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The relationship between surface wetting transitions and surface-induced disorder (SID) transi- 
tions is studied. The correspondence between the scaling variables at these two types of interface 
delocalization transitions is derived and the connection between the scaling laws is made explicit. 
This wetting-SID correspondence is then used to obtain a number of new results. SID transitions 
are shown to correspond to special points in more general interface delocalization phase diagrams 
and it is argued that the SID transition is always continuous in d =2. Exact results for the surface 
exponents are obtained in this case. New higher-order multicritical wetting phenomena are also 
predicted and the scaling behavior of local surface quantities at the wetting transition is discussed in 
detail. 

I. INTRODUCTION 

Both surface wetting t ransi t ions6 and critical 
surface-induced-disorder (SID) transitions710 have re- 
cently attracted a great deal of attention. The wetting 
transition was first studied by Cahn in the context of 
phase separation in binary liquid mixtures below the con- 
sulate point.' A wetting transition occurs when the angle 
of contact that the interface between the two coexisting 
phases makes with a wall or bounding phase becomes 
zero. For a substrate s in contact with two coexisting 
phases a and 13, the contact angle 0 is given by the 
Young-Dupres relation" for the surface tensions y, 

where the subscripts designate the phases adjoining the 
surface or interface. For yap> yas-yes 1 ,  (1) has a 
solution at finite Q (partial wetting). If this inequality is 
not satisfied, one of the phases completely wets the solid 
and there is no contact between the solid and the other 
phase. Assuming phase 13 wets the surface, (1) then be- 
c o m e ~ ~ ~ , ~ ~  

The thickness of the f i  wetting layer then has an infinite 
or macroscopic value. This transition from partial to 
complete wetting arises from the preferential affinity of 
one of the phases for the wall and can be either continu- 
ous or first order, depending on material and substrate pa- 
rameters. Similar transitions can occur in semi-infinite 
Ising models below T ~ , ~ ~  and in condensation out of the 
gas phase on an attractive s ~ b s t r a t e . ~ , ~ ~  

More recently, it has been shown that semi-infinite sys- 
tems which undergo a first-order bulk transition can ex- 
hibit an interesting new type of surface phase transi- 
t i~n .~ - ' '  Although the bulk order parameter is discon- 
tinuous at the transition temperature T = T*, it may hap- 

pen that the surface order parameter behaves continuous- 
ly. Furthermore, as T* is approached from below in this 
case, a layer of the disordered phase intervenes between 
the free surface and the ordered bulk. At T = T* the in- 
terface between ordered bulk and the disordered surface 
phase becomes delocalized and diffuse, as at the wetting 
transition. 

In the present paper we investigate the relationship be- 
tween wetting and SID transitions. In Sec. I1 the Landau 
free-energy functionals for the two types of transitions are 
described and it is shown how one can be mapped into the 
other by an appropriate transformation of the coupling 
constants. The relationship between the scaling variables 
in the two models is derived and the connection between 
the scaling laws is made explicit. In Sec. I11 this analysis 
is extended to include higher-order multicritical phenome- 
na. The relationship between the various multicritical 
transitions found for certain SID models is clarified and 
the analysis is extended to higher-order multicritical wet- 
ting phenomena. In particular, we show that the inclusion 
of higher-order symmetry-allowed terms such as g 1 ~ 4  in 
the surface contribution to the Landau free-energy func- 
tional can lead to new higher-order wetting transitions. 
Finally, in Sec. IV we utilize the wetting-SID correspon- 
dence to obtain new results for the SID transition in two 
dimensions. The surface exponents are given exactly in 
this case. One of our most surprising results is that for 
d = 2 ,  although the bulk transition is first order, the sur- 
face order parameter always behaves continuously. 

11. WETTING-SID EQUIVALENCE: CRITICAL 
AND TRICRITICAL PHENOMENA 

We consider a d-dimensional semi-infinite system with 
a ( d  - 1)-dimensional free surface. The z axis is taken 
perpendicular to the free surface. The generic form of the 
Landau free-energy functional that we consider is16 
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where + is a one-component order parameter. f (4) is the 
bare bulk free-energy density for a homogeneous field con- 
figuration +, and f (+) is a surface contribution contain- 
ing the influence of the wall or surface on the order- 
parameter field. 

In the mean-field (MF) approximation127,17 the order 
parameter profile m ( z )  = ( 4  ) is determined from 
SF/S+ 1 ,,, =O. This leads to 

where mi, is the bulk value of the order parameter. For 
z+0+, the order-parameter profile has to satisfy the 
boundary condition 

with m 1  s m  (z=O). Combining (3a) and (3b) one finds 
that m 1 is determined by 

for m 3 mb. Order-parameter profiles which satisfy (3a) 

and (4) and yield the absolute minimum of the free energy 
describe the thermodynamic state of the system. 

We consider first the wetting transition. f (4)  then has 
the form 

We are in the ordered phase so that the reduced tempera- 
ture T ,  measuring the distance from T, ,  the bulk ordering 
temperature, is positive. h  is proportional to the 
chemical-potential difference from coexistence; in the 
magnetic language used here it is the bulk magnetic field. 

The contributions to f \W are due to the free surface or 
wall and are of two types. First, the semi-infinite 
geometry modifies the interactions between "spins" near 
the surface. In the continuum model we consider this 
may be taken into account by an incremental surface- 
temperature field q localized on the surface. 7-1 is also 
called the inverse extrapolation length. The second effect 
may be described by a local chemical potential or surface 
field h which describes the affinity of the surface or wall 
for the surface phase. f is therefore taken to have the 
form 

If the bulk boundary conditions far from the surface 
favor one phase (up spins for example), and if h is nega- 
tive, then at sufficiently low temperatures a layer of down 
spins with finite thickness may partially wet the surface. 
The wetting transition occurs when at some temperature 
T < T, the thickness of this wetting layer diverges (for 
h = 0). The down-spin phase then completely wets the sur- 
face. h  and h l  must therefore be taken to have opposite 
signs in ( 5 ) .  In the following we take h  > 0 and h < 0. In 

FIG. 1. Surface phase diagram in (r,h \ ,h) space for fixed 
subcritical surface enhancement ri > 0 obtained in the MF ap- 
proximation for F\$J\ given by (21, (5a1 and (5b). Point CP at 
the origin is the "ordinary transition" at which the bulk orders. 
CWE-CP-CWE parabola in the h =0 plane is the line of critical 
interface delocalization transitions. The CW or critical wetting 
transition occurs if the ?%bola is crossed for 1 h ,  1 < 1 h: 1 .  
For 1 h 1 = 1 h *\=T~,v 2 / g  (or T ,  = 6 ) the transition 
occurs at the CWE, the critical wetting endpoint (a tricritical 
point, and for h i  1 > 1 h* the transition at coexistence is first 
order ( W ) .  For \h \̂ > \ h *  1 there is a prewetting surface at 
finite h; crossing this surface there is a finite jump in the cover- 
age. Front edge of this surface is called the PWCL, or prewet- 
ting critical line. 

addition, we consider only surface enhancement, TI > 0. 
In this case a MF analysis of ( 2 )  and ( 5 )  yields either criti- 
cal or first-order wetting depending on the specific values 
of r l ,  h l ,  and T. 

It should be emphasized that our choice of F{(b\ 
presupposes that all interactions are short ranged. The 
van der Waals interactions present in real (nonmagnetic) 
systems are not short ranged in this sense. In particular, 
for van der Waals interactions the substrate potential h i  
has a long-range component which drops off as z 3  for 
d=3. This long-range component does not effect the 
wetting-SID equivalence, but it does in general modify 
certain aspects of the critical 

The MF theory for the Landau free-energy functional 
F[(f>} given by (5a) and (5b) has been discussed in Refs. 1 
and 17. The corresponding phase diagram is shown in 
Fig. 1. The point CP at the origin of Fig. 1 is the "ordi- 
nary transition" at which the bulk orders. The CWE-CP- 
CWE parabola in the h=O plane is the line of critical in- 
terface delocalization transitions. For \hi < h\ \ and 
h=O we have the critical wetting (CW) transition at 
T~ =g ( h  /TI )2. For T > T,,, ( h  ) there is incomplete wet- 
ting at coexistence and for T < T ~  complete wetting. In 
Fig. 2(a) the order-parameter profile cf>(z) is shown for 
~ 2 7 ~  near the CW transition. As the transition is ap- 
proached from below, the coverage m,, which is propor- 
tional to the distance of the interface from the surface, 
diverges as 

f 
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FIG. 2. (a) Order-parameter profile <^(z) for T > T ~  near the 
CW transition. <f>b is the bulk value of the order parameter and 
m,, the distance of the interface from the surface, is the cover- 
age. <^(z=O) + 4b-O and ms- oo at the wetting transition. (b) 
Order-parameter profile 4(z) for a <a* near the SID transition 
Oi. ibi, is the bulk value of the order parameter. 1+!4z=0)+0 at 
the SID transition. 

Off coexistence (h#O) there is no transition. For 
1 h 1 = 1 h1 1 = ~ ~ V 2 / g  (or = l/ZTy,) the transition 

occurs at the critical wetting endpoint (CWE) and for 
1 h 1 > 1 h; 1 , the transition at coexistence is first order. 

The CWE is a tricritical point. 
For 1 h I > 1 h i  1 the phase diagram has a prewetting 

surface at finite h. The front edge of this wing is called 
the prewetting critical line (PWCL). Crossing the prewet- 
ting wing there is a finite jump in the coverage. These 
and other aspects of the phase diagram have been dis- 
cussed in detail el~ewhere.~ 

In the vicinity of the CW and CWE transitions the 
singular part of the surface free-energy density Fs has the 
scaling form19,20 

where t, h, and v are appropriate scaling fields which 
respect the symmetries and vanish at the transition. At 
the CW transition there are two relevant scaling fields. 
One measures the distance from the CW line in the sym- 
metry plane and the other measures the distance perpen- 
dicular to the coexistence plane. Two independent ex- 
ponents, a, and A, are therefore needed to describe the 
relevant scaling behavior in this case. At the CWE there 
is an additional relevant field which measures the distance 
from the CWE along the CW critical curve, and three ex- 
ponents, as ,  A, and Al, are required to describe scaling. 

MF theory yields an explicit form for ( 6 ) .  Near the CW 
transition we 

FIG. 3. Detail of the wetting surface phase diagram shown in 
Fig. 1 in the neighborhood of the CWE. t and v are tricritical 
scaling fields. t points along the continuation of the parabola 
CP-CW-CWE and v measures the distance from the phase boun- 
dary in the symmetry plane h =O. 

where t > 0 is a measure of the distance from the CW line 
in the symmetry plane h=O. For constant TI and g, an 
appropriate choice of a linear scaling field t would be 

where ST=T-T~ ,  8h l=h l -hK and is 
the equation of the delocalization critical line. t points in- 
side the phase-boundary curve so that 83-> 0 and 
-h%h > 0. In general, if ?-I is allowed to vary, 87-1 also 
has a projection on t. and h i  are thus nonordering 
fields which have the same scaling dimension as t.22 

Utilizing (6) and (7) we see that as =0  and A =2 at the 
CW transition in the MF approximation. A rather unusu- 
al feature of this transition is that MF theory yields loga- 
rithmic divergences in nonlocal quantities such as F, or 
ms 9 

for t=0, and 

Since 6h is a nonordering field, exponents for the singu- 
lar part of the surface magnetization m,=aFS/Qhl are 
given in terms of as.22 For example, = 1 -as = 1 and 
y =a, = 0 in the MF approximation. 

At the CWE, MF theory yields the following form for 
the singular part of the free-energy 

Here, t is a scaling field along the continuation of the par- 
abola CP-CW-CWE and v measures the distance from the 
phase boundary in the symmetry plane h=O (see Fig. 
3).23,24 In Fig. 3 the v axis is drawn in the h direction; 
this is an arbitrary choice and in general all that is neces- 
sary is that v not be parallel to t at the CWE. When t-0 
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FIG. 4. SID phase diagram obtained from the wetting phase 
diagram in Fig. 1 using the coupling-constant transformation 
(1 1). The SID transition occurs for H = H I  =0. i.e., where the a 
axis cuts the coexistence plane. 

with u==0 the CWE is approached tangentially to the 
phase boundary, whereas an increase in u results in depar- 
ture from the CWE and the phase boundary. This implies 
that if 6r, 6h 1 ,  and 67' denote the deviations of these three 
coupling constants from their values at the CWE, then in 
general all three have projections on both v and t .  

From (6) and (8)  we see that a, = - 1, A = 3 ,  and Al=2 
in the MF approximation. In addition, as at the CW tran- 
sition, MF theory yields logarithmic divergences in the 
nonlocal quantities F, and m,. Other surface exponents 
follow by differentiation and satisfy scaling relations 
which may be derived in the usual manner.I9 

Consider now the Landau free-energy functional for the 
SID transition given by (2) with7-'' 

and 

This model describes systems with a scalar order parame- 
ter which allow a cubic invariant. In addition, this model 
also describes a larger class of multicomponent systems in 
situations where the disordered phase is in coexistence 
with one of the ordered phases, as discussed in Refs. 8 and 
10 for the q-state Pott's model. In this case i& is the am- 
plitude of the ordered component of the multicomponent 
order parameter and H and H i  (both 2 0 )  couple only to 
this component. If the fields conjugate to the other com- 
ponents of the order parameter are not identically zero the 
phase diagram is considerably more c ~ m ~ l i c a t e d . ~  This 
aspect of the problem will not be discussed here. 

If we make the substitution 

we obtain ( 5 )  with 

With the use of this coupling-constant transformation, the 
SID phase diagram for the model described by the free- 
energy functional [ (2 )  and (9)]  can be obtained from the 
phase diagram for the model [(2)  and (511 given in Fig. 1. 
This SID phase diagram is shown in Fig. 4. The coex- 
istence plane h = 0, r > 0 in Fig. 1 is now given by 

with a* <a <b2/(3c)  and a* =2b2/(9c). 
The SID transitions considered in Refs. 7-10 occur at 

H =H+, i.e., where the a axis cuts the coexistence 
plane in Fig. 4. This happens at h=0, or 
a =a* =2b2/(9c). In fact, this intersection is always 
along the parabola CP-CW-CWE or, for a < (a* ) 1 / 2 ,  its 
extension-given by the dashed curve in Fig. 4. This can 
be seen by noting that the CW parabola in Fig. 1 is given 

For a =a* and H ,=0 ,  ( 1 1 )  implies d a * ) = b 2 / ( 9 c )  and 
h = -a ,  b / (3c) ,  so that (12) is fulfilled. 

For q > [ 2 ~ ( a * ) ] ^ ~ ,  or equivalently, a ,  > ( a * ) ' / 2 ,  the 
intersection is along the CW curve. This is the SID tran- 
sition O J .  For a =(a* ) I 2  the intersection is at the CWE. 
The corresponding SID transition is called % 7 9  For 
a < (a* ) ' I 2  the intersection is along the dashed curve in 
Fig. 4. This corresponds to a point of incomplete wetting, 
and the SID transition-called 01-is first order in this 
case. 

The singular behavior at $ and O2 discussed in Refs. 
7-9 can also be obtained from the above analysis. Con- 
sider first the O-, transition (CW). From Fig. 4 it is easy 
to see that neither a nor H lie in the symmetry plane of 
the delocalization curve. A general variation of these 
fields therefore has projections on both scaling fields t and 
h in (6). Since h has the larger scaling dimension, the 
response to a and H is determined by the scaling variable 
h. In Ref. 8 this scaling variable has been denoted by 

where 6a =a -a*. Only for the special combination of 6a 
and H which yields u=0  is the response determined by 
the scaling variable t. H 1 7  however, is in the symmetry 
plane and its scaling dimension is therefore the same as 
that of t. There exists, therefore, the correspondence 
h - 1 u 1 and t - H I  between the scaling variables at these 
two transitions. 

The singular part of the surface free-energy density at 
the CW transition is given by 
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FIG. 5. SID phase diagrams in (a ,aI ,  b1  ) space obtained in 
the MF approximation for F ( $ ]  given by (2) and (15) with 
(x,y)=(3,4). The bulk is ordered for a <a*. (a) For bl  = c l  =0 
there is a critical line (02) which ends at a tricritical point 3 
with coordinates [a*,(a * )1 /2] .  For a < (a*  the surface tran- 
sition is first order. (b) b1 ,c i  > 0. The O2 transition occurs if 
the a =a* plane is crossed in the shaded region. There is a tri- 
critical line g which ends at a fourth-order multicritical point SF 
with coordinates [a*, (a*  )I/', Vc/2]. The surface transition is 
first order if the a =a* plane is crossed in the unshaded region. 

For the corresponding SID transition 0 2 ,  the singular part 
of Fs is given by8 

where we have used overbars to indicate exponents at the 
SID transition. From (13) and (14) we see that 
2 - ?& = ( 2  -as )/A and El  = 1 /A. Furthermore, since 

1 u 1 measures both temperatures and  field deviations at  
the O2 transition, we find, for example, 

and 

Other relations between the various exponents are easily 
derived in a similar manner. 

A similar analysis can be applied to the tricritical tran- 
sition ~'(cwE). General variations in a and H have pro- 
jections on all three variables t, v, and h in (6). Since h 
again has the largest scaling dimension, the response to a 
general variation in a or H will be determined by the scal- 
ing variable h. Similar arguments show that the response 
to H I  is given by the scaling variable v. The singular part 
of Fs at $is given by8 

where 8a1 is the scaling field at the tricritical point 5' 
parallel to the critical line 0 2 .  At $ we therefore have the 
correspondence h - 1 u 1 ,  u -HI ,  and t -6a Rewriting 
(6) in the form 

we see that 2-Es=(2-a,)/A, A l = ~ i / ~ ,  and q a = l / A ,  
where all exponents are tricritical exponents. 

Previous work on wetting has been primarily concerned 
with nonlocal or excess surface quantities such as the cov- 
erage m,;. On the other hand, the most interesting aspect 
of the SID transitions is the critical behavior of local sur- 
face q u a n t i t i e ~ . ' ~  For instance, the local order parameter 
at the surface M i  =9F, /9H, = (tfi(r,z=O) ) goes continu- 
ously to zero with the exponent /31=2-?i-Ai [see Fig. 
Zb)], 

From (10) and (1 11, it follows that the corresponding 
quantity for wetting is 

with m i  ={(b(r,z=0}) and m b ( ~ w ) = G .  7-aFs/ 
Qh is just what we mean by the singular part of the sur- 
face order parameter in the wetting problem [see Fig. 
2(a)]. This quantity vanishes as 

At the CW transition & = l - - a ,  and 1/61=(1-as)/A 
and at  the CWE, f t= (2 -as -Al ) /Ai  and l/6, 
=(2-as  -Al)/A (where in the last two expressions all 
exponents are tricritical exponents).25 Since the S ID scal- 
ing field 1 u 1 corresponds to h at  both these transitions 
we have = 1 /S1. 

Finally, it should be emphasized that the wetting-SID 
equivalence discussed in this section is not restricted to the 
M F  approximation. In both cases, the important fluctua- 
tions which invalidate the M F  approximation arise from 
capillary waves-long-wavelength interface fluctuations. 
Because of this fact effective interface models for these 
two transitions, with the appropriate transformation of 
coupling constants discussed above, are, in fact, the 
~ a r n e . ~ ~ ? ~ '  

111. HIGHER-ORDER MULTICRITICAL 
PHENOMENA 

In the context of Â§I transitions, a larger class of 
models than that described by (9 )  have been considered. 
The general parametrization discussed in Refs. 7-10 is 

and 
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FIG. 6.  MF wetting phase diagram in < ~ , g , )  space for 
f l ( ( A ) = - . h l ~ + & l ( A 2 + ~ g l < i 4 .  There is now a CWE line 

which ends in a fourth-order multicritical point with coordinates 
( T , , ~ ,  1 = ( V 7 2 , g  /(3m ). CW occurs if the critical hyper- 
surface is crossed in the shaded region. 

with b, c, a b and c all positive and 1/1 a scalar order- 
parameter field. 

The case (x,y)=(3,4) with b l  =c1 = 0  was discussed 
above. The general wisdom is that the inclusion of terms 
of higher order than i/'' in f does not change the critical 
behavior in semi-infinite systems: They are irrelevant 
operators. Here, however, this is not the case. For finite 
b c l  > 0 additional higher-order multicritical phenomena 
have been f o u n d . 7  lo The corresponding phase diagram is 
shown in Fig. 5. For b ,  =ci  = 0  we have a critical line 
(02 j which ends at the tricritical point $. For smaller 
values of a l  the transition is first order [Fig. %a)]. For 
finite b ,C the phase diagram is shown in Fig. 5(b1.~ The 
O2 transition occurs if the a =a*  plane is crossed in the 
shaded region. The point 9 becomes a tricritical line 
which ends at a fourth order multicritical point SF with 
coordinates (a*,(~*)"~,"c/2). For larger values of b1 
there is a wing St which extends into the low-temperature 
phase. The M F  exponents for the SF point are given in 
Refs. 7 and 8. 

In exactly the same way, a term g144/4- in the surface 
contribution f (4  to the Landau free energy is relevant at 
the wetting transitions. For f (4)  given by (5a) and 

the M F  equation [Eq. (4)] for the surface order parameter 
7 =m + mb is easily derived. As a result, one obtains the 
phase diagram shown in Fig. 6. Instead of a single point, 
there is now a line of CWE transitions given by 

where -2 < rl < f i r .  This line ends at a fourth-order 
multicritical point with coordinates (r1,gl ) = ( ~ ' 7 2 , ~ /  
( 3 6 7 ) ) .  The critical hypersurface in which these transi- 

tions occur is given by 

with 

This new fourth-order multicritical point corresponds 
to the SF point discussed for SID above. At this point 
there are four relevant perturbations and the singular part 
of the surface free-energy density has the scaling form 

Let t be the scaling variable asymptotically parallel to the 
tricritical line leading to the multicritical point and take h,  
v, and w to be the limiting orientation of the scaling direc- 
tions for the tricritical line as the fourth-order critical 
point is approached.23 M F  theory then gives the values 
as = -2, A=4, A1=3, and d 1 = 2  for the critical ex- 
ponents. In addition, Fs and m, again have logarithmic 
divergences as at the other wetting transitions. 

With the scaling field transformation t - Sb h - 1 u i , 
v - h 1 , and w - Sa 1, these results are the same as those 
found in Refs. 7 and 8 for the SF transition with 
(x,y)=(3,4). At this transition the corresponding ex- 
ponents are related by 2-Q;, =(2-aJ/A, X I  = A ~ / A ,  
, = < A ~ / A ,  and & = l/A. 

The other model discussed in Refs. 7-9, given by (15) 
with (x,y)=(4,6), describes systems with a bulk tricritical 
point. Here again, various multicritical SID behavior was 
found to be possible for special values of the surface cou- 
pling constants. In fact, the exponents for the 3 and SF 
transitions in this case are different from those for these 
transitions with (x,y)=(3,4). The reason is that here, 5" 
and SF correspond to still higher-order critical points. 
This is due to the absence of a iff3 term in the Landau 
free-energy functionals. Consider the MF  scaling form of 
the surface free-energy density at the fourth-order mul- 
ticritical point discussed above, 

For the SID transition the scaling variable t is along the 
Sb, direction, i.e., the scaling field is proportional to the 
cubic-term coupling constant in f (*I. This field is ab- 
sent (i.e., zero) for (x,y) = (4,6j. For t =0, (16) becomes 

With the scaling-field correspondence h - 1 u \ , v - h 
and w -8ai,  this is precisely the form found in Ref. 8 for 
the 5 transition in the (4,6) model. The 5" transition for 
(x,y) = (4,6) can therefore be interpreted as a fourth-order 
critical line with one of its scaling variables missing (set 
equal to zero). Because of the particular parametrization 
of the model, the phase diagram is a slice of the phase dia- 
gram for a model exhibiting the full sequence of multicrit- 
ical points. A similar analysis may be applied to the SF 
transition in the (4,6) model and is clearly generalizable to 
other special cases. 

All SID transitions are thus special cases of general in- 
terface delocalization transitions in semi-infinite systems. 
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The embedding of the SID transition in the higher- 
dimensional phase space (as in Fig. 4) describing these 
delocalization transitions is quite useful for identifying the 
scaling directions and helping us better understand the re- 
sulting phenomena. In the next section we utilize this 
equivalence to determine the critical exponents for the 
SID transition O2 in two dimensions. 

IV. SID TRANSITIONS IN d=2 

There already exists considerable literature concerning 
interface wetting or pinning transitions in two dimen- 
s i o n ~ . ~ ~ ~ ~ ~ ~ ~ ~  The key feature in two dimensions is the ab- 
sence of all phase transitions at T>0 away from coex- 
istence. Away from bulk coexistence, surface behavior is 
d  - 1 = 1 dimensional and thus cannot support phase tran- 
sitions at finite temperatures.5 This implies that in the 
phase diagram in Fig. 1, the CWE and wetting lines are 
absent. Only the CW transition remains. Further, this 
implies, with the use of the wetting-SID equivalence, that 
all SID transitions are continuous in d = 2 .  In Fig. 5(a), 
the O1 ,,!? parts of the phase diagram in the a,a plane are 
absent and the O2 line extends down to zero a This is a 
rather surprising feature of the SID transition in two di- 
mensions. 

Our detailed understanding of the CW transition in 
d = 2  comes from the analysis of nearest-neighbor Ising 
lattice-gas models14 and a still simpler, closely related 
class of models based on the solid-on-solid (SOS) approxi- 
m a t i ~ n . ~ '  These SOS models can be easily solved in d = 2  
for a wide range of substrate potentials as well as finite 
bulk field h. The wetting transition corresponds to the 
thermal unbinding of the interface from a potential well 
which characterizes the effect of the negative surface field 
h in (5b). For short-range substrate potentials- 
equivalent to pure surface fields as in (5b)-the analysis of 
these models shows that the singular part of the surface 
free-energy density has the scaling form18 

so that as =j  and A = 3. For SID transitions, this implies - 
a, = and A , = + ,  and furthermore, A=+ and B, = - +. 
Other exponents may be obtained using the correspon- 
dence discussed in Sec. 11. 

V. CONCLUSIONS 

Wetting and SID transitions are two intimately related 
types o f  interface delocalization phenomena in semi- 
infinite systems. In particular, as shown in the text, there 
exists a direct relationship between the scaling variables 
and scaling laws at these transitions. Furthermore, this 
wetting-SID equivalence is not based solely on the MF ap- 
proximation; it can be shown that effective interface 
models for wetting and SID transitions are, in fact, the 
same. With the transformation of scaling variables de- 
rived in Secs. I1 and I11 it is straightforward to translate 
results for one phenomena to the other. 

This equivalence should be particularly useful when 
seeking semi-infinite systems which exhibit interface delo- 
calization transitions. While wetting transitions have been 
observed in binary mixtures29 and in multilayer adsorption 
phenomena on attractive  substrate^,^' the best candidates 
for a detailed experimental study of critical wetting may 
well be systems exhibiting SID transitions. Quantitative 
measurements of local surface quantities such as the value 
of the order parameter on the surface are, in general, 
easier to perform than measurements of nonlocal or excess 
quantities such as the surface free-energy density or the 
coverage. Systems with SID transitions are particularly 
well suited for such measurements since the surface order 
parameter M i  goes to zero at the transition. Methods 
such as low-energy electron diffraction31 (LEED) and 
spin-polarized LEED,~' which have already been success- 
fully applied to study critical phenomena in semi-infinite 
systems, should be directly applicable in this case. Partic- 
ularly good candidates could be binary-alloy crystals with 
a discontinuous bulk order-disorder transition. In fact, 
LEED measurements on the (100) surface of a Cu3Au 
crystal do seem to indicate a continuous SID transition at 
the bulk first-order order-disorder t r a n ~ i t i o n . ~ ~ ' ~ ~  Present 
measurements are too imprecise to yield detailed informa- 
tion on the behavior of the surface order parameter, but 
recent improvements in LEED and spin-polarized LEED 
should make it possible to obtain accurate information 
concerning the exponent pi. This would be extremely use- 
ful since our understanding of these transitions in three 
bulk dimensions is still far from complete.26327p35~36 
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