valence electron | $\Delta=+2$ | $\Delta=-2$ |
| :--- | :--- | :--- |
| Coordination number | $\Delta=+1$ | $\Delta=-1$ |
| Oxidation number | $\Delta=0$ | $\Delta=0$ |

### 2.6.1 1,2-MIGRATORY INSERTION - INTRODUCTION



Aka hydrometalation ([M]-H insertion into unsaturated bond) or carbometalation ([M]-C insertion...)
Olefin insertion in [M]-H crucial step in hydrogenation, hydroformylation..

|  | CO $(1,1)$ | Olefin $(1,2)$ |
| :---: | :---: | :---: |
| $[\mathrm{M}]-\mathrm{H}$ | $\times$ | $\checkmark$ |
| $[\mathrm{M}]-$ aryl | $\checkmark$ | $\checkmark$ |
| M$]-$ alky | $\swarrow$ | (less common) |

### 2.6.1 1,2-MIGRATORY INSERTION - AGOSTIC INTERACTIONS

"Evidence that carbon-hydrogen bonds may act as ligands to transition metal centres forming covalent C-H-M systems in which, formally, the C-H group donates two electrons to the metal."




Fig. 1. The structures of compounds which gave early indications for the formation of $\mathrm{C}-\mathrm{H} \rightarrow \mathrm{M}$ interactions.

### 2.6.3 1,2-MIGRATORY INSERTION - REGIOSELECTIVITY



### 2.6.1 1,2-MIGRATORY INSERTION - EXAMPLE

Ziegler-Natta polymerization (Ziegler PET, Natta PP)
Industrially relevant, multi Mton/y


## $2.7 \beta$-ELIMINATION

1,2-migratory insertion

$\beta$-elimination

- Valence electron $\Delta=-2 \quad \Delta=+2$

Coordination number $\quad \Delta=-1 \quad \Delta=+1$
Oxidation number $\quad \Delta=0 \quad \Delta=0$

### 2.7.1 $\beta$-ELIMINATION - INTRODUCTION

- Reverse of 1,2-migratory insertion
- $\beta$-H elimination is the most common
- Fast, intramolecular, favored if vacant site cis to alkyl ligand to form agostic interactions
- Can be suppressed with trapping ligan


### 2.7.2 $\beta$-H ELIMINATION - CHAIN WALKING



### 2.7.2 POD \#1

Consider the following transformation. Using the elementary steps covered so far, propose a plausible catalytic cycle.


### 2.8 TRANSMETALATION

$$
\mathrm{L}_{\mathrm{n}}^{\prime} \mathrm{M}^{\prime} \mathrm{R}^{\prime}+\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{X} \underset{\text { Transmetalation }}{\rightleftharpoons} \mathrm{L}_{\mathrm{n}}^{\prime} \mathrm{M}^{\prime}-\mathrm{X}+\mathrm{L}_{\mathrm{n}} \mathrm{M}-\mathrm{R}
$$

| Valence electron | $\Delta=0$ |
| :--- | :--- |
| Coordination number | $\Delta=0$ |
| Oxidation number | $\Delta=0$ |

### 2.8.1 TRANSMETALATION - INTRODUCTION



- The transfer of an organic group from one metal center to another
- no formal change in oxidation state for either metal
- Often reversible, more ionic $\mathrm{M}-\mathrm{X}$ favored
- Important step in cross-coupling (OA -> transmetalation -> RE)
- Mechanistically complex


### 2.8.1 TRANSMETALATION - TRANSMETALATION REAGENTS

| Reagent | R | Cross-coupling reaction |
| :--- | :--- | :--- |
| $\mathrm{LiR}, \mathrm{MgXR}$ | vinyl, aryl, allyl, alkyl | Kumada |
| RZnCl | vinyl, aryl, alkyl | Negishi |
| $\mathrm{RCuL}_{n}$ | alkynyl, aryl | Sonogashira |
| $\mathrm{RSnR}_{3}^{\prime}$ | vinyl, aryl, alkynl | Stille |
| $\mathrm{RB}_{\left(\mathrm{OR}^{\prime}\right)_{2}}$ | vinyl, aryl | Suzuki |
| $\mathrm{RSiR}_{3}$ | aryl, vinyl, alkyl | Hiyama |
| $\mathrm{R}_{3}-9 B B N$ | alkyl | Suzuki-Miyaura |
| $\mathrm{AlR}_{3}, \mathrm{RZrClCp}_{2}, \ldots$ |  |  |

### 2.8.2 TRANSMETALATION - STEREOCHEMISTRY

$\mathrm{C}\left(\mathrm{sp}^{2}\right)$ coupling partner typically stereoretentive
$\mathrm{C}\left(\mathrm{sp}^{3}\right)$ coupling partner, two pathways:


Review: Chem Sci, 2015, 6, 5105. DOI: 10.1039/C5SC01710F

### 2.8.3 TRANSMETALATION - ORGANOBORON

"Pd-O-B" intermediate

## Transmetalation Pathways in the Suzuki-Miyaura Reaction




- elusive pre-transmetalation intermediates isolated
- kinetically stable at ambient temperature
- structures secured by X-ray crystallography
- general synthetic method developed


[^0]:    Acc. Chem. Res. 1968, 1, 136. DOI: 10.1021/ar50005a002

