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Semi-infinite systems may undergo surface induced disordering transitions. These tran-
sitions exhibit both critical surface behaviour and interface delocalization phenomena.
As a consequence, various surface exponents can be defined although there are no bulk
exponents. It is shown that the corresponding power laws can be derived from a scaling
form for the surface free energy where two independent surface exponents and
enter. In addition, global phase diagrams with finite symmetry breaking fields are also
briefly discussed.

1. Introduction

Considerable effort has been devoted to the critical
behaviour at surfaces [1]. Two types of surface phe-
nomena have been firmly established so far: 1) as
the critical temperature of a second-order bulk
transition is approached, various surface quantities
obey power laws and thus several surface exponents
may be defined [1-3]. 2) in Ising-like systems, there
may occur interface delocalization transitions at the
coexistence curve of the two ordered phases below
[4-7]. Recently, it has been found [8, 9] that both
types of surface phenomena may occur simultaneously
as the transition temperature of a first-order bulk
transition is approached. Power laws for various sur-
face quantities have been derived, and thus several
surface exponents have been defined although there
are no bulk exponents. For example, as is ap-
proached from below the order parameter at the
surface goes continuously to zero:
with while the order parameter in the
bulk jumps by a finite amount. At the same time, a
layer of the disordered phase appears between the
surface and the ordered bulk. Thus, there is an in-
terface which seperates the disordered layer from the
ordered bulk. This interface becomes delocalized
since its distance from the surface behaves as

with . (Mean field theory yields a log-
arithmic divergence for and thus, is the
classical value.) Therefore, this transition may be
called a surface induced disordering (SID) transition.

Apparently, this transition has been already ob-
served in the binary alloy Cu3Au [10].
In this paper, some results contained in my previous
letter [8] are discussed in more detail. After the
definition of the Landau free energy (Sect. 2), an
enlarged phase diagram for SID is described in
Sect. 3. As a result, one can distinguish three dif-
ferent types of (continuous) SID transitions denoted
by , , and . In addition, a discontinuous
surface transition denoted by can also occur.
This transition is discussed in Sect. 4. The scaling
phenomenology which has been referred to in [8] is
presented in Sect. 5. The surface free energy is put
into a scaling form. As a consequence, scaling re-
lations are obtained: all surface exponents may be
expressed in terms of two independent ones. In
Sect. 6, the global phase diagram with finite sym-
metry breaking fields is briefly discussed. It is found
that SID is the intersection point of several phase
boundaries. Finally, some experimental aspects and
related work on interface fluctuations is mentioned
in Sect. 7.

2. Landau Free Energy

Consider a -dimensional semi-infinite system with a
-dimensional free surface. The coordinate per-

pendicular to the surface is denoted by . Due to the
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broken translational invariance, the order parameter
which is taken to be a scalar depends on . For

large , approaches the value of the order
parameter in the bulk denoted by . The Landau
free energy functional is given by [8, 9]

(1)

The bulk term which yields a first-order bulk
transition has the generic form

(2)

with . The surface term is taken to be
of the same form:

(3)

with . As usual, the dominant temperature
dependence is assumend to be contained in the Lan-
dau coefficient . The transition temperature

corresponds to . The remaining coefficients
are taken to be temperature-independent. The coef-
ficient which enters the surface term is
related to the relative strength of microscopic in-
teraction parameters in the bulk and in the surface
[9]. In the following, the case will be dis-
cussed which implies that the coupling constants in
the surface are equal or smaller than those in the
bulk. (The phase diagram with and infinites-
imal symmetry breaking fields and is discussed
in [9].)
For systems with a scalar order parameter which
allow a cubic invariant the integer exponents in (2)
and (3) are given by . In this case, the
first-order transition occurs at . Note
that this model allows only for the coexistence of the
disordered phase with one ordered phase. In general,
there may be several ordered phases if some sym-
metry is spontaneously broken at the bulk tran-
sition. For instance, ordered phases occur in the -
state Potts-model. If one wants to study the coexis-
tence of several such ordered phases, an order pa-
rameter with several components may be required.
For instance, the Potts order parameter has
components [14, 15]. However, as long as one stud-
ies the coexistence of the disordered phase with one
of the ordered phases, the model (1)-(3) with

and the scalar order parameter should be
applicable [11-13]. In this case, should be con-
sidered as an appropriate "projection" of the many-
component order parameter. As a consequence, the
values for the symmetry breaking fields have to
be restricted to in this case.

If the disordered phase can coexist with two ordered
phases and if the cubic term is not allowed because
of symmetry one is lead to consider the model (1)-
(3) with . All systems which have a bulk
tricitical point belong to this class. The tricritical
bulk transition occurs for in (2). The corre-
sponding semi-infinite case has been investigated by
Landau theory [16, 17] and by field-theoretic renor-
malization [17]. Here, I am concerned with
in (2) where the bulk transition is first-order.
In the following sections, the semi-infinite model
defined by (1)-(3) is analyzed in the framework of
Landau (or mean-field) theory. This method has
been described previously in some detail [e.g. 1, 9].
Therefore, only the results will be discussed while
the details of the derivation will be omitted.

3. Surface Induced Disordering (SID)

In this section, model (1)-(3) is considered with in-
finitesimal symmetry breaking fields , and
with in (3). In this case, the SID transitions
occur when the transition temperature is ap-
proached from below and the Landau-coefficients
and fulfill certain constraints. The corresponding
phase boundaries in the -space are shown
in Fig. 1. There is a special SID transition which
occurs at the point with coordinates

with [8]

(4)

This point is the endpoint of the line of SID tran-
sitions given by with . For

Fig. 1. Phase diagram in the -space. is the tempera-
ture, and are the Landau coefficients in (3). In addition to
the discontinuous surface transition , there are three types of
continuous SID transitions denoted by , , and
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, there is a wing of (discontinuous) surface
transitions which extends into the low tempera-
ture regime with [13]. Finally, the SID tran-
sition occurs when the temperature trajectory
hits the shaded area inside the plane

, , and are three different types of SID
transitions. As these transitions are approached from
the low temperature regime with , the order
parameter profile develops an intrinsic struc-
ture. There is an interface at which seperates a
surface layer of the disordered phase from the or-
dered phase in the bulk [8]. The same behaviour is
found at the transition temperature for in-
finitesimal symmetry breaking fields . In
each case, the interface at becomes delocalized.
Landau theory yields

(5)

As the disordered layer grows into the bulk, the
local order parameter at the surface
goes continuously to zero:

(6)

The values of the surface exponents , and
as obtained within Landau theory are dis-

played in Table 1. and are the integer exponents
which enter in (2) and (3). Note that in all
three cases. Similar power laws are well-known for
systems with a 2nd order bulk transition [e.g. 1]. The
standard example is the ordinary transition of an
Ising ferromagnet. The classical values of the corre-
sponding surface exponents have been included in
Table 1 for comparison.
Another quantity of interest is

(7)

Appropriate surface exponents for this surface excess
quantity may be defined as

(8)

In Landau theory, one finds that the singular part of
is due to the diverging length scale

This relation also holds in the 2-dimensional SOS-
models for SID [18, 19]. Thus, I will assume that
the singular parts of and are proportional to

Table 1. Classical values for some surface exponents at the transi-
tions , , and . stands for the ordinary transition in
an Ising ferromagnet

each other in general. From (5), one finds the classi-
cal values (log) for all three
types of transitions. Additional surface exponents
may be defined which describe the singular be-
haviour of the surface free energy and various sus-
ceptibilities [8] (compare (15) and (18) below).

4. The Discontinuous Surface Transition

As mentioned in the last section, the SID transition
or occur for and (see (4)) i.e.

provided the coefficient in the Landau expansion
(3) for is not too large. If becomes larger
than one finds a wing of discontinuous transitions

(see Fig. 1). This wing is attached to the
plane along the curve

(9)

for (see (4)). The coordinates of the other
boundary of the wing which extends into the low
temperature regime are denoted by

with . For general these
coordinates have to be determined numerically.
However, in the vicinity of the special SID transition

one can find and to lowest order in
[compare 13]. The result is

(10)

(11)

and
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for . Note that for
which means that the wing lies in front of the

-plane. As a consequence, a temperature trajec-
tory parallel to the axis in Fig. 1 with

hits both the -wing and the
-plane.

Along the -wing, the order parameter in the
surface jumps by a finite amount while the bulk
order parameter varies smoothly. This behaviour
may be understood by the following qualitative
argument [12, 13]. As far as the local behaviour of
the surface order is concerned, the influence of the
dimensional bulk on the -dimensional surface
may be replaced by a temperature-dependent, sym-
metry-breaking field . Obviously, if
the bulk is disordered (i.e. ) and if
the bulk is ordered (i.e. ). If the
dimensional surface undergoes a first-order tran-
sition for , it will also undergo a transition for
finite (as long as is not too large). This is
just the behaviour at : the surface order parame-
ter undergoes a first-order transition in the effec-
tive field of the ordered bulk for
Such a discontinuous behaviour of has also been
found in the mean field theory of the -state Potts
model [12] if one performs the continuum limit of
the mean-field equations [13]. (Note that the tran-
sition has been denoted by in [12]). Howev-
er, one has to be careful especially in the 3-dimen-
sional case. This is due to the fact that the 2-dimen-
sional -state Potts model has a continuous tran-
sition for [20, 21]. Thus, the above qualitative
argument implies that the transition should not
occur for and

for (see equation (23) below where the
expression for the coexistence curve in the
plane is explicitly given). has been chosen in such
a way that corresponds to the ordered phase.
Note that depends both on the temperature de-
rivation and on the symmetry breaking field
. The scaling field governs the aspect of the

interface delocalization at SID. In addition to , the
surface field is also relevant at all three types of
SID transitions. This scaling field governs the aspect
of critical surface behaviour at SID.
In the semi-infinite Ising ferromagnet where the bulk
transition is second-order all power laws describing
the critical behaviour at the surface may be derived
from a scaling form for the surface free energy
[2, 3]. This is also possible in the present case al-
though the bulk transition is first-order. Within Lan-
dau theory, the surface free energy for model (1)-
(3) may be calculated in closed form [8, 9]. The
explicit expressions for and (4, 6) which
are rather lengthy are given in [9] and won't be
repeated here. In terms of the scaling fields and ,
the singular part of these surface free energies may
be written as

(13)

where stands for the various transitions , ,
and . The surface exponent is displayed in
Table 2. Obviously, it differs for the different tran-
sitions. The shape functions behave like

(14)

5. Scaling Phenomenology for SID*

In this section, the results of Landau theory for the
continuous SID transitions (see Sect. 3) are refor-
mulated in terms of scaling fields. One such scaling
field denoted by has to be defined in such a way
that corresponds to the bulk coexistence curve
where the ordered and the disordered phase coexist.
For instance, within Landau theory one has

(12)

* This scaling phenomenology has been referred to in [8] and
has been developed independently from the work of Nakanishi
and Fisher [22] where the wetting transitions are analyzed in a
similiar manner

There are also crossover effects. Near the transition
, the shape functions depend on three relevant sca-

ling fields, e.g.

with . Near , the shape functions
depend on four relevant scaling fields, e.g.

with where is given by (4). The
crossover exponents and are also included in
Table 2. (a star in the table indicates that the
corresponding scaling field is irrelevant).
As far as surface exponents are concerned, one may
rewrite (13) as

(15)
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Table 2. Classical values for the independent surface exponents ,
and for the crossover exponents , at the transitions

, and . and are the integer exponents which enter in (2)
and (3)

with at all three types of transitions and

(15a)

This scaling form is similiar to the well-known scal-
ing form for the surface free energy near a second-
order bulk transition [2, 3]. However, there are
some important differences: 1) in contrast to the
second-order case, only one scaling field depending
on the bulk variables and enters in (15); 2) as a
consequence, there is no exponent corresponding to
the gap exponent of a second-order bulk tran-
sition; 3) both and are independent surface
exponents. In contrast, holds in the sec-
ond-order case where describes the divergence of
the bulk correlation length. In the present case, there
is no bulk exponent since the bulk correlation
length stays finite at . The two independent
surface exponents and are related to the aspect
of interface delocalization and to the aspect of criti-
cal surface behaviour respectively.
From the scaling form (15), one may derive scaling
relations in the usual way. Thus, the surface ex-
ponents which govern the asymptotic behaviour of

are found to be

(16a)

(16b)

(16c)

and the surface exponents which govern the asymp-
totic behaviour of the excess quantity are

(17a)

(17b)

(17c)

The surface exponents which describe the power law
behaviour of the zero-field susceptibilities [8]

, and are

(18a)

(18b)

(18c)

The scaling relations (16a), (16c), and (18b) also
hold for a semi-infinite Ising ferromagnet. However,
all remaining scaling relations differ from the corre-
sponding ones in the Ising case. This is due to the
fact that the scaling field in (12) contains both the
temperature deviation and the "magnetic" field.
Note that a combination of (18a)-(18c) yields

as pointed out previously [8]. This
relation is also true for the semi-infinite Ising model
[3] although the relations (18a) and (18c) do not
hold in this case.
In the scaling relations (16)-(18), the space dimen-
sion does not enter explicitly. Thus, these scaling
relations should hold beyond Landau theory. This
can be shown for in the framework of an
effective interface model [19]. On the other hand,
one may consider the correlation length for fluc-
tuations parallel to the interface with the asymptotic
behaviour

(19)

This correlation length is related to the singular part
of the surface free energy via the hyperscaling re-
lation [compare 7]

(20)

From (20) and (15), one obtains

(21)

with

(21a)

and

(21b)

In Landau theory, one finds and [19].
Thus, (21a) holds in Landau theory for which
is the upper critical dimension for SID [19]. (21a)
can also be checked explicitly for where

and
The length scale governs the fluctuations parallel
to the interface. There is another length scale

(22)

which measures the thickness of the interface and
thus the fluctuations perpendicular to the interface.
In Landau theory, stays finite at the SID tran-
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sition i.e. In the effective interface mod-
el yields Thus, | d - 3 | holds in both
cases.

6. Global Phase Diagram
with Finite Symmetry Breaking Fields

In this section, the model defined by (1)-(3) is dis-
cussed with finite symmetry breaking fields and ,
and with and . First, consider

. In this case, the bulk coexistence curve
in the -plane is given by

(23)

with . As a consequence, there
is a coexistence plane in the -space which
consists of all points with , , and
arbitrary . This plane is displayed in Fig. 2
where the phase diagram for some special values of

, namely for is shown.
Inside the plane , there is a parabolic curve de-
noted by . This curve touches the upper bound-
ary of at the point with coordinates

At the points denoted by
in Fig. 2, the curve changes into the line

The coexistence plane is divided by and into
three distinct parts denoted by I, II, and III in
Fig. 2. Interface delocalization occurs at I and II,
and along and . In addition to , there are
two wings attached to the two pieces of . One
wing extends into the low temperature regime (this
one is visible in Fig. 2) whereas the other wing ex-
tends into the high temperature regime (this one is
not visible in Fig. 2 since it lies behind the plane

).
The phase diagram displayed in Fig. 2 looks very
similar to one of the phase diagrams discussed re-
cently by Nakanishi and Fisher [22] in the context
of the wetting transitions. Indeed, one can show that
both phase diagrams can be mapped into each other
by an appropriate identification of the Landau coef-
ficients as will be discussed in a separate publication
[18]. In particular, it can be shown that the curve

in Fig. 2 corresponds to the critical wetting line
(denoted by in [22]), the points to the wetting
tricritical points, and the wings to the prewetting
transitions.
As mentioned before, Fig. 2 shows the
phase diagram for . When the Landau
coefficient is increased, this phase diagram
changes in two ways. First, the point moves to
the right. Secondly, the points denoted by move

Fig. 2. Phase diagram in the -space for in
model (1)-(3) with is proportional to the tem-
perature deviation . is the coexistence plane where the
ordered and the disordered phase coexist. The various phase
boundaries inside are explained in the text

downwards. At , they touch the
plane: their coordinates are and

. As a consequence, the two pieces
of together with the wings disappear for

from the relevant part of the phase dia-
gram with
The SID transitions and which have been
discussed in Sect. 3) and Sect. 5) correspond to the
single point in the -phase diagram:

occurs for whereas occurs for
. From the above mentioned connection

with the wetting problem, it follows that be-
longs to the same universality class as the critical
wetting transitions. The same is true for all other
points on the curve in Fig. 2. However, the SID
point is distinguished from all other points
on by the property that it belongs to several
such phase boundaries. This is due to the fact that
there are several distinct ordered phases for
(i.e. several ground states). For instance, consider the
3-state Potts model for . The corresponding
mean-field phase diagram for the bulk problem is
well known [14]. (It is now generally believed that
these results of mean-field theory are correct in
[21, 23, 24].) In this case, there are three different
ordered phases. Each of these ordered phases may
coexist with the disordered phase. As a consequence,
there are three pairs of symmetry breaking fields
and with which favour one of the or-
dered phases respectively. For each pair , one
has a phase diagram like the one depicted in Fig. 2
(Note, however, that only two of the pairs are
linearly independent). These three phase diagrams
are embedded in a 5-dimensional space and glued
together along the -axis. Thus, the SID point

is the intersection point of three phase
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boundaries similiar to for the 3-state Potts
modell in
This property of the SID point can be more easily
displayed for systems where only two ordered phases
can coexist with the disordered phase. Such systems
are described by model (1)-(3) with . In
this case, the bulk term in the Landau free
energy has three local minima denoted by
and with . Thus, there are three
bulk coexistence curves , , and as
shown in the -plane in Fig. 3 [25]. As a con-
sequence, there are three coexistence surfaces in the

-phase diagram for the semi-infinite system
which I also denote by , , and . Inside
these coexistence surfaces, one finds again phase
boundaries similiar to the phase boundary of Fig. 2
for For the plane , these phase
boundaries are denoted by , , and
(see Fig. 4). For and , the notation is chosen
correspondingly.
In Fig. 4, the -phase diagram is shown for a
large Landau coefficient . (For such values
of , the phase boundary inside consists of the
curve only and the phase boundary inside
consists of the curve only.) The geometry of the
phase diagram depicted in Fig. 4 can be most easily
understood if one first considers the half space

. This half space contains the curve in-
side . hits the line where all
three coexistence planes meet in the SID point
with coordinates and in the point denoted
by in Fig. 4. also touches the upper
rim of at the point denoted by in Fig. 4.
Inside the coexistence plane with , there is
the curve between the points and
(see Fig. 4). At the point , the curve
changes into the curve . Along , a wing
of discontinuous surface transitions is attached. For

, there is no phase boundary inside the coexis-
tence surface of Fig. 4. So far, the half space
with has been discussed. The other half space
with may be simply obtained by a 180 degree
rotation around the -axis. Obviously, the SID point

is the intersection point of the phase boundaries
and

As mentioned before, Fig. 4 applies for
For , the points and coincide.
If is further decreased, the wings shown in Fig. 4
intersect with the coexistence surfaces and
However, the topology of the phase diagram in the
vicinity of does not change until has been
decreased to the value . For , ad-
ditional wings appear in the vicinity of
(compare Fig. 2). These phase diagrams will be dis-
cussed in more detail in a forthcoming publication.

Fig. 3. The three coexistence curves , , and in the
-plane for model (1)-(3) with

denote the bulk order parameters of the three distinct bulk phases
which coexist at

Fig. 4. Phase diagram in the -space for model (1)-(3) with
There are three coexistence surfaces , , and

. A cross-section through these surfaces with constant
would reproduce Fig. 3. The various phase boundaries within

, , and are explained in the text

7. Discussion and Outlook

It has been shown in this paper that there are three
different types of SID transitions denoted by ,

, and (see Fig. 1) which exhibit critical surface
behaviour. This surface behaviour is governed by the
surface exponent (see Table 2) which depends on
the integer exponents  and  in model (1)-(3). At
all three types of SID transitions, the interface be-
tween the disordered and the ordered phase becomes
delocalized in a continuous manner. This interface
delocalization is governed by the exponent (see
Table 2).
If the Landau coefficient in (3) is large, the dis-
continuous surface transition can occur (see
Sect. 4). A physical system which is described by
constant Landau coefficients and with
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(compare (9) and (11)) will undergo both the dis-
continuous transition and the continuous SID
transition . For instance, such a behaviour may
occur in the semi-infinite -state Potts model with

in (compare [12] where has been de-
noted by ). Note, however, that the mean-field
theory for the Potts model on lattice yields ad-
ditional discontinuous phase boundaries [13].
While the SID transitions and occur only for
special values of the Landau coefficients and ,
the SID transition is present for all sufficiently
large (see Fig. 1). As a consequence, should
most likely be observed in experiments. Recently,
new experimental techniques such as low energy
electron diffraction (LEED) [26], spin polarized
LEED [27], electron capture spectroscopy [28], and
total reflected x-ray spectroscopy [29] have been
used to investigate surface phenomena. In addition,
it has been shown theoretically that total reflected
neutron beams may also be used for this purpose
[30, 31]. These techniques should now be applied to
physical systems which undergo a first-order bulk
transition. As a result, one may observe both the
continuous behaviour of the surface order parameter

and the divergence of the new length
scale . Thus, it should be possible to
measure two universal quantities, namely and
at a first-order transition. Up to now, there have
been no measurements of or but it seems that
the continuous behaviour of has already been
observed in a LEED experiment on Cu3Au [10].
This material undergoes an order-disorder transition
at which is of first-order in the bulk.
In contrast, the experimental results in [10] strongly
suggest that the surface order goes continuously to
zero at (see Fig. 4 of [10]). Unfortunately, there
are not enough data points in order to estimate the
exponent from this experiment. Thus, more pre-
cise surface measurements on this material would be
highly valuable.
The theoretical work presented in this paper has
been obtained in the framework of Landau theory.
Of course, Landau theory underestimates the effect
of fluctuations. At the SID transitions considered
here, there are fluctuations of the interface i.e. capil-
lary waves which will change the classical values
of the surface exponents. Such fluctuations may be
investigated in the framework of an effective inter-
face model as shown in a seperate publication [19].
In , this model can be solved exactly via the
transfer matrix method [18, 19]. As a result, the
classical values of the surface exponents are indeed
changed, e.g. one finds and , but
the scaling relations derived in Sect. 5 still hold. In

, the effective interface model can be investigated
by a variational method [19]. As a result, one finds

a phase diagram which is even more complex than
the phase diagram obtained in Landau theory. In
particular, the surface exponent is found to be
non-universal: it depends on the surface tension of
the interface.
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