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Semi-infinite systems are considered with long-range surface fields ocBz -(l+r) for large 
distances z from the surface. The influence of such fields on the global phase diagram 
and on the critical singularities of depinning transitions is studied within Landau 
theory. For IBIs0,  the correlation length 411 diverges as ~llocb-a/z with b 
= [BI [ln[B[I -(I+"). For finite B, ill ocltl -v'' with vii =(2+r)/(2+2r) where t measures the 
distance from bulk coexistence, In the latter case, a Ginzburg criterion leads to the 
upper critical dimension d* = (2 + 3 r)/(2 + r). 

1. Introduction 2. A Simplified Landau-Ginzburg Model 

In the preceding paper [1], the behaviour of the 
correlation length has been discussed for systems 
with short-range surface fields. In the work de- 
scribed below, long-range fields are studied which 
decay as z -(~+r) for large distances z from the sur- 
face. It is shown that these fields are a relevant 
perturbation at all transitions studied in [1]. In ad- 
dition, the critical behaviour in the presence of long- 
range fields is found to depend on the "decay-ex- 
ponent"  r in a continuous fashion. Although this 
result is obtained within Landau theory, it should be 
valid for space dimension d = 3  since the upper criti- 
cal dimension is shown to be smaller than 3 for 
r < o o .  

The paper is organized as follows. In Sect. 2, a sim- 
plified Landau-Ginzburg model is motivated and de- 
fined. In this simplified model, the behaviour of the 
soft mode can be easily studied (Sect. 3). In Sect. 4 
and Sect. 5, the global phase diagram and the criti- 
cal behaviour along the various depinning tran- 
sitions is discussed. The surface free energy is shown 
to have the form of an effective potential for the 
interface coordinate (Sect. 6). The Ginzburg criterion 
used in [2] for short-range forces is extended to the 
present case (Sect. 7). Finally, the results of Landau 
theory are summarized, and the changes of the 
phase diagram in d = 2 are briefly discussed (Sect. 8). 

In the presence of a long-range surface field u(z), the 
Landau-Ginzburg (LG) model has the form 

oo 

F {4} = ~d d-1P ~ dz [�89 4) 2 + f ( 4 )  
0 

- u (z) 4 + ~ (z)L (4)]- (i) 

The surface field u(z) should not affect bulk quan- 
tities which implies that u(z)~O for z-~ oo. In order 
to obtain the usual expansion of the total free en- 
ergy in terms of a bulk and a surface part, u(z) must 
decay as (see Sect. 6) 

u(z) oc z (~+r~, r > 0 .  (2) 

The surface term f1(4) is taken to be 

fx(4) = --hlr189 2 (3) 

as in [1]. Thus, a short-range surface field h 1 is 
included in addition to the long-range field u(z). 
If the bulk term f(~b) is taken to be of the same 
form as in [1], the mean-field (MF) equation for the 
order parameter profile M(z) is difficult to handle 
for u(z)#O. The solution of this equation is greatly 
simplified, however, if one approximates the smooth 
double well of f ( 4 )  (see Eq. (2) of El]) by two 
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parabolic pieces. The parabolic approximation for 
f(q~) which is investigated below has the form 

f(qS) = �89 -2 {46 20 (M - qS) 

+ [(1 - 4)) 2 + t ]O (4 - /~ )}  (4) 

with 

A~: = (1 + 0/2 (4.a) 

4" is the correlation length of the coexisting phases, 
and t measures the distance from coexistence. Para- 
bolic approximations similar to (4) have been used 
before in a different context [3, 4]. They have also 
been studied for systems with long-range interac- 
tions by D.M. Kroll [5] and by V. Privman [6] 
independently from the work described here. 
The MF equation follows as usually from cSF/5 (a[~t(~) 
=0. It is convenient to introduce the dimensionless 
coordinate z/4* which I denote by z again. This 
implies 

- M + M = - ) (4.)2 
b/(4* Z) (5.a) 

I1 + (~,)2 u(4* z) (5.b) 

which has to be solved with the boundary con- 
ditions 

1~/1~: o = - 4" hi + ~* a~ M~ (6.a) 

M(z = oo)= M b (6.b) 

MI:=M(z=O ) and M b are the surface and bulk 
order parameter, respectively. A dot indicates a de- 
rivative with respect to z. In order to simplify the 
formulas, I will put 4* =- 1. 

3. Soft Mode  of  Gaussian Fluctuations 

The potential Q(z) for the Gaussian fluctuations (see 
Eq. (9) and Eq. (11) of [1]) is particularly simple for 
the LG-potential (4) since 

f"(q~)= 1 -  5(~b- ~r) 

in this case. This implies 

Q (z) = f "  (M(z)) = 1 - 6 (M (z) - 2~) 

= 1 - f  M(2)I -~ ,$(z-2) (7) 

where ~ r = M ( z = 2 )  has been used. 2 is the MF 
position of the interface between the two (almost) 
coexisting phases (compare [1]). Thus, apart from a 
constant, Q(z) is just a 6-function well. As a con- 
sequence, the soft mode go(Z) satisfies the 
SchrSdinger-type equation 

[-d--~+ l-l~/I(2)l-~ 6(z-2) l  go(Z)--Eogo(z) (8.a) 

with the boundary condition 

dJzg o(z) = (0) (8.b) a l go 
0 

(compare Eq. (10) of [1]). An elementary matching 
procedure at z = 2 yields 

1 J ' [2Wl~/(2)l-  1] eW(i-z)+ e w(=-e), 
g0(z) =N[ZWi~;t(2)I e w(i ~), 

z<2 
z>2 

(9) 
with a normalization constant N and 

W:=(1 -Eo) 1/2. (10) 

If the expression (9) is inserted into the boundary 
condition (8.b), one obtains the following implicit 
equation for E0: 

2WlA;t(2)l-l= W-a1 e 2wZ (11) 
W+ a~ 

Thus, (11) determines the divergence of the corre- 
lation length ~]j=Eo 1/2 from the asymptotic be- 
haviour of 2 and M(2). As soon as the limiting 
behaviour of 4H has been found in this way, one 
may use all formulas for the correlation function 
C(p, zz') which have been derived in Sect. 5 of [1]. 
This implies that the interface is rough in d <  3 for 
any r. 

4. Extended Phase Diagram 

So far, the functional form of u(z) has not been 
specified apart from its asymptotic behaviour (2). In 
order to simply the determination of 2, I will choose 

u(z)=B(z+A)-(l+r)[1-(l+r)(2+r)(z+A) -2] (12) 

with r > 0 and 

A > [(1 + r)(2 + r)] 1/2 (12.a) 

The inequality (12.a) ensures that u(z) does not 
change sign for 0 < z < oo. For large z, 

u(z)~Bz -(l+r), r>0.  (12.b) 

For the above choice of u(z), a special solution of the 
inhomogeneous differential equation (5) can be ob- 
tained without the use of Green's function tech- 
niques. As a consequence, various MF quantities 
can be calculated analytically. As shown below, their 
critical behaviour is characterized by surface ex- 
ponents which depend on r but not on A. This is 
consistent with the expectation that the detailed 
form of u(z) should be unimportant for the leading 
terms of the critical singularities. 
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The model (1)-(4) with u(z) given by (12) depends on 
the bulk variable t and the surface variables h~, a~ 
and B. The phase boundaries in the (t;ht,a~,B)- 
space are most easily envisaged if one starts with the 
( t=0;  h~, a~, B=0)-subspace. In this case, the quali- 
tative features of the phase diagram displayed in 
Fig. 2 of [1] are recovered from model (1)-(4). In 
fact, the coordinates of the depinning transitions 
(C :~) and (T • which follow from the parabolic ap- 
proximation (4) for f((b) are the same as those for 
the smooth double well potential discussed in [1] 
with p = 1. 
For B#:0 and t=0,  two surfaces of discontinuous 
transitions (LD • are found (the letter L means 
"long-range", the letter D "discontinuous"). The sur- 
face (LD-) is attached to the (hl,a0-plane along the 
phase boundaries (D-) and (C-) (see Fig. 2 of [-1]), 
and extends into the region with B < 0. Similarly, the 
surface (LD § is attached to the (hl,a0-plane along 
(D § and (C+), and extends into the region with 
B>0.  
In Fig. 1, a 2-dim. intersection of the (t--0; h 1, a 1, 
B)-space is shown for aa = const> 1. Depinning tran- 
sitions occur in the shaded region of Fig. 1 denoted 
by (LP• and along their boundaries (P-+) and (C• 
For B--*0-, the phase boundary (LD-) (see Fig. 1) is 
given by 

h I --k~ 1 =c  o lBI il2 Iln lBll r/2 (13) 

with 

c o = 2 '/2 r- 1/2(aZ 1 - 1) 1/2. (13.a) 

Similarly, the phase boundary (LD +) is found to be 

hi =/~l =a l  --Co B1/2 I ln(B)l  - ' / 2  (14) 

[ ph~)~ (LP +) 

/ ) / ~ /  IC-) B 

(LP (P-) 

Fig. l, Phase boundaries in the (hl,B)-subspace for ~=0 and 
a 1 >1. (LP), (P), and (C) are three different types of depinning 
transitions. A ( - )  and a (+)  indicate that depinning occurs for 
l - , 0 -  and t-*0 +, respectively 

for B--,0 +. The derivation of these formulas is ex- 
plained in Sect. 6. 
Along (LD• the interface position f jumps from a 
finite value to infinity. In addition, the hierarchy of 
continuous transitions discussed in [1] is extended 
by the additional transitions (LP+-). Thus, in the 
phase diagram of Fig. 1 which applies for a 1 >1, 
three types of continuous transitions are distin- 
guished by their number of scaling fields: one, two 
and three such fields are present at (LP), (P), and 
(C), respectively. Note that the type of surface criti- 
cality at (P) and (C) has been changed by the in- 
clusion of long-range surface fields since B is an 
additional relevant perturbation at these tran- 
sitions. 
For a l = l ,  the depinning transitions (C • are re- 
placed by the transitions (T -+) (see Fig. 2 of [1]). In 
the enlarged phase diagram, (T • has four relevant 
scaling fields. However, due to the parabolic approx- 
imation of f(qS), the critical singularities at (T • are 
not correctly described by model (1)-(4). Similarly, 
one can not find higher-order multicritical tran- 
sitions such as (Q-) (see [1]) from this model. 
In the context of wetting, (LD +) separates the region 
of complete wetting (=(LP+)) from the region of 
incomplete wetting in the presence of long-range 
substrate fields. The fact that the transition along 
this phase boundary is discontinuous has also been 
found for an effective interface model from a real- 
space renormalization group method [7]. 
So far, the discussion of the phase diagram has been 
restricted to bulk coexistence i.e. t--0. For t+0,  
there are two wings of first-order transitions which 
are attached to the (hl,B)-plane of Fig. 1 along 
(LD• The wing at (LD-) and (LD +) extend into the 
region with t < 0  and t>0,  respectively. As IBIs0, 
the edges of these wings which are second-order 
transitions approach the (hl,B)-plane. For instance, 
the edge of the (LD-) wing has coordinates t(B) and 
h~(B) in the (t; h~, B)-subspace which behave asymp- 
totically as 

toc - IBI  Iln IBIl-" +') 

hloclB] 1/z Iln IBll -(~ +r/2) 

5. Critical Behaviour 

Apart from a redefinition of the scaling fields, the 
critical properties of the transitions with (+) and 
with ( - )  (see Fig. 1) are identical. Therefore, only 
the SID transitions with ( - )  will be explicitly dis- 
cussed below. For SID, the MF equations (5) and (6) 
have to be solved with the boundary condition 
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M(z= oo)=Mo = 1. This leads to 

[�89 [M i - � 8 9  -~ 

, , ,  I +B(z+A) -(l+r) z<2  
M t z ) - ] l + [ _ � 8 9  (l+~)]ei_Z (15) 

{ +B(z+A) -(i+') z>s  

In (15), 2 and M a enter as parameters which have to 
be determined from the boundary condition /f/(0)= 
- h j + a l M  a and from the matching condition M(2) 
= M = (1 + 0/2. As a result, one obtains 

�89 +BXB(Z)+(a~ + 1) -1 h~ e -e 

- �89  (16) 

with 

XB(d)=(d + A)-(a +r)-cl e -~ (17) 

ca:= A- (* + ') [a s + (1 + r)/A]/[a 1 + 1] > 0 (17.a) 

as an implicit equation for 2. Due to the general 
inequality e~>(l+x/y) y [8], XB(0>0  for 0 < d <  oo 
as long as r and d satisfy (12.a). In terms of ~ the 
surface order parameter M 1 is given by 

MI=[hl  +A (l+~) (1 - } -~ f - )B] / [a l  +l]+g)M1 
(18.a) 

~5M1.- = e-~/(al + 1). (18.b) 

It is useful to consider 6M 1 as the singular part of 
M1. In order to determine the correlation length ~11 
via (11), one needs A)/(2). From (15), 

5;/(Z) = 3 +  62~)/(2) (19.a) 

c$ 71~/(2): = - U2 + B(2+ A)-(1 +,)_ B(1 + r)(2+ A)-(2 +,). 
(19.b) 

If (19) is inserted into (11) and the resulting ex- 
pression is expanded in powers of Eo, the leading 
order terms lead to 

~(2=Eo=4[6)gI(?)+�89 + l)-a(a~-l)e-2~] (20) 

(16), (18), and (20) determine the critical behaviour 
of 2, M 1 and ~ tl" 
First, consider the transition (LP-) which occurs for 
t = 0 - ,  B<0,  and hl</~ a (see Fig. 1 and (13)). From 
(16), one finds the power law divergence 

Z = A  1 I~1 ~'~ (21) 

for the interface position with 

fis = - 1/(1 + r) (21.a) 

AI=(21B[) -~ .  (21.b) 

The surface exponent (21.a) has also been found 
in the context of lattice gas models [97. If (21) is 
inserted into (18), one sees immediately that 6M~ 
has an essential singularity: 

6Maocexp(-A 1 ]t[~'). (22) 

Finally, (20), (16), and (21) imply a power law diver- 
gence for the correlation length: 

~II=AzlQ -=" (23) 

with 

v II = (2 + r)/(2 + 2r) (23.a) 

A2 = �89 [I B I(1 + r)]- a/2 [2 I B I] TM. (23.b) 

The surface exponent (23.a) has been obtained pre- 
viously in the context of effective interface models 
[10]. Note that the surface exponents fis and vii 
depend on r in a continuous way. In contrast, both 
the exponents and the amplitudes in (21)-(23) which 
are the leading terms do not depend on the parame- 
ter A (see (12)). If next-to-leading terms are consid- 
ered, one finds that A enters their amplitudes. 
The SID transition (P-) occurs at t = B = 0  (see 
Fig. 1, and Fig. 2 of [1]). The leading terms of 
2, 6M1, and ~-II found from (16)-(20) in this case may 
be written in a scaling form. There are two scaling 
fields, namely Itl and 

b: = IBI Iln [BI I -(~+ r) (24) 

rather than B itself. In terms of t and b, the asymp- 
totic behaviour of the surface order parameter is 

6M1 = It[ O1 (Itl- abb) (25) 

with 

f2i (x)ocx, x---> oo. (25.a) 

At (P), the new surface exponent A b has the MF 
value 

A b = 1. (26) 

From (18), 

2=  - in []tl f21 ( I l l -  ab b)]. (27) 

The asymptotic behaviour of the correlation length 
is 

~LI=)I 1/202(Id-~bb ) (28) 

with 

f22(x) oc x -  1/2, x--* oo. (28.a) 
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Thus, for t = 0  and B ~ 0  +, the correlation length 
diverges as { II ocb- 1/2 ~--- B- 1/2 ]In (B)[ (1 +,)/2. 
Finally, consider the continuous transition (C-)  
which occurs for B =  t = h I =0  and a, > 1 (see Fig. 1, 
and Fig. 2 of [1]). At (C-)  one has three scaling 
fields, namely ]t], b as given by (24), and h 1. In this 
case, the surface order parameter is found to have 
the scaling form 

&M 1 = ]t l l /2~l l ( l t l -Abb,  It] - a '  h t )  (29) 

with 

@I(X, 0) OCX 1/2, X----> O0 (29.a) 

~1 (0, y)ocy, y ~  or. (29.b) 

The surface exponents A b and A t have the MF val- 
ues 

A b = 1 (30) 

A 1 = 1/2. (31) 

Thus, Ab=l  both at (P) and at (C). a l  has been 
determined before [2, l]. The divergence of the in- 
terface position 2 follows from (18.b) and (29), and 
the critical behaviour of the correlation length is 

~ ll = [tl- t/21P 2(It[- ab b' ]t]- a~ ht) (32) 

with 

~2 (x, O)--,x- i/2, x---> oe (32.a) 

(u 2 (0, y) - ,  1/y, y---, oo (32.b) 

at (C-). 

6. Surface Free Energy 

In the context of Landau theory, the surface free 
energy f~ for the model (1) reads 

f s = ! d z [ ~  \ d z  (dM] 2 + f ( M ) _ f ( M b ) - u M  ] +fl(M1). 

(33) 

In (33), the term u(z)M(z) has the large z-behaviour 
Bz-(I+r)M b. Therefore, its contribution to f~ is finite 
only for r>0 .  For - 1  < r < 0 ,  the total free energy 
contains a term which is intermediate between the 
bulk and the surface free energy. 
If the MF profile (15) is inserted into (33), one may 
treat 2 as an independent variable. As a result, one 
obtains after some tedions but straightforward calcu- 
lations 

f~ = V(?) + �88 + O(B 2, Bh~, h 2) (34) 

349 

with 

v(:) = �89 Itl :+ B YR(:)-(al + i) -1 hl e-: 

+ �88 1 + 1)- l(a 1 - 1) e- 2: (35) 

YB(f) = __1 (: + A)- '  + cl e -:, (35.a) 
r 

and dYB(E)/dE=XB(:) (cf. (17)). Since -YB(:)> 
XB(:)>0 due to (12.a), it follows that YB(:)<0 for 
0 < : <  oo. 
The "effective potential" V(:) has two nice proper- 
ties: 
1) the implicit equation (16) for the interface po- 
sition 2 is identical with 

a V(:)/a:b= 0 (36) 

2) the leading term (20) for the correlation length 
II is recovered from 

. a v(:)l 

=4[&M(Z)+�89 + l ) - l ( a l - 1 ) e - a : ] .  (37) 

The implicit equation (36) (or (16)) may have sever- 
al solutions. In particular, at the discontinuous tran- 
sition (LD-), the solution ?=oo coexists with the 
solution ? = 2  since V(oo)=V(:) which implies f~(? 
=oo)=f~(Z=Z) due to (34). The schematic form of 
V(:) at (LD-) is shown in Fig. 2. As a consequence, 
(LD-) is determined from 

v(Z)= o, a v/a:l  = o, 

which has to be solved for Z(a 1, B) and /~l(al,B). 
For B ~ 0 - ,  the solution /~t has the asymptotic be- 
haviour given by (13). 
If the asymptotic behaviour of [ is inserted into (34), 
one obtains the singular part of the surface free 
energy f~. At the depinning transition (LP-), the 
leading term is 

f,=A3 Irl (38) 

0 ~. 
Fig. 2. The effective potential V(f) at the transition (LD-), cf. 
Eq. (35). The phases with 2= : and f= oo coexist in this case 
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with 

2 -  % = r/(l + r) (38.a) 

A 3 = �89 - ~  1 B(2 IBI) ~'. (38.b) 
r 

Note that % and A 3 are again independent of the 
parameter A. There are two types of next-to-leading 
terms for f~: I) terms ocZ-("+ ' )oc l t l  ("+')/(t +') with n 
=1 ,2  . . . .  ; 2) essential singularities due to the e - (  
factors in (35). 
At the depinning transitions (P-) and (C-), f ,  de- 
pends on the scaling fields ]t[, b, and Itl, b, hi, re- 
spectively. The dependence of f~ on It l and h~ has 
been discussed previously [2]. The dependence on 
the new scaling field b is 

f~ocb In (b). (39) 

7. Ginzburg Criterion 

A simple Ginzburg criterion can be obtained [2] if 
one compares the MF contribution fs to the surface 
free energy with 

Aj, oc~Eo_ In(I/E0), d = 3  
(40) ~E(o d- 1)/2, d 4= 3 

which is the contribution due to the soft mode. In 
field-theoretic terminology, fs is a zero-loop term 
and As is a one-loop term [cf. 11]. This Ginzburg 
criterion has been used before to determine the up- 
per Critical dimension d*=3 for all depinning tran- 
sitions in systems with short-range forces (i.e. B=0)  
[10]. Thus, the critical behaviour at the transitions 
(P), (C), (T), and (Q) (see Fig. 1 and Fig. 2 of [1]) is 
correctly described by MF theory for d > 3. 
In the presence of long-range forces (B+0), the sys- 
tem may undergo the continuous transition (LP). In 
this case, one has 

s t 2-% 2-%=r/(r+l)  (41) 

from (38) and 

Af~oclt[ (d *>",  vlt=(2+r)/(2+2r) (42) 

from (23) and (40). At the upper critical dimension 
d*, (41) and (42) are equally important. This implies 

d*(r) = (2 + 3 r)/(2 + r). (43) 

Thus, d* < 3 for 0 < r < oo. In particular, (43) yields 

d*(r=2)=2.  (43.a) 

The case of short'range surface fields is recovered 
from (43) for r---, oo since d*(r~oo)=3.  

Note that this Ginzburg criterion is equivalent to 
the simple rule that d* follows from the hyperscaling 
relation 2-%=(d-1)vlt  when the MF values for % 
and vii are inserted. This rule has been used in [10] 
in order to obtain the upper critical dimension (43) 
from an effective interface model. On the other 
hand, the Ginzburg criterion used above is a stabili- 
ty criterion of the usual form since one-loop terms 
are compared with zero-loop terms [cf. 11]. In this 
sense, the Ginzburg criterion provides a justification 
for the simple hyperscaling-rule. 

8. Systematics of Surface Criticality 

In the preceding paper [1], four different types of 
depinning transitions denoted by (P), (C), (T), and 
(Q) have been discussed. In the present work, long- 
range surface fields (with amplitude B) were shown 
to be a relevant perturbation at (P) and (C). Due to 
the parabolic approximation (4), (T) and (Q) could 
not be treated for B + 0  but it is quite obvious that 
B is also relevant in these cases. In addition, the 
continuous depinning transition (LP) can occur in 
the presence of long-range fields i.e. for B + 0  (see 
Fig. 1). In summary, a hierarchy of five different 
types of depinning transitions has been discussed: 
(LP), (P), (C), (r), and (Q) with one, two, ..., and five 
relevant scaling fields, respectively. 
The upper critical dimension is d* = (2 + 3 r)/(2 + r) 
for (LP) (see (43)) and d*= 3 for all other transitions 
[2, 10]. For d>d*, the results of MF or Landau 
theory described above should be valid. 
At all transitions, the bulk variable t which mea- 
sures the distance from bulk coexistence is a relevant 
perturbation. For d>d*, the t-dependence of the 
critical behaviour is characterized by two indepen- 
dent exponents % and vii which govern the singulari- 
ties of the surface free energy and the correlation 

Table 1. Independent surface exponents at the various depinning 
transitions (LP), (P), (C), (T-*), and (Q-) above their upper critical 
dimensions. The parameter r determines the behaviour of the 
long-range surface field (see Eq. (2)), the parameter p enters the 
bulk potential (see Eq. (2) of [1]) 

~s vii Ab al (ao q$b 

2 + r  2 + r  
(LP) 

l + r  2+2r  
(P) 1 1/2 1 
(C) 1 1/2 1 1/2 

p + l  
(T-) 1 1/2 1 

p+2 

(T +) 1 1/2 1 2/3 
2 p + l  

(Q-) 1 1/2 1 
2p+2 

P 
p+2 

1/3 
2p 

2p+2 
P 

2p+2 
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length, respectively. For d<d*, G and v tl are related 
by the hyperscaling relation 2 - G = ( d - 1 ) v l l .  At 
(P), (C) . . . .  , the relevant scaling field (24) related to 
long-range surface fields can be characterized by the 
scaling index A b. Its MF value is Ab= 1. At (C), (T), 
and (Q), short-range surface fields characterized by 
A 1 become important. Finally, at (T) and (Q), there 
are additional relevant perturbations related to local 
surface operators as discussed previously [12]. All 
independent surface exponents for d>d* are col- 
lected in Table 1. 
For d<=d*, the phase boundaries and the critical 
singularities are changed by fluctuations. This can be 
shown explicitly for d=2. In this case, effective in- 
terface models can be studied by transfer-matrix 
methods. In the presence of both long-range and 
short-range surface fields, the expression (35) may be 
used as an effective potential V(d) for the interface 
coordinate d. In the transfer-matrix formalisme, V(d) 
becomes a "quantum-mechanical" potential in a 
Schr/Sdinger-type equation. The ground-state energy 
of this potential yields the surface free energy, and 
the ground-state wave function determines all mo- 
ments of the interface coordinate d [13]. 
For d=2, special cases of the effective potential (35) 
have been investigated in [13] and [10]. The results 
obtained in these references may be extended to 
yield the phase diagram in the (h 1, B)-subspace. For 
r>2,  one concludes that (P), (C), and (LD) merge 
into one phase boundary which may be denoted by 
(PC). As a consequence, there are only two types of 
depinning transitions, namely (LP) and (PC) (cf. 
Fig. 1). The transition line (PC-), for instance, in- 
tersects the hi-axis at h 1 >0, and the B-axis at B>0  

Table 2. Surface exponents at depinning transitions in d = 2 in the 
presence of long-range surface fields with a) r>2,  and b) 0 < r < 2  
[13, 103. Note that hyperscaling holds at all transitions except for 
(LP) with 0 < r < 2 

~s VII Ab=AI ~ vii Ab dl  

(LP) 4/3 2/3 

(PC) 4/3 2/3 1/3 

r + 2  2 + r  
(LP) 

r + l  2 + 2 r  

2 - r  
(p) 4/3 2/3 

3 
2 - r  

(C) 4/3 2/3 
3 

1/3 

[-13]. Thus, the region of the (h 1, B)-plane where the 
depinning transition (LP-) occurs is increased by 
fluctuations. The surface exponents at (LP) and (P C) 
with r>2  are given in Table 2a. 
For r<2, the transition (P) and (C) still have to be 
distinguished. The phase boundary (P-), for in- 
stance, is still at B=0  in d=2  but its endpoint (C-) 
lies at h i > 0  (cf. Fig. 1). The surface exponents for 
(LP), (P), and (C) with 0 < r < 2  are given in 
Table 2b. 
In MF theory, the transition (LD) (see Fig. 1) is 
discontinuous. At (LD), the potential V(O has the 
form shown in Fig. 2. The first-order transition oc- 
curs in MF theory since the global minimum of V(f) 
changes from d = d  to d=oc. In contrast, if V(d) of 
Fig. 2 is used as a "quantum-mechanical" potential, 
its ground state will tunnel through the potential hill 
between d = 2 and d = oe. This implies that all tran- 
sitions have to be continuous in d=2 even in the 
presence of long-range surface fields. 

I thank D.M. Kroll, V. Privman, and H. Wagner for helpful 
discussions. 
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