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Interface delocalization transitions in finite systems 
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Interface delocalization transitions are studied for slabs and strips of linear dimension L. For large L ,  
the shift of the transition temperature is found to be proportional to l / L .  This implies that the continuous 
behavior predicted for various surface quantities in a semi-infinite geometry becomes weakly discontinuous 
for large but finite L. The consequences for new experiments and computer simulations on three- and 
two-dimensional systems are discussed, 

Many materials undergo a first-order phase transition. If 
a symmetry is spontaneously broken at the transition, a 
disordered phase coexists with several ordered phases, Re- 
cently, it was predicted1,' that a surface can induce critical 
phenomena at such transitions. These critical effects in- 
clude (1) critical behavior of local surface quantities such as 
the surface order parameter; (2) long-range correlations 
parallel to the surface; (3) continuous delocalization of the 
interface between the two (almost) coexisting phases. 

The basic physical process behind these critical effects is 
the following. At the surface, the number of nearest neigh- 
bors is smaller than in the bulk. As a consequence, the sur- 
face may start to disorder as the first-order transition is ap- 
proached although the bulk is still in its ordered state. 
Thus, a layer of the disordered phase intervenes between 
the surface and the bulk, and the material undergoes a 
sudace-~nduced disorder (SID) transition. SID may occur if 
the microscopic interaction parameters are comparable or 
weaker than those in the bulk. On the other hand, if the 
microscopic surface couplings are sufficiently stronger, the 
surface may begin to order as the coexistence curve is ap- 
proached from the other side where the bulk is still disor- 
dered. This is a surface-induced order (SIO) transition. SIO 
can also occur in the presence of symmetry-breaking fields 
which enhance the order at the surface. 

In a semi-infinite geometry, the thickness of the surface 
layer can diverge in a continuous manner. This cannot hap- 
pen in a real, finite sample. The obvious question is How 
far does the disorder intrude into such a finite sample? The 
answer to this question [see (11) below] as well as an esti- 
mate of finite-size effects in general should prove quite use- 
ful in order to guide new experiments and computer simula- 
tions for SID. So far, some evidence for this type of transi- 
tion comes from a low-energy electron diffraction (LEED) 
experiment on the (100) surface of the binary alloy Cu3Au, 
and from a Monte Car10 simulation for an appropriate lat- 
tice model of this al10y.~ Apparently, SID has also been ob- 
served in a molecular dynamics study of the melting tansi- 
tion in a two-dimensional Lennard-Jones system.4 

SID and SIO are two examples of interface delocalization 
transitions. They are expected to occur at first-order bulk 
transitions with a spontaneously broken symmetry as, e.g,, 
( 1 )  in magnetic materials such as metamagnets; (2) in 
binary alloys; (3) at a Potts-like transition; (4) at the freez- 
ing transition of a crystalline solid. Similar delocalization 
transitions occur in fluids and binary-liquid mixtures at the 
coexistence curve of two ordered phases. In this context, 
they are called wetting and drying  transition^.^-^^ Although 
we discuss only SID and SIO, our results can be translated 

translated into results for wetting by an appropriate identifi- 
cation of scaling  variable^.^^*^' 

We consider a slab or strip geometry of linear dimension 
L. The Ginzburg-Landau free-energy functional for a scalar 
field 4 (  F,z ) has the generic form 

There are two surfaces at z = 0 and z = L. The d - 1 coordi- 
nates parallel to these surfaces are denoted by $. In this 
paper, we discuss (1) with 

The disordered and the ordered bulk phases coexist for 
a = a * =  2b2/9c. Thus, the variable t = (a - a*)/a* mea- 
sures the distance from bulk coexistence. In the Potts 
model, for instance, t is the temperature deviation from the 
transition tern~erature.~, '  The model [(2a) and (2b)I is also 
equivalent to the Landau-Ginzburg model studied in the 
context of wetting. If wetting is described in the magnetic 
language via the equivalence between the lattice gas and the 
Ising model, the variable t corresponds to the bulk magnetic 
field of the Ising rn0de1.l~~ I' 

The type of transition which occurs in the semi-infinite 
system ( L  = w )  as bulk coexistence ( t  =O) is approached 
depends crucially on the values for h 1 and a 1 in (2b). h 1 is 
a symmetry-breaking field at the surface, and a1 is related 
to the ratio of microscopic surface and bulk  coupling^.^ For 
different values of hl and a ~ ,  several types of SID and SIO 
transitions occur as discussed In the follow- 
ing, we focus attention on the critical and tricritical SID 
transition for h 1 = 0 and a1 116;. t d  is the correlation 
length of the disordered phase,I9 and an asterisk indicates 
that this quantity is considered at coexistence. At these 
transitions, various surface quantities obey power laws. We 
concentrate on three such quantities: (1) the local order 
parameter M I  in the surface; (2) the correlation lengthAtll 
for correlations parallel to the surface; (3) the thickness I of 
the disordered layer. For L = m, mean-field (MF) theory 
yields the scaling behavior1*' 
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where t S 0 and h 1 2 0 are the basic scaling fields. 
For finite L < m, the MF equations for the order param- 

eter M ( z )  = ( 4 ( F , z  ) )  are easily derived from (1 ) .  Due to 
the reflection symmetry of the slab with respect to the plane 
z = L / 2 ,  one has the boundary condition d ~ / d z  I z - ~ / 2 =  0. 
We have analyzed the MF equations by inspection of the 
( M ,  d M / d z )  plane, by asymptotic estimates, and by direct 
numerical integration. Here, we present the main results of 
this lengthy and somewhat cumbersome analysis. The 
technical details will be given in a forthcoming paper.?' 

We find that two solutions denoted by m ( z )  and M L ( z )  
have to be compared near the SID transitions. The profile 
m ( z )  is identically zero for hl= 0.  For small hl ,  m ( 2 )  is 
monotonically decreasing for 0 < z < L/2 with m ( z  = 0) 
a h l .  In contrast, the profile M ~ ( Z  is monotonically in- 
creasing for 0 < z < L 12. AFor small h ,, M L ( z  ) has two 
points of inflection at z = 1 and at z = L - I.  For L + m, 
M L ( z )  approaches M m ( z  ) which is the equilibrium state of 
the semi-infinite system for t < 0. 

The most important effect of L finite is a shf t  of the bulk 
coexistence curve from t = 0 to t = t* (L  1. t * ( L )  is deter- 
mined from the coexistence of the two profiles m ( z  ) and 
M L ( z  1, i.e., from 

where is the free energy per volume. Equation ( 6 )  is im- 
plicit for t = t* (L  1. In the limit L / t d +  m, one finds2' 

with Tb = x t ,  22 Tsa h f ,  f b  = At, and fs = u* to leading order 
in t and h l .  U* is the surface tension of a free interface 
between the disordered and the ordered phases in the infin- 
ite system.? With t = t * (L  ), this leads to the shift 

If the MF expressions for 2, A, and u* are inserted, one 
obtains 

for the model [Eqs. (2a) and (2b)l. Thus, t * ( L )  is nega- 
tive at SID. At the SIO transitions, t * ( L )  is positive and 
again proportional to l/L.?' 

For the semi-infinite geometry (L = w ) ,  T s  and fs  are 
the surface free energies for t > 0 and t < 0 ,  respectively. 
For t = h 1 = 0 ,  Ts = 0 and f s  = u* at SID since an interface is 
present for t - -+ 0 -  but not for t -  O+.' Thus, the discon- 
tinuity fs ( t  = 0 -  - fs  ( t  = 0' = u* of the surface free energy 
at bulk coexistence is responsible for the large temperature sh$t 
a l / L .  

For t < t* (L  ), we find in the limit L -+ m, 

where Mb 3 M w  ( z  = m) is the bulk order parameter. Thus, 
the profile M L ( z )  is indistinguishable from M w ( z  for large 
L apart from exponentially small correction terms. For 
t > t * (L  1, however, the equilibrium state is given by m ( z )  

which is identically zero for hl= 0. As a consequence, the 
continuous t dependence found for various surface quantities in 
the semi-infinite geometry becomes weakly discontinuous for 
large but Jnite L. In particular, the quantities discussed 
in Eqs. (3) - (5)  now behave as follows: (1)  The surface 
order parameter M l = M L ( 0 )  decreases continuously for 
t < t '(L 1, but at t* (L  it jumps. For L --+ w and h l  = O ,  
this jump is 

(2 )  The correlation length [ll no longer diverges but has the 
maximum value 

for L --+ CO. (3)  The thickness ?of the disordered layer does 
not diverge either. The maximum value is 

for L -  co and hl=O. 
The results described so far have been obtained in MF 

theory which underestimates the effect of interface fluctua- 
tions. In space dimension d = 2,3, these fluctuations 
change some of the MF surface exponents. In addition, 
they lead to a diverging interface width. However, the MF 
result (8)  for the temperature shift should still hold even in 
the presence of strong interface fluctuations. All that is re- 
quired for (8)  is a nonvanishing surface tension u* for an in- 
terface between the disordered and the ordered phase. This 
implies a discontinuity of the surface free energy at t =O 
and, therefore, a shift proportional to l / L .  Such a shift is 
also found from the exact solution of an king model at zero 
temperature,20 and from a mean-field analysis of the q-state 
Potts model in the ( q  + w )  limit2' which could also be ex- 
act. 

In d = 3, interface fluctuations do not affect the scaling 
dimension of t (Refs. 13 and 18) but only of h1 (Refs. 12', 
13, and 15). For h l  = 0, Eqs. (3)-(5)  still hold with vll= 
and f i l s  1 - A l ,  where A1 depends on the surface tension in 
a nonuniversal manner. Thus, we expect that Eqs. (9)- (1 1) 
hold in this case. As a consequence, the discontinuity of 
M I =  LA" is quite small, and the maximum of t l l a  L1I2 is 
quite large for L 7 m. On the other hand, (11) implies 
that the thickness l a  1nL of the surface layer is very small in 
d = 3 even for a mocroscopic sample with L / t d  = lo8. Note, 
however, that the scaling dimension of t is :hanged in d = 3 
by long-range interactions. For instance, 1- 1 t 1 - ' I 3  should 
hold for wetting transitions in the presence of van der Waals 
interactions.' In this case, the thickness of the surface layer 
has a maximal value a L 'I3. 

In d = 3,  the interface width t L  as obtained from the ef- 
fective field theory of Ref. 13 is eya l ln / t  for L = m  and 
h 1 = 0. For L < w ,  the above considerations lead to a max- 
imum value lln(L Ill2. 

We conclude that the scaling behavior of Ml and 61 ,  
should be accessible both to experimental stud!es and com- 
puter simulations whereas the divergence of 1 and tL  can 
hardly be observed in d = 3. This conclusion is consistent 
with the LEED experiment and with the Monte Car10 
results of Ref. 3,  where the continuous behavior of M l  has 
been seen, This behavior of M I  may also be studied by 
total-reflected x-raysz3 which have already proved to be a 
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valuable surface probe in a different context.24 In addition, 
it should be possible to measure tIl by this technique.'' 

Note that there is also a hysteresis of surface quantities for 
finite L due to the presence of a metastable state M L ( z )  for 

t values with t * (  L ) < t < 0 (e-L1") for L + ~ 0 . ~ '  For this 
metastable state, the maximum value of f in MF is given by 
L/4  instead of InL. Thus, this metastable state will exag- 
gerate the critical behavior at SID and, therefore, will facili- 
tate its observation in Monte Carlo simulations when 
coexistence is approached from t < 0. 

In d = 2, interface fluctuations change the scaling dimen- 
sions of both t and h1.13 However, (3) and (4) still hold 

1 2 with pl - A l =  7 and vl l=  T, whereas (5) is changed to a 
power law, 

In d = 2, the* interface width ey has the same scaling 
behavior as I m .  Thus, we expect that .$IICC L'I~, and 
i= L ' I ~  at t = t a (L)  and hl=O for large but finite L. 
These length scales should be observable in computer simu- 
lations on two-dimensional systems with a first-order bulk 
transition. For SID, one should use free boundary condi- 
tions in the z direction perpendicular to the surface and 
periodic boundary conditions in the lateral directions parallel 
to it. In order to study SIO, one may include symmetry- 
breaking fields at the surface, or one may even use fixed 
boundary conditions in the z direction. Periodic boundary 
conditions in the lateral directions truncate the divergence 
cf t ll  and but are not expect:d to affect the behavior of 
I. Apparently, the length scale I has been observed in the 
computer simulation of Ref. 4 for a Lennard-Jones system. 
Note that the above analysis may also be applicable to this 
case with long-range interactions since such interactions 
should not change the scaling dimension of t for the critical 

transition in d = 2.16 
Could SID also be observed experimentally in d = 2 ?  

Possible candidates are first-order transitions in monolayers 
of noble gases adsorbed on graphite. These two- 
dimensional systems consist of crystallites with a typical size 
L - 1000 Asz6 If such systems undergo a SID transition, 
disordered regions would appear along the boundaries of the 
crystallites. The fluctuations of the interface between these 
disordered regions and the ordered "bulk" give a diffuse 
contribution to x-ray scattering." We find from an effective 
interface model that the peak amplitude of th i~~d i f fuse  
scattering from one crystallite is proportional to (Ll)', and 
its linewidth is given by the inverse correlation length 6:'. 

On the other hand, if such a system undergoes a SIO 
transition, a layer of the ordered phase would appear 
between the boundaries and the disordered bulk in the mid- 
dle. The interface fluctuations again lead to a diffuse 
scattering intensity with a linewidth proportional to 
l/tLa l / l a  t1I3 with t > 0 in this case. Such a behavior may 
have been observed already in an x-ray scattering experi- 
ment for the freezing transition of Xe on graphitee2' In this 
experiment, a correlation length cc t-0,28 has been measured 
which should be compared to El= t-'I3. So far, these corre- 
lations have been interpreted either as evidence for a con- 
tinuous bulk transition,27 or as an effect due to the ex- 
change of particles from the first to the second adsorption 
layer at a discontinuous bulk transit i~n.~'  SIO may provide 
an alternative explanation for these correlations if the bulk 
transition is discontinuous. The critical effects of SIO occur 
if the microscopic interaction parameters along the one- 
dimensional boundaries or edges are such that Xe starts to 
freeze at these edges. 

We thank H. Wagner and D. M. Kroll for helpful and 
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