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Interface delocalization or depinning transitions such as wetting or surface induced 
disorder are considered. At these transitions, the correlation length ~11 for transverse 
correlations parallel to the surface diverges. These correlations are studied in the 
framework of Landau theory. It is shown that ~lloc]tl-~/2 at all types of transitions for 
systems with short-range forces where t measures the distance from bulk coexistence. 

1. Introduction 

At a first-order phase transition, several thermody- 
namic bulk phases coexist. Recently, it has been 
realized that a surface can induce critical effects at 
such transitions [-1-3]. These effects are due to the 
interplay of the surface with an interface which sep- 
arates two (almost) coexisting phases (see Fig. 1). 
The interface may delocalize or depin from the sur- 
face in a continuous way i.e. its distance Z from the 
surface may diverge. As Z goes to infinity, long-range 
correlations build up parallel to the surface which 
are characterized by the diverging correlation length 

II (see Fig. 1). 
Such depinning transitions have first been studied 
near the coexistence curve of a liquid and a gas. In 
this context, they are known as wetting or drying 
[2]. If a symmetry is broken at the first-order bulk 
transition, a disordered phase and several ordered 
phases can be distinguished. In this case, the de- 

PHASE I PHASE 2 

Iftl _ x.- - J  

Fig. 1. The interface separates phase 1 near the surface from 
phase 2 in the bulk. Both 2 and ~ll diverge at the various de- 
pinning transitions. Note that ~ll and 2 have not been drawn to 
scale: ~11 diverges more strongly than 2 

pinning transitions have been called surface induced 
order and disorder (SIO and SID) [3]. 
The critical behaviour near the surface can be char- 
acterized by surface critical exponents. These ex- 
ponents are related by scaling laws. The number of 
independent surface exponents leads to a classifi- 
cation of surface criticality. In the simplest case, 
there is only one such exponent. I will refer to this 
case as protocritical depinning. (The expression 'pro- 
tocritical' has been used before in a different context 
namely in order to denote the bulk critical be- 
haviour of the Yang-Lee-edge singularity [4].) For 
the coexistence of a gas and a liquid, the protocriti- 
cal transition is usually called complete wetting. 
From an experimental point of view, this type of 
surface criticality is the most important one since it 
can occur for the widest range of microscopic sur- 
face couplings. 
In the following, the behaviour of the correlation 
length ill (see Fig. 1) is systematically studied in the 
framework of Landau theory. In this paper, only 
short-range surface fields will be considered. How- 
ever, at all types of depinning transitions, longrange 
surface fields are a relevant perturbation which can 
be characterized by another independent surface ex- 
ponent. This will be shown in the subsequent pa- 
per. 
The results described below should be applicable to 
the coexistence of two liquids or of a liquid with a 
gas. If the coexisting phases have an underlying lat- 
tice structure, this can be a relevant perturbation 
which truncates the divergence of 411. Such effects 
are not included here. 
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This paper is organized as follows. Section 2 and 
Appendix A contain a review of previous definitions 
and results which are used in the rest of the paper. 
In Sect. 3, the eigenvalue problem related to the 
Gaussian fluctuations is derived. These fluctuations 
contain a soft mode (Sect. 4). The soft mode energy 
E0=(~ll )-2 is determined in Sect. 4.1 for the critical 
and multicritical depinning transitions, and in 
Sect. 4.2 for the protocritical (or complete) transition. 
Finally, the singular part of the mean-field corre- 
lation function is discussed in Sect. 5 and 
Appendix B. In particular, it is shown that Landau 
theory already predicts a diverging interface width 
~ for d <3. Some of the results have been reported 
in E3, 5]. 
For the protocritical (or complete) case, long-range 
correlations have been predicted previously from the 
van der Waals theory for fluids [6, 7]. However, the 
singular behaviour of ~11 which is determined below 
has not been obtained before. Apart from Ref. 5, 
previous work [8-11] on the critical transition has 
been restricted to the behaviour of ~11 at coexistence. 
In contrast, I will emphasize the approach to coexis- 
tence which is governed by a different surface criti- 
cal exponent. 

2. Landau-Ginzburg Models 
for First-Order Phase Transitions 

The Landau-Ginzburg (LG) models studied in this 
paper are of the generic form El, 3] 

oo 

F{~b} = (A*) 2 S dd-aP f dz [{(V(b) 2 +f((b)+ 5(z)fa (q~)] 
o (1) 

for the scalar order parameter field A~b. 4) is di- 
mensionless, and A* is the order parameter amplitude 
of the ordered bulk phase at coexistence. In (1), z 
denotes the coordinate perpendicular to the surface 
at z = 0, and p are the (d -1)  coordinates parallel to 
it. The bulk potential f(~b) is [3] 

f(~b) = (r 2 �89 [1 + t-2qSP+ q5 zp] (2) 

~* is the correlation length of the disordered bulk 
~ d  

phase at coexistence. Both A* and ~* d are input 
parameters for the above model, and have to be 
taken from experiments, computer simulations, or 
microscopic theories. The dimensionless variable t in 
(2) measures the distance from bulk coexistence. If a 
quantity is considered at coexistence (t=0), this is 
indicated by a star (*). 
The surface term fa(~b) in (1) is taken to be 

fl(q~) = - h  a ~b +�89 x q5 2 - (2  +p) 1 b t ~b 2+p 

+(2 + 2p)-1 ca q~2+ 2p (3) 

h a is a symmetry breaking field at the surface, and 
a a is related to the ratio of surface to bulk cou- 
plings. Note that all surface parameters ha, a~, b~, 
and c a have the dimension of an inverse length since 
4) is dimensionless. 
The type of transition which occurs in the semi- 
infinite system as bulk coexistence (t=0) is ap- 
proached depends crucially on the values of the 
Landau parameters in (3). The phase diagram for t 
=0  and b I = c 1 =0  as obtained in Landau theory is 
displayed in Fig. 2 [3]. A superscript ( - )  indicates a 
surface induced disorder (SID) transition which oc- 
curs for t - , 0 - .  A (+)  indicates surface induced or- 
der (SIO) which occurs for t-*0 +. The protocritical, 
critical, and tricritical transitions are denoted by 
(P+), (C+), and (T -+) respectively. The (hl, a O- 
coordinates for the various transitions are given in 
[3]. 
The order parameter profiles M(z):=<qS) are dis- 
played in Fig. 3a, b E3]. Note that all profiles have a 
point of inflection at z =." ~ ~ is implicitly defined by 
M ( z = 2 ) = ~ r  with /~r from (A.3). At (P-+), (C-+), and 
(T-+), the length scale 2 diverges. At the protocritical 
transitions (P+-), Landau theory yields 

Z= ~' ln(1/Itl) (4) 

with ~'=~*d at (P+) and ~*=~* at (P+). At the 
critical and tricritical transitions (C -+) and (T-+), one 
finds 

2=  ~* ln(1/~SMa) (5) 

with 6 M I = M  1 at SID and 3 M I = I - M  a at SIO. At 
(C +-) and (T+-), 5M 1 goes continuously to zero as 
discussed in Appendix A. The different SID and SIO 
transitions are distinguished by their number of rele- 
vant scaling fields. At (P+), t is the only relevant 
field. In contrast, there are two and three such fields 
at (C +) and (T -+) respectively. For bl, cl ~=0, a mul- 
ticritical SID transition (Q-) occurs with four rele- 
vant scaling fields (see Appendix A). 

hl \\\ 

(P+) (C*) 

((D:) I 

Fig .  2. Phase boundaries inside the bulk coexistence surface (t = 0). 
SID and SIO transitions are indicated by ( - )  and (+)  since they 
occur as the coexistence surface is approached from t < 0  and 
t > 0, respectively [3] 
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F i g .  3 a  a n d  b. Order parameter profiles M(z): a at the SID 
transitions (P-), (C-), and (T-); b at the SIO transitions (P+), 
(C+), and (T+). The interface position is denoted by z = {  in each 
case [3] 

For p = 1, the model (1)-(3) is equivalent to the LG- 
model discussed in the context of wetting. The bulk 
variable t is equivalent to the deviation 6# of the 
bulk chemical potential from its value at coexistence 
[12]. The SIO (and SID) transitions (P), (C), and (T) 
in Fig. 1 correspond to complete, critical and tricriti- 
cal wetting (and drying). 

3. G a u s s i a n  F l u c t u a t i o n s  

Within Landau theory, the correlation function can 
be expressed by the normal modes of the Gaussian 
fluctuations (see Sect. 5). These fluctuations are ob- 
tained if 

(p, z) = M(z)  + ~ (p, z) (6) 

with the Landau profile M(z) is inserted into (1), and 
the resulting functional is expanded up to second 
order in t/. In terms of the Fourier components 

t /(k,  z ) : =  fdd-tpd-ikptl(p,  Z) (7) 

one obtains 

1 d k - l k  ~dz~l ,(k,z)~)t l(k ,z)  F { ~ }  = F{M} +~ [. (2~) " - '  o 

+ o ( ~  3) (8) 

with the differential operator 

~3 = k Z + fD+ 5(z) ID 1 (9.a) 

ID = - d 2 / d z  2 + f " (M(z ) )  (9.b) 

Is 1 = - d/dz + f;'(M(z)). (9.c) 

A prime indicates a derivative with respect to q~. In 
order to determine the normal modes, one has to 
solve the eigenvalue problem [5] 

ID g,(z) = E, g,(z) (lO.a) 

with the boundary condition 

g ) l  g.(z) l== 0 = 0 (t0.b) 

(10) is a Schr6dinger-type equation for the 1-dimen- 
sional motion of a quantum-mechanical particle 
with the potential 

Q (z), = f "  (M (z)) = ~I (z)/f/l (z) (11) 

Q(z) 

i 

Ol.z) " 

z 

Zo I t -_  
U 

Fig. 4a and b. Schematic shape of the potential Q(z) in the limit 
I t l~0 for model (2) with p=2 :  a critical and multicritical SID; b 
protocritical SIO 
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where a dot indicates a derivative with respect to z. 
The potential Q(z) is displayed in Fig. 4a, b for small 
values of [tl. Figure 4a shows the schematic form of 
Q(z) for the critical and multicritical SID transitions. 
There is a potential well at z = ~  The width of this 
well is ~-~ which is finite for t ~ 0 - .  In this limit, 
one finds 

1 z = 0  
((~)ZQ(z),,,, -p2/(1 +p) z = 2  (12) 

p2 Z=OO. 

In Fig. 4b, the potential Q(z) for the protocritical 
SIO transition (P+) is shown. In this case, the width 
of the well is -~o .  For t ~ 0  +, 

1 Z : Z  o 

(~)2Q(z),,~ -1/(1 +p) z = ?  (13) 

1/1) a Z = oo  

where z o is implicitly defined by M(z= Zo)= M o (the 
lower index 0 means 'ordered'). M o as given by (A.2) 
is the order parameter of the ordered phase which is 
metastable for t > 0. 

4. Soft Mode 

If the surface were not present,, the ground state 
go(Z) would be proportional to M(z) and its energy 
E o would be equal to zero [13, 14]. Thus, the differ- 
ential operator (10a) would possess a zero mode 
which restores the translational symmetry broken by 
M(z). The presence of the surface enters through the 
boundary condition (10b) which lifts the energy E 0 
to a positive value. However, E o goes continuously 
to zero as the various transitions are approached. 
Thus, go(z) is a soft mode. Th e asymptotic behaviour 
of E o is derived below by means of upper and lower 
bounds for the critical and multicritical SID tran- 
sitions (Sect. 4.1), and for the protocritical SIO tran- 
sitions (Sect. 4.2). The same methods may be applied 
to all other cases. 

4.1. Critical and Muhicritical Transition 

From Fig. 3a, one expects that the bound state go(Z) 
has a maximum at z ~-2 and vanishes exponentially 
for large values of I z - ~ .  The function f/l(z)=dM/dz 
has these features. However, ~/(z) does not fulfill the 
boundary condition (10b). Thus, it can not be used 
directly in a variational procedure. On the other 
hand, the trial function 

O(z), = A e -~/~ + f4(z) (14) 

with 

A:= [f'(M1) - f~ ' (M 0 f~(MO]/Ef~'(MO + 1/~d*] (15) 

does fulfill the boundary condition (a prime in- 
dicates a derivative with respect to ~). At the critical 
and multicritical SID transitions, ~(z)~f4(z) since 
A ~ 0. The asymptotic behaviour of A is 

[ (1 /~  -a l )  M 1 (C-) 
A ~ � 8 9  +1 (T-) (16) 

[-(p+l)ctM2a p+a (Q-) 

for h i=0 .  For h l ~ 0  +, A contains the additional 
term a~ h~/(a 1 + 1/4") at all three types of transitions. 
The asymptotic behaviour of Ma as a function of the 
scaling fields is given in Appendix A. 
An upper bound E~ for E 0 is obtained from the 
minimax principle. For the trial function (14), one 
has 

E o < E ~ :  =(~,  ]I3~)/(~9, ~9). (17) 

At critical and multicritical SID, the expectation 
values in (17) have the limiting behaviour 

(~, ID~)~A. '=  -A[ f ' (MO+f~(MO/~]  (18) 

(~, ~ )~  a* , = ( ~*) - ~ p/(2p + 4) (19) 

((A~) 2 o-* is the surface tension of an interface in the 
infinite system.) Thus, the upper bound (17) has the 
leading behaviour 

G ~A/,~*. (20) 

A lower bound E~ can be obtained via Temple's 
inequality [15]. If Eo.'=(~ , ID0 / (~ ,0<A < E ~ - E  o 
holds for some number d where E 1 - E  o is the gap 
between the ground state energy and the energy of 
the first excited state, a lower bound for E o is 

~ :  =Eo -[(~, ~3~ 0/(~, ~) - ~ ] I [ A  -Eo]  (25) 

for any trial function ~. Since the width of the poten- 
tial well of Q(z) stays finite at the transitions (see 
Fig. 4a, b), E 1 - E  o stays also finite. If ( = ~  is cho- 
sen, /~o=E~ goes to zero. Thus, the existence of 
A > 0 is guaranteed for this choice. 
It can be shown that (~, ] 0  2 I~t) is of higher order in 
M~ than E~. This implies that E~ ~ E ~  at the criti- 
cal and multicritical SID transitions. Thus, 

Eo ~ E ~ =.4/a* (26) 

with .4 given by (18). If the limiting behaviour of M~ 
as given in Appendix A is used in (26), one finds 

Eo ~ [Z(p)~2 ] -2 Itl (27) 
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for t ~ 0 -  with 

[ [p/(2p + 4)31/2 

Z(p) =~ p~/2/(p -I- 2) 
( p 1/2/[(2p + 4) (p + 1)] 1/2 

and 
[h2~ (C-) 

Eooc]hl  v+2)Rp+I) ( T - )  
(h ]  2p+2)/(2p+l) ( Q - )  

for t = 0  and h ~ 0  +. 

(C-) 
(T- )  

(O-) 

(27.a) 

(28) 

4.2. Protocritical Transition 

In this case, the trial function (14) is not useful since 
~ M  a does not vanish at the protocritical transition 
(P+). From Fig. 3b, it is obvious that -/~r(z) has a 
maximum a t  z = 2  and a minimum at z = z  o with 
M ( z o ) = M  o. Thus, the ground state go(Z) will re- 
semble - M ( z )  only for z > z  o. This motivates the 
Ansatz 

7 (z): = ---~/(ze) e -  ~ ( ~ -  z) 0 (ze --  z) 

- M(z) O(z - z~) (29) 

with 

z~,=Zo+e, e>0 .  (30) 

Note that 

7(Ze) = -- m(ze )  oct 1/2 (31) 

since 

M(zo ) = _ [2f(Mo)] 1/2 ...4. __  t 1 / 2 / ~ d #  (32.a) 

and 

/~/(z~) = ]~/(Zo) cosh(e/{o) + O(t). (32.b) 

The parameter 

~, = f/l (z~)/M(z~) (33) 

which has the limiting behaviour 

--" (4")-1 ~: = ( ~ ) -1  tanh(e/~*) (33.a) 

ensures that both 7(z) and 9 (z) are continuous at z 
= z  c The parameter e > 0  can be chosen in such a 
way that the same trial function yields both an up- 
per and a lower bound for E 0. Such a trial function 
which satisfies the boundary condition (10.b) at z = 0  
is given by 

~9(z) = A e -z/C~ + 7(z) (34) 

with 

A = e . . . .  [f;'(M~) )~/(z,) -- M ( z , ) ] / [ f " (M 0 + 1/4"3. (35) 

At (P+), 

A oct(l +~)/2 (35.a) 

with ~ > 0  from (33.a). I now proceed in the same 
way as in Sect. 4.1. An upper bound for E o is given 
by 

E~ = 0P, IDa)/(0, 0) (36) 

with ~ defined by (34). The asymptotic behaviour of 
these expectation values is found to be 

(~, IfS) ~p) -~ (1 - ~2) ~/2 (z~)/(2 ~ ~ ~) (37.a) 

(~, ~9) ~ a* (37.b) 

with a* as in (19). Since ~/l(z~)oct 1/2 from (32.b), (36) 
leads to 

E~ oct (38) 

at (P+). 
A lower bound E~ can again be obtained via 
Temple's inequality (25) where the trial function 
defined by (34) is inserted. From (37.a.b) and 

(~, ID2 O)-~ (1 - ~2)2  j~,/2 (Zs)/( 2 ~ r 3) 

one finds 

E~ ~ [1 - g2 _ (1 - ~2)2/zl] ~/2 (z~)/(2 ~ {~) (39) 

where zl.'=({*)2A is the dimensionless gap. The 
bound (39) is useful if it is positive i.e. if 

1 - ~2 = 1 - tanh 2 (e/i*) < 3. (40) 

Since all estimates used so far in this section are 
valid for arbitrary e, one can always find an s for 
any z l>0  such that (40) is fulfilled. For  such a 
choice, 

E~ oc + t (41) 

(41) and (38) imply that the soft mode energy van- 
ishes as 

E o oct (42) 

at the protocritical transition (P+). 
It is worth noting that the estimates used in this 
section depend only on two rather general features 
of the bulk potential f(qS), namely on 1, the property 
that the local minima off(qS) have finite curvature i.e. 
that ~ '  and ~ are finite; and on 2. the fact that 
f ( M o ) - - f ( M d )  oct which implies (32). Thus, (42) holds 
for any bulk potential f(~b) with these features. 
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5. Correlations in Landau Theory 

Due to the translational and rotational invariance 
parallel to the surface, the correlation function C of 
the order parameter field depends only on P:=IP 
-0[" 

with 

fi: = (P 2 + a 2) t/2 (50.a) 

where 1/a is a high-momentum cutoff for the con- 
tinuum model. The integral (50) can be evaluated in 
closed form: 

c(p, z z')= <4(p, z) q~(0, z')L 
= <ri(p, z) ri(0, z')>. (43) 

Its Fourier transform with respect to p is 

C(k, z z') = j" d a-1 p e - ik '~  C(p, z z'). (44) 

Within Landau theory, C(K, z z') is the Green's func- 
tion of the differential operator (9.a) i.e. 

[k 2 - d2/dz 2 + Q(z)] C(k, z z') = 6(z - z'). (45) 

Coo(O) = ~3-,  r (~/~ it) (51) 

with 

I1: = Eo 1/2 (52) 

f2 (x) ". = (272) (t -a)/2 x(a- 3)/2 KIa_ 31/z(X ) (53) 

K~(x) is a modified Bessel function [17]. The cor- 
relation function Coo(P) has an intuitive physical 
meaning which can be understood as follows. First, 
rewrite the order parameter field as 

For k =0, the solution of (45) can be found in dosed 
form [16, App. B] : 

~(z z'):= C(k =0, zz') 

= )V/(z) .A~/(z') [1//3 + V(Zain) ] (46) 

with 

Zmi.: = rain (z, z') (47.a) 

/3: = f [ ( M  0 [f~'(M 0 f~(M~) - f ' ( M t )  ] (47.b) 

v(z) : = i dx [~/(x)] - 2 (47.c) 
o 

The dependence of Z(zz') on t is discussed in 
Appendix B. 
For k>0,  the correlation function (44) may be ex- 
pressed in terms of the eigenmodes g,(z) and the 
corresponding eigenvalues E, of the differential oper- 
ator (10.a): 

g,(z) g*(z') 
C(k, z z ' ) = ~  k 2 + E ,  " (48) 

The singular part of the correlation function due to 
the soft mode is 

C(k, zz ')= Coo(k)go(Z)go(Z' ) (49.a) 

with 

Coo(k) ___ (k 2 + Eo )-  1 

= ~ dz ~ dz, go(z) go (z') C(k, zz'). (49.b) 
0 0 

The inverse Fourier-transform leads to 

dd-l k eik.x . X 2 = / ~ 2  

Coo(p) = ~ ( ~  -k2 + Eo (50) 

r z)=M(z)+ :~ ri.(p) g.(z) 
n 

= M(z) + tlo(p) go (z) + . . . .  (54) 

Near the various transitions, 

go(Z)~- M (z)/1/U (ss) 

for finite values of [2-zl  (see Sect. 4). Thus, the 
fluctuations rio(P) may be rewritten as 

dp(p, z) ~- M (z) + rio(P) i~l (z ) /] , /~  

~-M(z -~(p))  (56) 

with ~ (p ) . '= -%(p) / ] , /~  to lowest order in rio- (56) 
describes an order parameter profile with the local 
(i.e. p-dependent) interface position 

~(p) = / +  ~(p). (57) 

As a consequence, 

Coo(p) = <rio(p) rio(0)> - <E(p) ~(0)>c (5s) 

i.e. Coo(P ) contains the fluctuations of the interface 
position, and ~11 is the correlation length for these 
fluctuations. 
The asymptotic behaviour of the correlation length 
can be obtained from the results of Sects. 4.1 and 
4.2. At the critical and multicritical SID transitions, 
(27), (28), and (52) imply 

v ,  ~N ~qa Z(p)ltl -v'', v N = 1/2 (59) 

for t ~ O -  and hi=O, and 

[hi-' (C-) 
~IL ~ (t'+z)/(2p+z) (T - )  (60) 

[hi  -(~+'/(2p+" ((2-) 



R. Lipowsky: Long-Range Correlations at Depinning Transitions. I 341 

for t = 0  and h i - + 0  +. At the protocritical SIO tran- 
sition, (41) and (52) yield 

411 ~ -~", vii = 1/2. (61) 

In the context of wetting (p = 1), t corresponds to the 
deviation fi# of the bulk chemical potential from its 
value at coexistence whereas ht corresponds to the 
temperature deviation IT-rwl from the wetting tem- 
perature T w [12]. Thus, 

411 ~ -1/2 (62) 

at complete, critical, and multicritical wetting. For 
6#=0 ,  

4 n o c I T -  T,,I - ~ (63) 

at critical wetting, and 

411 ~ (64) 

at tricritical wetting. (63) has also been obtained in 
[11] by a different method. 
It has been realized before by numerical investi- 
gations of the van der Waals theory for fluids that ~11 
diverges at complete wetting [6, 7]. However, the 
nature of this divergence has not been determined. 
In Fig. 11 of [7], ~11 as obtained from the numerical 
work was plotted as a function of ln(@). Pre- 
sumably, this was motivated by the logarithmic di- 
vergence of L However, this plot clearly shows that 
~11 does not diverge logarithmically. On the other 
hand, if one takes these numerical data and plots 
In(411) as a function of ln(fi#), one finds a straight 
line with a slope - - - -  1/2. Thus, the numerical in- 
vestigations of the van der Waals theory yield v = 1/2 
in accordance with (62). 
The behaviour of Coo(P ) as a function of p naturally 
divides into two regimes: p~411 and P ' ~ I I '  For 
P>>~LI, (51)-(53)imply 

Coo(p)oc pl--d/2 e-p/r (65) 

for all values of d. For p ~ 4 II, 

It33-a d > 3  
Coo(p)o   d : 3  

[~H- d < 3  
(66) 

with / 5 = ] / p 2 + a  2. Thus, Coo(0) which is related to 
the interfacial width <~~ according to (58) diverges 
for d < 3. If one defines a perpendicular correlation 
length 

one obtains from (ff2)c~---C00(0 ) and (66) the scaling 
relation 

v• =�89 - d )  vii (68) 

for d < 3  as reported in [18] (note that the formula 
on p. 170 of [18] contains a misprint: d - 3  should 
be replaced by 3 -d) .  The scaling relation (68) is also 
fulfilled in SOS-models for the interface fluctuations. 
Thus, continuous mean-field theory predicts that 
the interface becomes rough as it delocalizes for 
d<3.  This should be correct if the temperature is 
above the roughening temperature T R for the in- 
terface between the two coexisting phases [2]. For 
T<TR,  one has to include the effects due to the 
underlying lattice which should confine the interface 
fluctuations. 
Finally, one should note that the singular part 
C(p, zz') as given by (49) depends on the scaling 
fields not only through ~11 but also through the 
factors go(z)go(Z'). This dependence may be obtained 
from the asymptotic equality 

t __). ! Z(z z ) go(Z) go(z )/Eo. (69) 

Consider for instance, the scaling field t. The t- 
dependence of Z(zz') and of E o is given in 
Appendix B and by (27), (42), respectively. If this is 
used in (69), one obtains 

go(Z) OC It1.1 (70) 

with the surface exponent 

1 (P) (70.a) 
01= fil (C),(T),(Q) 

for fixed z ~  at the critical and multicritical tran- 
sitions, and for fixed z ~ z  o at the protocritical tran- 
sition. 

I thank D.M. Kroll, H. Spohn, H. Wagner, and R.K.P. Zia for 
helpful comments. A critical reading of the manuscript by H. 
Wagner is also gratefully acknowledged. 

Appendix A 

Here, the bulk and surface order parameters for 
model (1)-(3) as obtained from Landau theory are 
discussed. The bulk order parameter follows from 
0f/8~b[Mb=0. It is 

M b = {  Md-0Mo>0 t<0t>0 (A.1) 

~• ~ l ~ o c l t l  -~• (67) with 
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M~ 1 / v 2 ( 1  +p) (A.2) 

The subscript d and 0 means "disordered" and "or- 
dered" respectively. For t ~ 0 - ,  one has 

M o ~ 1 - t i p  2 (A.2a) 

(note that the amplitude A~ has been extracted, 
compare (1)). In the vicinity of t=0 ,  f(qS) has local 
minima both at qS=M d and at qS=M o. The local 
maximum in between occurs at q5 = ~Q with 

M̂  f2+P- l / /pZ-4( l+p) t }  1/p 
(A.3) 

The local surface order parameter M 1 - M ( z = 0 )  de- 
rives from 

f~(M1) = s ]//2f(M1) - 2f(Mb) (A.4) 

with s = + 1 for M a ~ M b. 

A prime indicates a derivative with respect to ~b. At 
the critical and multicritical transitions, the quantity 

M a SID (A.5) 
6M1 " = 1 - M  SIO 

goes continuously to zero. 
First, consider model (1)-(3) with bl=c a =0. In this 
case, one finds critical and tricritical transitions as 
shown in Fig. 1. At (C-+), two scaling fields are rele- 
vant, namely ]tl and 

hi (C-)  (A.6) 
3h l :=  a t - h  i (C+). 

In terms of these fields, 6M~ has the scaling form 

cSM a = Itl a~ K2r tl-A~ ,Sh0 ' (A.7) 

In Landau theory, /~l=A~= 1/2 both at (C-) and at 
(C+). At the tricritical transitions (T-+), one has 
three relevant scaling fields, namely It[, 3hl, and 

f l / r  - a  1 (T-) 
a i : = l l / r  ~ - a  a (T+). 

At (T-+), 

(A.8) 

6M1 = [tf ~ Q,(ltl-a~ bhl, It[-~ 6a0. (A.9) 

Landau theory yields fil=l/(p+2), Aa=(p+l)/(p 
+2), and 4a=p/(p+2)  at (T-), and fla= 1/3, A~ =2/3, 
and ~b,= 1/3 at (T-). 
For b l, c~ +0, a higher-order multicritical SID tran- 
sition (Q-) is found. (Q-) occurs for (hl,at, bl) 
=(0,1/r 1/~*) and positive c a (for odd p, c l > 0  is 

sufficient. For even p, c I has to be larger than some 
positive constant in order to avoid solutions of (A.4) 
with M a <0). (Q-) is the endpoint of a line of ( r - )  
transitions (see Fig. 1 in Ref. 18 where (T-) and (Q-) 
have been denoted by ~-and ~p respectively). 
At (Q-), one has four relevant scaling fields: It1, /5hl 
=h 1, 6a 1 and 

bbl:= b 1 - 1/r (A.IO) 

As a consequence, bM a = M a has the scaling form 

M~=ltla~Oq(It[-'~lha, [tl-Oofa~, [t[-*o ~3bt) (A.11) 

with ~a=l/(2p+2), Aa=(2p+l)/(2p+2), ~a=2p/(2p 
+ 2), and ~b b = p/(2p + 2) in Landau theory. 

Appendix B 

In this appendix, the asymptotic behaviour of X(zz') 
as given by (46) is studied for different values of z, z'. 
Only the dependence on the scaling field t is ex- 
plicitly discussed. The dependence on the other scal- 
ing fields may be easily obtained by the same meth- 
ods. 
First, consider critical and multicritical SID. In or- 
der to determine the asymptotics of Z, we need the 
asymptotics of ~/(z),/~, and v(z). The last function is 
given by 

v(z) = i a x  [ M ( x ) ] - 2  
0 
M(z) 

= ~ dm[2f(m)-2f(Mb)] -3/2 
Mt 

at SID with 

(B.1) 

_ 2f(Mb) _~ (~ff)- 2 I tl 

for t ~ 0  . For fixed z ~  one has 

(B.2) 

M(z) ~ M i cosh(z/~*) 

+ ( - h  1 + a a Ma) r sinh(z/~). (B.3) 

As discussed in Appendix A, 

M 1 oc Itf  ~ (B.4) 

with /~a=1/2, 1/(p+2), and 1/(2p+2) at (C-), (T-), 
and (Q-) respectively. If (B.2)-(B.4) is used in (B.1), 
one finds 

v(z )~ l t l  -~ (B.4) 

at (C-) and v(z)~o(1/It[) at (T-), (O-) for fixed 
z ~  For z = 2  and M(2)=~Q from (A.3), one ob- 
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ta ins  

v (2 )  --> (r ( ~  - 1/al) I tl -x (B.6) 

a t  ( C - )  a n d  v(2)~o(1/[tl) at  ( T - ) ,  (Q-) .  The  asymp-  
to t ic  behav iou r  o f / 7  which has been defined in (47.b) 
is given by  

[Itt ( C - )  

(~*)2B/a , - -* l~- l t l  (T-)  

[ ( p +  1)Itl (Q- )  

(B.7) 

wi th  a 1 = 1/3" at ( T - )  and  ((2-). F inal ly ,  one needs 

the a sympto t i c s  of/V/(z) which is 

and  v(z),,, O(1) for fixed z ~ z  o. S i n c e / 7  is regula r  at  

(P+), 

Z(22 ) --+ 71;/2 (2) 2 (r t-1 (B.13.a) 
P 

Z(Zo 2) -+ I(ll (zo) 7(4(2) V(Zo) oo t -  i/2 (B. 13.b) 

)~(Z 0 ZO) ---} J~2 (Zo) /J(Zo) ~- O(1) (B.13.c) 

Z (Z Zo) OC J~(Zo) OCt 112 (B. 13.d) 

and  Z(zz)~O(1) for fixed z ~ z  o. 
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