12. PHOTOCHEMISTRY OF TM COMPLEXES

Dr. Dario Cambié
Max Planck Institute of Colloids and Interfaces
Biomolecular Systems
Dario.Cambie@mpikg.mpg.de

12.1.1 GENERAL OVERVIEW

octahedral complex w/ m-accepting ligands (like fac--Ir(ppy) ${ }_{3}, \operatorname{Ru}(\mathrm{bpy})_{3} \ldots$)

12.2.1 LIGAND PHOTODISSOCIATION

- For better control of stoichiometry in ligand substitution (i.e. further substitution of THF after photolysis)
- Most common CO dissociation (usually w/ UV)
- Used to be considered a ligand-field d-d transition (unoccupied d to σ^{*}) -> weakening M-L bond...

12.2.2 LIGAND PHOTODISSOCIATION MECHANISM

Actual mechanism is more complex

Figure 5.6.
Top: Electron promotion initially thought to occur upon photolysis of an octahedral d^{6} complex. Bottom: Mixing of excited states that are now thought to more accurately reflect the t ents that occur after photolysis of metal-carbonyl compounds, such as $M(C O)_{5}(M=C r, M o$, and W).

12.3.1 POD1

$\mathrm{Ru}(\mathrm{bpy})_{3}\left(\mathrm{PF}_{6}\right)_{2}$ is one of the most common photoredox catalyst.
a) Provide the oxidation state, d-electron count, and overall electron count for this complex.
b) Propose a synthesis of this complex from inexpensive commercially available starting materials.


```
Photochemical Properties
Absorption }\mp@subsup{\lambda}{\mathrm{ max }}{}:454\textrm{nm
\varepsilon=14,600 M-1 cm-1
Excited State: }\mp@subsup{}{}{3}\textrm{MLCT
Triplet Energy: 2.12 eV
\tau
Emission }\mp@subsup{\lambda}{\mathrm{ max }}{}:605\textrm{nm
Redox Properties
E E/2 (Ru}\mp@subsup{}{2+/Ru}{}\mp@subsup{}{}{3+})=+1.29 V vs. SCE
E 1/2 (Ru'2+/Ru+) = -1.33 V vs. SCE
E 1/2 (Ru }\mp@subsup{}{}{3+/*R\mp@subsup{u}{}{2+})=-0.81 V vs. SCE
E
```


12.3.2 Ru(bpy) ${ }_{3}$ ABSORPTION BANDS

12.3.3 Ru(bpy) ${ }_{3}$ - EXCITED STATE

12.3.4 Ru(bpy) $)_{3}$ - PHOTOCHEMISTRY

Oxidative quenchers:

viologens, polyhalomethanes, dinitro- and dicyanobenzenes, and persulfate

Reductive quenchers:

tertiary amines

12.3.5 EXCITED STATE QUENCHING - STERN-VOLMER ANALYSIS

Noel ACIE 201857 11278. DOI: 10.1002/anie. 201805632

POD \#2

For the reaction below, predict the product(s) and propose a plausible mechanism.

Stephenson JACS 2009, 131, 8756. DOI: 10.1021/ja9033582

POD \#3

Consider the following three octahedral ruthenium(II) complexes. Order them in terms of excited state reduction potential.

3

2

- EWG -> more oxidizing
- EDG -> more reducing

12.3.5 HETEROLEPTIC Ir PHOTOCATALYSTS

$\left[\operatorname{Ir}(p p y)_{2}(d t b b p y)\right] P F_{6}$ Emission Max =581nm Emission Quantum Yield $(\phi)=23.5 \%$

$R u(b p y)_{3}\left(P F_{6}\right)_{2}$
Emission Max $=605 \mathrm{~nm}$ Emission Quantum Yield $(\phi)=6.2$ \%

$\left.\operatorname{lIr}(p p y)_{2}(d t b b p y)\right]^{+}$ $\mathrm{r}(\mathrm{V}) / \mathrm{Ir}\left(\mathrm{II} \|^{*}\right)=-0.96 \mathrm{~V}$ vs SC $\operatorname{lr}\left(I I I^{*}\right) / \mathrm{l}(\mathrm{II})=+0.66 \mathrm{~V}$ vs SCE

12.3.5 HETEROLEPTIC Ir PHOTOCATALYSTS

Bernhard, JACS 2022 144, 1431. DOI: 10.1021/jacs.1c12059

12.3.5 PHOTOPOLYMERIZATION

Photochemistry for spatio-temporal control of reaction -> polymerization

Hawker ACIE 2013 51, 8850. DOI: 10.1002/anie. 201203639

POD 4

For the transformation below, propose a role of light in the reaction.

Fu Science 2012, 338, 647. DOI: 10.1126/science. 122645

12.4.1 METALLAPHOTOREDOX

b. Photoredox catalysis accesses organic radicals with visible light

c. Metallaphotoredox activates abundant functional groups towards transition metal catalysis via one-electron pathways

expanding the synthetic reach of cross-coupling

MacMillan Chem Rev 2022, 122, 1485. DOI: 10.1021/acs.chemrev.1c00383

12.4.1 METALLAPHOTOREDOX

MacMillan Chem Rev 2022, 122, 1485. DOI: 10.1021/acs.chemrev.1c00383

12.4.2 NICKEL: FROM PHOTO- TO THERMAL CATALYSIS

Nocera ACIE 2020 59, 9527. DOI: 10.1002/anie. 201916398

12.4.2 NICKEL: FROM PHOTO- TO THERMAL CATALYSIS

- photoinduced Ni-aryl bond homolysis
- entry into Ni(I) catalysis

(4) Direct amination of aryl bromide with nitroso compound by in-situ generated $\mathrm{Ni}(\mathrm{I})$ complex

12.4.3 PHOTO-PROMOTED KUMADA

This work: Light-promoted Fe-catalyzed Kumada-Corriu cross-coupling reactions

Noel ACIE 201958 13030. DOI: 10.1002/anie.201906462

