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We consider the semi-infinite q-state Potts model in the many component limit q--,oo. 
Both mean field theory and the Migdal-Kadanoff renormalization group scheme are 
used to obtain an approximate surface free energy. Both methods predict a new low 
temperature phase where the bulk is ordered while the free surface is disordered. 

1. Introduction 

The thermodynamics of the phase transition which 
occurs in the infinite q-state Ports model is con- 
tained in the bulk free energy f~. The first derivative 
dfB/dT with respect to temperature T can be either 
continuous or discontinuous. For  each space dimen- 
sion D, there is a critical value q*(D). For q<q*(D), 
df~/dT is continuous while it is discontinuous for 
q>q*(D). For D=2 ,  q*(2)=4 is known exactly [-1]. 
For  D = 3, recent renormalization group (RG) calcu- 
lations indicate q*(3)=3 [e.g. [2, 3]). For  a semi- 
infinite q-state Potts model, new types of phase tran- 
sitions will occur due to the presence of a free sur- 
face. The thermodynamics of these transitions is 
contained in the surface free energy fs. 
For the semi-infinite Ising model (q=2) in dimen- 
sion D > 2, the phase diagram consists of three phases 
separated by three different phase boundaries [-4-6]. 
This leads to four types of phase transitions: the 
ordinary, the surface, the extraordinary, and the spe- 
cial or surface bulk transition. The first temperature 
derivative dfs/dT of the surface free energy is con- 
tinuous across all four types of transitions [-7]. For  
q >2, no explicit calculations have appeared in the 
literature. Naively, we expect that the phase diagram 
is similar to the phase diagram of the Ising model. 
We also expect that the nature of the corresponding 
transitions should depend on q. All transitions 
should be continuous for q<q*(D) and discon- 
tinuous for q>q*(D-1). For q*(O)<q<q*(D-1), 
the surface transition should be continuous while 
the other three transitions should be discon- 
tinuous. 

In this paper, we are concerned with the case 
q>q*(D-1). We consider the extreme situation 
where q--*co. In this limit, approximate surface free 
energies can be obtained analytically both from 
mean field theory and from the Migdal-Kadanoff 
RG approach. In contrast to the naive expectation, 
both methods predict a new low temperature phase. 
In this phase, the bulk is ordered while the free 
surface is not. As a consequence, there exists a phase 
transition where the order parameter jumps in the 
surface while it varies smoothly in the bulk. In a 
forthcoming paper, we will show that this feature is 
not peculiar to the q-~oo limit [8]. 
The paper is organized as follows. First, we define 
the semi-infinite Potts model and its many com- 
ponent limit (q~  oo) in Sect. 2. In Sect. 3, we extend 
the mean field theory which has been developed in 
[-9] for the infinite Potts model to the semi-infinite 
case. In Sect. 4, we investigate the same problem by 
the Migdal-Kadanoff RG approach as described in 
El0]. Finally, we compare the results of the two 
methods in Sect. 5. 

2. Model  

Consider a D-dimensional hypercubic lattice which 
consists of L (D-1)-dimensional  layers f2~, l=  
1, 2 . . . . .  L. Potts spin variables a~ = 1 . . . . .  q are placed 
on the sites i of this lattice. For each layer, 
periodic boundary conditions are employed for its 
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( D - 1 )  Cartesian directions. The Hamiltonian of this 
model is given by 

- f i ~  = ~ ~ ( a  i, aa) (2.1 a) 
(i j }  

:f~ Ks(~(ai'aj) i 'j~Ol'f2L (2.1b) 
N(ai' ~ ( K  6(a i, a i) otherwise 

where ( i  j )  indicates a summation over nearest 
neighbours only and 6(ai, a j )= l  iff ai=a j and 
(~(a i, a j) = 0 otherwise. 
The total free energy F is defined by 

F(K, Ks) = l n ~  e - ~ .  (2.2) 

Note that the physical free energy is proportional to 
- F .  Thus a lower (upper) bound for F is an upper 
(lower) bound for the physical quantity. The bulk 
free energy fB is obtained from (2.2) via 

f , (K) :  = lim F(K, Ks)IN (2.3) 
N ~ o o  

where N is the total number of sites. We take the 
limit L ~ o o  in such a way that we end up with a 
semi-infinite system. The corresponding surface free 
energy fs is given by 

fs(K, Ks):= lira ( F -  X f , ) /N  s (2.4) 
N~oo 

N s ~  ~o 

where N s is the number of sites in Q~ and ~2 L. 
The critical temperature of the bulk transition is 

proportional to {ln(1 + ] /~ )} - i  [11]. In order to ob- 
tain a sensible q--+oo limit, one has to rescale the 
temperature by a factor lnq [12]. Thus, we define 
the corresponding limit of the free energies (2.3) and 
(2.4) by 

f f  (J) := lira fB(J In q)/ln q (2.5 a) 
q ~ o o  

fs ~ (J, Js)' = lim fs (J in q, Js in q)/ln q. (2.5 b) 
q ~ o o  

The bulk free energy fs  ~ is known exactly for all 
temperatures and D > I  [i1].  The temperature de- 
rivative d f ~ / d T  has a finite jump at the bulk tran- 
sition point. This behaviour is typical for all 
q>q*(D) [1]. By analogy, we expect that the typical 
features of the surface free energy fs ~ are valid for 
all q > q * ( D - 1 ) .  

introduced a real order parameter R which satisfies 
the selfconsistent equation 

e 2 D K R -  1 

R - e2Dg R + q _ 1 " (3.1) 

In addition, they showed that the mean field approx- 
imation to the bulk free energy is 

fB(K ) = DK + q - 1 DKR2 _ Yq(R) (3.2) 
q q 

Yq(x) = - l n q  + 1  E1 + ( q -  1)x] ln[1 + ( q -  1)x] 
q 

+q  - 1 (1 - x) ln(1 - x )  (3.3) 
q 

where R is a function of K via (3.1). In the limit 
q--+oo with K = J l n q ,  (3.1) leads to R = 0  for 
J < I / 2 D  and to R = 0  or R = I  for J > I / 2 D .  
From (3.2) we obtain 

fB ~ (J) = lira fB (J in q)fln q = 1 + D JR 2 _ R 
q ~ o o  

={1 R = 0  

DJ R =  i. 
(3.4) 

Since we have to maximize f ~  with respect to R 
(remember that we absorbed a minus sign in the 
definition of f , )  we have to choose 

01 J < 1/i) 
R= J>I/D. (3.5) 

When (3.5) is inserted into (3.4) the exact bulk free 
energy in the many component limit is obtained 
[12]. The critical coupling constant is j c =  1/1). Note 
that fB ~ (J) may be simply obtained from the q-+ oo 
limit of the high and low temperature expansions. 
This mean field theory can be easily generalized to 
the model defined by (2.1). We introduce a real 
order parameter R z for each layer f2~. In a mean field 
approximation in the spirit of [9] these order pa- 
rameters satisfy the following set of selfconsistent 
equations: 

e x' - 1 (3.6 a) 
R l - e ~  + q _  1 

where 

3. Mean Field Theory 

For the infinite Potts model, a mean field theory has 
been developed by Mittag and Stephen [9]. They 

[2(D - 1)KsR 1 + K R  a 1= 1 

x ~ = ] 2 ( D - 1 ) K R z + K ( R z _ I + R I + I )  2<_l<_L-1 

[2(D - 1) KsRL + K R c_ 1 l= L 
(3.6b) 
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In this case, the mean field approximation to the 
total free energy is 

F=~Sq {2(D-1) Ks+(L-2)DK + K 

+(q - 1)(D- 1) Ks(R ~ +R~) 

+(q-1)(D-1)K ~ R~ 
I < I < L  

+ ( q - 1 ) K  ~ RzR~+I- q ~ Yq(R~)}. (3.7) 
l <_l<__L-1 l <_l<_L 

From (3.2) and (3.7) we may obtain the surface free 
energy fs via (2.4). The result is 

fs(K, Ks) = {(D - 1) K s + (1/2 - D) K 

+(q - 1)(D - 1)(KsR 2 - K R  z) +(q - 1)(D - 1)K 

(R~-R2)+(q-1) K ~ (RzRz+~ -R2) 
1 < /  1 < l  

- ( q -  1)KR2/2-q E [Yq(R~)- Yq(R)]}/q 
l_<z (3.8) 

where R is the order parameter of the bulk defined 
by (3.1). In the derivation of (3.8) we used the fact 
that Rz=RL+~_ ~ for finite L due to reflection sym- 
metry. 
For finite q, the set of Eqs. (3.6) and (3.8) may be 
easily investigated on a computer [8]. Here, we are 
interested in the many component limit where we 
can solve the problem analytically. From (3.8) we 
obtain 

f~o (j, ,Is) = lira fs(J in q, Js In q)/ln q 

=(D - 1)(JsR21 - J R  2) +(D - 1)J ~ (R 2 - R  2) 
1 < l  

+J ~ (R~R~+I-R2)-jR2/2 - ~ (R~-n). (3.9) 
l <l 1<=l 

Js 
(30 

II IV //I 
(E) / 

/ 

1 (51) // 
D-1 (01 / /  

(0 2 ."  

0 J 3 
0 1/D 1 co 

Fig, 1. Global phase diagram in mean field theory. There are four 
phases I, II, III, and IV separated by the phase boundaries (full 
curves) ($1), (E), (O1), (02) , and ($2). The broken curve indicates 
the physical path discussed in the text 

From (3.6) we conclude that each Rz=l  or 0 for 
q--+oo. For some coupling constants J and Js, sever- 
al order parameter profiles are possible. However, 
there is always a unique profile which maximizes the 
surface free energy (3.9). This leads ro four different 
phases denoted by I, II, III and IV in Fig. 1. The 
phase boundary ($1) (see Fig. 1) which separates the 
phases I and II is Js(J)= 1/(D-1) for 0 < J  < 1/D. The 
line J = j c =  lID separates the high temperature phases 
I and II from the low temperature phases III and 
IV, This line consists of three parts denoted by (O1), 
(02), and (E) in Fig. 1. Finally, there is the phase 
boundary ($2) between III and IV given by Js(J)--(1 
-J)/(D-1) with j>jc= lID. The corresponding or- 
der parameter profiles are 

R~ =0;  l > l  I 

R I = I ,  Rz=0; 1>2 II 

R~=0,  R~=I;  1>2 III 

R z =1;  I > l  IV. (3,10) 

Thus, we find a new phase (denoted by III) not 
present in the semi-infinite Ising model. In this 
phase, the bulk is ordered (R = 1) while the surface 
layer is disordered (R 1 = 0). 
When we insert the order parameter profiles (3,10) 
into (3.9) we obtain 

0 

(D - 1) Js - 1 
f~  (Y, "Is) = 

1-(D+ I/2)J 
(D-1)Js +(1/2-D)J 

I (3.11 a) 

II (3.11b) 

III (3.11 c) 

IV. (3.11d) 

The expression (3.11a) valid for phase I can also be 
obtained from the many component limit of the 
high temperature expansion. Similarly, (3.11d) can 
be obtained from the low temperature expansion. In 
addition, there are two exact relations which test the 
validity of (3.11b) and (3.11c). If we put J = 0 ,  the 
exact surface free energy in D dimensions may be 
expressed by the exact bulk free energy in ( D - l )  
dimensions. In our case, this implies 

fs~176 J = 0 ,  Js; D)=fB~~ D -  1)-1 .  (3,12) 

This exact relation is satisfied by the mean field 
solution (3.11) and (3.4). On the other hand, if we 
put J s=0 ,  the spins in the surface layer are de- 
coupled from each other. Thus, we can do the par- 
tial trace over these spins and obtain a new semi- 
infinite system with surface couplings Js=J. In the 
many component limit of model (2.1), this leads to 
the exact relation 

~ fs~(J,J) J <I/D 
f~(J, Js=O)= I1 -DJ+f~ (J ,3 )  1/D<J<I 

( J - D J + f [ ( J , J )  l < J .  (3.13) 
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Again, this relation is satisfied by the mean field 
solution (3.11). 
The unexpected feature of the mean field solution 
(3.11) is the appearance of the phase III. From the 
order parameter profiles (3.10) we know that this 
phase is characterized by an ordered bulk and a 
disordered surface. This can be deduced directly 

from f~(J,  Js) by looking at e~:=~jof~(J ,  Js)/(D 

- 1). This quantity is the correlation function of two 
surface spins which are nearest neighbours. From 
(3.13) we obtain 

{~ I, III (3.14) 
e~ = II, IV. 

Thus, for phase III there are no correlations in the 
surface layer. 
Due to this phase, a new type of phase transition 
occurs in the low temperature regime. Consider the 
physical trajectory indicated by the broken curve in 
Fig. 1. This curve represents the path Js(J)=J/2 
where J is proportional to the inverse temperature. 
Let's start at high temperatures in phase I. When we 
lower the temperature we first cross the phase 
boundary (02) (see Fig. 1). At this temperature, the 
bulk order sets in and all layers are ordered except 
for the surface layer. If we lower the temperature 
even more a second phase transition occurs as soon 
as we cross the phase boundary denoted by ($2) in 
Fig. 1. At the corresponding "critical" temperature 
the order parameter R 1 of the surface layer jumps 
from R1--0 to R I = I .  At this point, one may won- 
der if this behaviour is just peculiar to the many 
component limit (q~oo). However, the mean field 
equations (3.6) and (3.8) predict a similar behaviour 
for finite q [8]. 
The surface free energy (3.11) along the physical 
trajectory just discussed is depicted in Fig. 2. Thus, 
we observe that the surface free energy has a jump 
at the phase transition (02) while it is continuous at 
($2). The jump at (02) is not peculiar to the physical 
trajectory chosen above. It is easily verified that fs ~176 
has a jump along the whole line J=JC=I/D except 
for the point (J, Js)=(JC, J~s) with J~s=(1-1/2D)/(D 
- 1 ) .  We don't know whether this feature is an ar- 
tefact of the mean field approximation. There seems 
to be no general theorem which excludes such a 

d J behaviour, The surface energy e s : = ~ f s ( , J s ( J ) )  

along the physical path Js(J)=J/2 is shown in 
Fig. 2b. Both at the transition (02) and at ($2), this 
quantity has a finite jump as a function of tempera- 
ture. 
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Fig. 2a and b. Mean field result for a surface free energy and b 
surface energy along the physical path indicated in Fig. 1 

4. Migdal-Kadanoff  R G  

Various position space renormalization group meth- 
ods have been used to discuss the semi-infinite Ising 
model (q=2) [e.g. 6, 7]. Recently, it has been shown 
that the simple Migdal-Kadanoff renormalization 
group (MKRG) scheme is also adequate [10]. We 
now apply this scheme to the semi-infinite Potts 
model. For finite q, the M K R G  scheme yields re- 
cursion relations both for the coupling constants 
K, K s and for the bulk and surface free energies 
f , , f s  which depend on q explicitely. Thus, we can 
take the limit q--+oo directly in these recursion re- 
lations. As a result, we obtain recursion relations for 
the rescaled coupling constants J, Js and for the free 
energies f ~ ,  fs ~ defined in (2.5). 
First, we discuss the bulk free energy f ~  within the 
M K R G  scheme. At each RG step, we move bonds 
in all D Cartesian directions simultaneously. Thus, 
we avoid the generation of anisotropic coupling con- 
stants (for a review on the M K R G  scheme in gener- 
al, see [-13]). For finite rescaling factor b, we arrive 
at 

I 
O 

J'= b D J - b + l  
[b m 1)j 

O<=J<b (D ~)-b v 
b (D-1)--b-D~J<b-(D-1) 
b-(D-1)<=j 

(4.1) 

for the bulk coupling constant in the limit q--+oo. 
For D =2  and b = 2, this recursion relation has been 
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derived previously in [14]. In the infinitesimal re- 
scaling limit b--+l+6I, (4.1) implies the differential 
recursion relation 

dJ I 0 J = 0  
d i -  D J - 1  O < J < l  (4.2) 

[ ( D - 1 ) J  l < J .  

For finite b, there is one non trivial fixed point at je 
=(b-1)/(bl)-l).  For b ~ l+3 l ,  JC=l/D which is 
exact for all D > I  [12]. For D = I ,  the RG flow is 
peculiar since there is a line of fixed points for 
1 < J < o o .  However, the integration of the bulk free 
energy along trajectories in D = I  (see (4.6) below) 
leads to the exact result that there is only one phase 
transition point at J = l .  The thermal scaling index 
is yt=D for all b which is exact since the bulk 
transition is discontinuous [15]. 
The corresponding recursion relation for the bulk 
free energy f ~  is 

f ;  (J') = bY f ;  (J) - D A s(b D- ~ J) 

- b D + D ( b  - 1) + 1 (4.3 a) 

{ ~ ; 1 _  0<=x<l  (4.3b) 
zl,(x) = 1) 1 < x  

for finite b and 

dff  
-- D { f~ ~ -DAB(J)} (4.4 a) 

dl 

At3(j)={1j 0=<J<ll=<j (4.4b) 

for b~l+31.  In order to specify a solution to (4.4) 
we choose the boundary condition 

lira l-DZf~ ~ {J(l, J)} =0.  (4.5) 
/ 4 C O  

J(1, J) is the solution of the recursion relation (4.2) 
with the initial condition J(O,J)=J. Integration of 
(4.4) with the boundary condition (4.5) yields 

co 

f ; ( J ) = D  ~ dle-D'AB{J(I, a)} 
0 

={1Dj 1/D<=jO<=J<I/D (4.6) 

which is the exact bulk free energy [12]. For finite b, 
one obtains from (4.3) 

{i  O<=J<JC=(b-1)/(bD-1) 
f ~  (J) = +DCJ -J~) J~<=J 

which is an upper bound to the exact solution (4.6). 

Next, we use the M K R G  scheme to calculate an 
approximate surface free energy fs ~. This is done in 
the same way as described in [10] for the semi- 
infinite Ising model. The calculation of f ~  indicates 
that it is advantageous to use the infinitesimal re- 
scaling limit b--*l+6l. In this limit, the recursion 
relation for the surface coupling Js becomes 

l 
0 J < 2 ,  Js=O 

dJs_ (D_l )Js+�89  1 0 < J s < l  

dl ((D-2)Js+�89 i <=a s . 
(4.7) 

For D >2, the recursion relations (4.7) and (4.2) lead 
to three nontrivial fixed points at (J, Js)=(O, 1/(D 
-1)),  (1/I),0), and (l/D, Jw with J~=(1-1/(2D))/(D 
-1) .  In addition, there are three trivial ones: the 
high temperature fixed point at (0, 0), the bulk fer- 
romagnetic one at (oo, oo), and the surface ferromag- 
netic one at (0, oo). D =2  is special since there is an 
additional line of fixed points for J = 0  and Js>l. 
This feature of the M K R G  transformation is exact 
since for J - 0  we have a 1-dimensional bulk system 
with coupling constant Js (compare (4.2) with D 
replaced by ( D -  1)). However, the line of fixed points 
is not related to any phase transition since it is 
reached by integrating along trajectories up to a 
finite value of 1. 
The differential recursion relation for the surface free 
energy fs ~ is 

df9  = (D - 1)f 9 + A s(J, Js). 
dl (4.8 a) 

In the inhomogeneous term A s, the bulk free energy 
f ~  enters (compare [10]). For 0 < J s < l ,  this term 
is given by 

0 O<=J <I/D 
ds(J, Js)= ( I - D  J)~2 1/D<=J <I (4.8 b) 

((D - 1) (Y/2 - 1) 1 = J .  

For Js > l, we obtain 

A s (J, Js) 

(D-1)(1-Js)  O<J<I/D 
= - ( D - 1 ) J s - D J / 2 + D - 1 / 2  1/D<=J<I 

( D - 1 ) J / 2 - ( D - 1 ) J  s l < J .  (4.8c) 

Integration of the recursion relation (4.8 a) yields 

so 

f ~  (J, Js) = Cs(J, Js) - ~ dl e -(D- 1)tAs(l ) (4.9 a) 
0 

1)zr~176 ~Jtl J), Js(l, J, Js)}. (4.9b) Cs(J, Js) =lime-(D- Js ~ ~, 
l ~  co 
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In order to specify the solution (4.9a) we have to 
choose boundary conditions (4.9b) for the various 
fixed points reached in the limit l ~  ~ .  We take 

0 J = 0 ,  Js=O (4.10a) 

Cs(J, Js)= J =0, Js = ~ (4.10b) 

-�89 J=oo, Js=oO. (4.10 c) 

At the bulk ferromagnetic fixed point (J, Js-~ oo), the 
boundary condition (4.10c) is necessary in order to 
make the scheme self-consistent [10]. With the 
above choice of boundary conditions, the surface 
free energy (4.9a) is obtained after some tedious but 
straightforward integrations along trajectories. As a 
result, five distinct phases denoted by I, II, III~, III 2, 
IV in Fig. 3 are obtained. As in mean field theory, 
the line J=JC=l/D separates the high temperature 
phases (I, II) from the low temperature phases (III~, 
III2, IV). This line consists of two parts denoted by 
(E) and (O) in Fig. 3. The other phase boundaries 
indicated in Fig. 3 are 

[�89176 ($1) 

Js(J)= ~(J-JC)/2+J~s+A(J-J~)~ - 1) ($2) 
! 

(1/(D-1)+J{ln(J/2)-I}/{2(D-1)} (S~) 
(4.11) 

with JC=l/D, J~s=(1-1/(2D))/(D-1), A:=De(D 
- 1)-~(1 - l n  2-D)/2 ,  and ~:=(D-1)/D. For 
0 < J < J  c, the surface free energy fs ~ as obtained 
from (4.9 a) is 

0 I (4.12a) 

f~ ( , J s ) = J  - 1)(Js-J/2 ) 
(D-D(JC-J)4'/2-1/2 II (4.12b) 

and for j> jc  it is 

A(J-JC)O-D(J-JC)/2 III 1 (4.12 c) 

f~(J, Js)= -DJ+Jln(J/2)/2+l III 2 (4.12d) 

(D-1)Js+(1/2-D)J IV. (4.12e) 

As in mean field theory, (4.12a) and (4.12e) are the 
many component limits of the high and the low 
temperature expansions respectively. The exact re- 
lation (3.12) is satisfied by (4.12b) while the exact 
relation (3.13) is only satisfied for J < 1/1) and J > 2 .  
This implies that (4.12c) and (4.12d) can't be exact. 
The correlation function of two nearest neighbour 
surfaces spins as obtained from (4.12) is 

~0 I, III 1, III 2 
es (J, Js) = (4.13) [ 1 II, IV. 

Thus, the M K R G  scheme predicts that the surface 
layer is disordered for the low temperature phases 
III 1 and III 2. It is remarkable that these phases arise 
within a RG calculation. Although there is no fixed 
point at (J, Js)=(2, 0) the phase boundaries denoted 
b y  ( 8 2 )  and (S~) in Fig. 3 connect (jc, j~) and (2, 0). 

OO 

1 
0-1 

Js 

II IV //] 

( S 1 ) ( E ) //// 
~ . . . .  / 

/ 

0 1/D 1 2 oo 

Fig. 3. Global phase diagram from the M K R G  scheme. There are 
five phases I, II, III1, II12, and IV. The phase 11I 2 corresponds to 
the small triangle above d = 1 and 3 = 2. The full curves represent 
phase boundaries while the broken curve represents the physical 
path discussed in the text 

The reason is that the recursion relation (4.7) is not 
analytic at gs=O. As a consequence, the trajectories 
are not smooth but have a kink at Js=O and 
J C< J < 2 .  In a different context, such a situation has 
been discussed in [16]. 
The surface free energy (4.12) as obtained within the 
M K R G  scheme is continuous for all values of the 
coupling constants J, Js. However, due to the terms 
proportional to ]J-JCl~ in (4.12) with (a=(D-1)/D 
the surface energy e~o has a rather peculiar be- 
haviour. For instance, consider the physical path 
J s ( J )=J /2  as indicated in Fig. 3 by a broken line. 
The same path has been considered in Sect. 3 (com- 
pare Fig. 1). The surface free energy f f  and the 
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Fig. 4a and b. MKRG result for a surface free energy and b 
surface energy along the physical path indicated in Fig. 3 
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surface energy a~ ~ along this path are shown in 
Fig. 4a and b respectively. As in mean field theory, 
there are two phase transitions ((O) and ($2) in 
Fig. 4). In contrast to the mean field result (compare 
Fig. 2a) fs ~ is a continuous function of J. At (Sz), a s 
has a jump just as in mean field theory (compare 
Fig. 2b). However, at (O) this quantity diverges like 
(j_jc)4)-l=(j_jc)-l/D. Such  a singularity is not 
ruled out on general grounds. For instance, if the 
transition were continuous a s would behave like [J 
-Jc le~- i  where v denotes the critical exponent of 
the correlation length. In the 2-dimensional Ising 
model (q = 2) where v = 1 the exact e s has a logarith- 
mic divergence [17]. For  q=3 ,  4 and D=2,  one ex- 
pects v=5/6,  2/3 [3,18]. Thus, a s should diverge 
even stronger in these cases. However, in our case 
(q~ov) the bulk transition is discontinuous. There- 
fore, the behaviour shown in Fig. 4b is rather un- 
usual and may be an artefact of the bond moving 
approximation. 

5. Summary 

From the above calculations, we conclude that there 
exists a new low temperature phase in the many 
component limit of the semi-infinite Potts model 
(denoted by III in Fig. 1 and Fig, 3). However, both 
for this phase and for the high temperature phase II, 
the mean field and the M K R G  predictions for the 
surface free energy fs ~ disagree. As far as the exact 
relations (3.12) and (3.13) are concerned, the mean 
field result (3.11) could be exact. However, (3.11) 
implies that fs ~ has a finite jump at j = j c .  On the 
other hand, the M K R G  scheme leads to a surface 
free energy (4.12) which is continuous. But (4.12) 
can't be exact since it does not satisfy the rigorous 
relation (3.13) for all J. 
Mean field theory yields a lower bound to the total 
free energy F (remember the sign convention in 
(2.2)). In addition, the mean field result for the bulk 
free energy f ~  is exact. Thus, we expect that (3.11) 
is a lower bound to the exact fs ~. On the other 
hand, the differential M K R G  scheme also yields the 
exact bulk free energy f ~ .  In addition, for the semi- 
infinite Ising model (q=2) the M K R G  approxima- 
tion gives an upper bound to the total free energy F 
[10]. Thus, we might hope that the M K R G  result 
(4.12) is an upper bound to the exact fs % For  D=2,  
this expectation is consistent with (3.11) and (4.12) 
since 

fs ~ [Mean Field~ _<_ f ~  EMKRG],  D = 2 (5.1) 

for all coupling constants J, Js. However, for 
D >2.17 this inequality does not hold for phase III. 
Finally, we mention a simple mean field type of 
argument which leads to the new phase III without 

any calculation. Consider the surface layer f21 with 
coupling constant Js. We approximate the effect of 
the second layer •2 on f21 by an effective field he f  t 
which is 

heff~{ ~ J < t / D  
J > 1/D. (5.2) 

Thus, we have a (D-1)-dimensional  bulk model in 
the presence of an external field. For q~oe ,  the bulk 
free energy f ~  of this problem is known exactly 
[12]: 

foo {1 ( D - 1 ) J s + h e f f < l  
= (D_ l )J s+he f f  ( D _ l ) J s + h e f f > l "  (5.3) 

(5.3) shows that the surface is disordered even in the 
presence of an effective magnetic field he f  t as long as 
J s < ( 1 - h e f f ) / ( D - 1  ). If we express hef f by J via (5.2) 
we find that the surface is disordered for J > 1/i) and 

1 - J  
J s < D 2  ~ .  This is just the phase III found in the 

meanfield calculation of the semi-infinite problem 
(see Fig. 1). 
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