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Complete wetting and critical wetting transitions are studied in ddimensional systems with 
quenched random impurities and general interactions. New but more universal singular behavior is 
predicted: For example, under random fields the wetting-layer thickness at complete wetting 
should diverge as h 1 f 2  for d=3,  where h measures the deviation from the bulk phase boundary. 
Wetting exponents are expressed in terms of a single spatial anisotropy or roughness exponent, t,, 
defined via tJ. where ti and 6 11 are the wetting correlation lengths. 

PACS numbers: 68.10.-m, 05.70.Jk, 75.10.Hk, 82.65.D~ 

Interfacial wetting phenomena arise in the interplay 
of three distinct thermodynamic Some- 
times, one of those phases is an inert solid which acts 
as a rigid boundary leaving a two-phase system in con- 
tact with a wall; the bulkor "spectator" phase, a,  may 
then be separated from the wall by a wetting layer of 
phase /3. If the a/3 interface between the wetting layer 
and the spectator phase is rough, the layer thickness, - 
I( T,h 1, may diverge to oo in a continuous fashion as a 
function of the temperature, T, or the field, h, which 
represents the deviation from the bulk @ phase boun- 
dary as, say, a chemical potential difference 6p. If this 
happens as T is varied with h = 0, i.e., precisely at  bulk 
af3 coexistence, one has a criticalwetting transition at, 
say, Tcw On the other hand, if I+ oo as h -+ 0 for 
fixed T# Tcw, one has complete wetting. 

Currently, critical wetting transitions and complete 
wetting have been studied theoretically only for pure 
equilibrium Here we consider such 
phenomena generally in systems with quenched random 
impurities. If a and /3 are fluids a physical realization is 
provided by a binary mixture within a gel matrix which 
should, by virtue of differential interactions with the 
two species, act as a random ordering, i.e., phase- 
separating, field.5 In a solid-state context a ferromag- 
net with frozen nonmagnetic impurities provides an 
example with random thermal fields or "random 
bonds." More generally, impurities which, on the mi- 
croscopic level, distinguish between the phases a and 
/3 are equivalent to random (ordering) fields whereas 
those that do not may be described by random-bond 
models. 

If the bulk spatial dimensionality, d, lies below or at 
the lower critical dimension, d < ,  the presence of 
quenched impurities leads, by definition, to the com- 
plete destruction of the bulk transition and a/3 coex- 
istence. Theoretical arguments yield d <  = 2 for ran- 
dom fields,617 and d <  = 1 for weak random bonds.* 
Here we presuppose d > d<- and, furthermore, as- 
sume that the randomness is sufficiently weak that the 
bulk transition survives so that wetting is possible in 
principle. 

Our analysis shows that both random fields and ran- 
dom bonds change the singular behavior at wetting 
whenever d < < d < 5 even though the effects on the 
bulk phases may be relatively small. The most accessi- 
ble case experimentally is complete wetting in d = 3  
dimensions. If the impurities act like random fields we 
find that the layer thickness, I, diverges as h l / '  for 
systems governed by (i) retarded and (ii) nonretarded 
van der Waals forces and likewise (iii) if only short- 
range forces act. A similar result is found for random 
bonds. By contrast, at complete wetting in pure systems - 
1 diverges as h 1 I 3  h lI4, and lnh in cases (i)-(iii), 
respectively. Consequently, the singular behavior at 
complete wetting is not only different in the presence 
of quenched randomness but is also more universal 
than in the pure (or annealed) case. 

It is convenient to use Ising-model language in 
describing the a and f3 phases. Then h corresponds 
simply to the bulk magnetic field with h > 0 favoring 
the spectator phase, a ,  of "up" spins. If the interac- 
tions between two spins at separation r decay as 
l/ lrl d"l"u when lrlÃ‘ oo (with o- > 0) the effects of the 
boundary wall are equivalent to a surface (magnetic) 
field, h, (z ) ,  which decays as l/zu for large distances, 
z, from the wall.' We will suppose that h, yields a wet- 
ting (or "prewetting")2 layer of 13 phase, or "down" 
spins, in contact with the wall. In addition to these 
uniform interactions we consider either a random 
(magnetic) field with zero mean or random short- 
range couplings; as we suppose that the 
randomness exhibits only short-range correlations. 

To proceed, let x=r,, = (xi,  . . . , x / _ ~ )  be a coordi- 
nate parallel to the wall and call the fluctuating dis- 
tance of the c@ interface from the wall l (x) .  The uni- 
form interactions then lead to an effective potential, 
Vw(l), which tends to bind the interface to the wall. 
For the power-law couplings described this may be 
represented as9 

where we will consider only the case u > O.1Â For 
short-range underlying forces, however, the wall po- 
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tential becomes1 

where too is the bulk correlation length in the wetting 
phase, f 3 .  When w ( TI,  which may be regarded as 
the thermal parameter, is positive only complete wet- 
ting arises (as h + O +  ); however, a critical wetting 
transition can occur when w increases from negative 
values (with h = 0 + 1. 

On the other hand, the quenched impurities also act 
on the interface and should give rise to an inhomo- 
geneous, random potential VR (x, 1) within which the 
interface wanders, even at T Ã ‘  0, in order to find the 
lowest free energy. We conclude that the interface 
may be described by the effective Hamiltonian 

where 2 is the nonuniversal interface stiffness which 
depends on the details of the spin-spin interactions, 
etc., but may, here, be regarded as a constant. 

Now the effects of the random potential, VR(x,l), 
on the behavior of the interface in the absence of a 
wall (i.e., Vw=O) have recently been studied by a 
variety of techniq~es .~"~ The results indicate that the 
interfacial fluctuations in the presence of quenched 
randomness alone can be characterized by a single spa- 
tial anisotropy or roughness exponent which we call [: 
The typical transverse excursion, L L ,  normal to the 
mean orientation of an interfacial segment of linear, 
longitudinal dimension L scales according to 
Li - Lh. Note, to start with, that for a free interface, 
subject only to thermal fluctuations (i.e., VR =0) ,  one 
had2 

which includes the well known result I, = Ã for d = 3 
(where the interface is representable by a Brownian 
path).3 On the other hand, the theories for random 
fields indicate6' 

Only a single result is available for random bonds, 
namely,8 

t , = +  for d=2 ,  ( 6 )  

but this is exact and, furthermore, one expects [ to de- 
crease monotonically to [ = 0 at d = 5.8 We will accept 
these values and use them to make concrete predic- 
tions for wetting exponents. Our analysis is, however, 
more general and should apply whatever the actual 
values of I,. Indeed, we recover all the previous 
results for wetting in pure when (4) is 
used to characterize a free interface. 

Consider, now, complete wetting when h + 0 + 
with w > 0 (or T > Tcw). At h = 0 the interface is no 
longer bound to the wall and its fluctuations due to the 
randomness will be characterized by L - L on all 
scales large compared with the lattice spacing. Thus 
the transverse difference correlation function, A C (x) , 
should obey 

AC(x) = ( [ / (XI  - 1(0)12) - x2g, (7) 
when x oo with h = 0. If t l l  (h ) is the longitudinal 
correlation length which describes the decay of 
[( l(x)l(O)) - (1)21 for h > 0, scaling then implies 
AC(x,h = #fKx/ t  11 1. This, in turn, means that 
the roughness of the interface is described by 

as could have been anticipated. In this light, let us es- 
timate the free energy per unit ( d - 1 )-dimensional 
area of the interface for typical configurations which 
may be visualized as varying through a transverse dis- 
placement tL over regions of longitudinal dimensions 
tIl.  Thus, the gradient and random potential contribu- 
tions, which should be of comparable magnitude when 
h + 0 + , can, via (31, be estimated by 

In this y e  have assumed that there is no renormaliza- 
tion of 2 (in contrast to a normal bulk critical point 
where the corresponding coefficient varies as e l ) .  
This expression is consistent with the previous stud- 
ies6"' which found fR scaling as L ? ~ .  Note, on the 
other hand, that (9) does not, in general, satisfy hyper- 
scaling which would require f - i-\\ ( d  '). This need 
not be a concern, however, since random critical 
behavior should normally be described by a zero- 
temperature renormalization-group fixed point for which 
hyperscaling is not, in general, expected to be valid.13 
Nevertheless, when (4) is used for a free interface 
hyperscaling is recaptured, as expected for a nonran- 
dom thermal transition and, as mentioned, the stand- 
ard results for pure wetting are ' ' I  l2 

W e  now aim to determine the mean interface posi- 
tion 1 = (I) by minimizing total effective free energy 
f WR + U, where by (3) we may take the effective 
wall potential as 

provided (i) 7 greatly exceeds t L, the latter measuring 
the interface roughness. If one first neglects fR one 
finds Umin == o- w/ lU- with 

Then, assuming (i) and the condition 

one finds fR << Umin which justifies the neglect of fv. 
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Thus the unbinding of the interface is controlled by 
the wall potential U alone when I, < I,*. The correla- 
tion lengths follow from w= (a2 f / ~  12)7 and via (8) : 
They diverge as h 0 with the complete wetting ex- 
ponents 

Finally, the original Ansatz (i) is justified since + > v L  
when I, < t*. 

Suppose, on the other hand, one had4 (ii) /==ti; 
the repulsive term in (10) is then of order w / ^ l  

which can be neglected relative to fR when t, > t,*. 
Minimization off then leads to 

Thus for t, > V the complete wetting exponents 
should depend only on I,. For random fields and d = 3 
one has t, = -j- by (5) and thus the universal value + = Ã 
for u > 2 (which turns out to include short-range 
forces). The best available estimate for random bonds 
when d = 3 is8 I, = 0.40 which implies i,b == 0.25; cer- 
tainly, as mentioned, we expect I, < for d = 3 so that 
the interface should unbind more rapidly under ran- 
dom fields than with random bonds. 

These heuristically based results for complete wet- 
ting are fully confirmed by a perturbative treatment of 
the interface Hamiltonian (3) along the lines of Ref. 
9a. The technical details are somewhat involved and 
will be presented e~sewhere.~' Both approaches can be 
applied to critical wetting transitions. In this case three 
regimes are found: (i) a mean field (MF) regime for 
I, < t t=2/(o-+2) where I>> tL; (ii) a weakfluctua- 
tion (WFL) regime for I,' < I, < t,* where /qL; and 
(iii) a strong fluctuation (SFLLregime for 6 > I,* where 
again 7- &. In all regimes I, &, f;, and the singular 
part of the free energy per unit area, /,, can be 
described by scaling forms like 

where t = w - wc. In the MF and WFL regimes one 
has wC = 0 but the SFL regime should be characterized 
by wc < 0. The exponents (for t variation) in the MF 
regime are 

In both fluctuation regimes (9) applies with f, - fR so 
that a = 2 ( l - v n  +vL);  likewise, vfi=vn/A and 4' 
= v i  Ã  ̂ v JA, which determine the h divergences when 
t = 0, are given by 

V U = V ~ = + ~ = C / O - ~ ;  (17) 

compare with (14). The gap exponent in the WFL re- 
gime is found to be 

which, along with a ,  v and vL, diverges when 
I,+ r - ,  so signaling the SFL regime. On the other 
hand, A cannot be found in the SFL regime by the ar- 
guments described since these rely on the assumption, 
self-consistently justified, that the transition remains 
at wc = 0; but even in the pure case one finds9 a shifted 
value, wC < 0, in the SFL regime. An analogous shift 
is, thus, to be expected in the presence of randomness 
leading to new SFL thermal exponents (although the 
SFL h exponents vfi , etc., for t '5s 0 should remain the 
same as in the WFL regime). 

In a somewhat speculative vein one may, for short- 
range forces in d = 2, appeal to random-walk ideas and 
the necklace model.3 This indicates15, l6 v 1, = 1/( 1 - 6) 
and so from a = 2 ( l - v l l  +vL)  one finds a = 0  in- 
dependent of I,. (Indeed, by analogy with the pure 
case in d = 2, we expect this to be valid for all Â > I,*.) 
The gap exponent now follows from A=vII /v i  
=2-a -v^  yielding A=(2-t , ) / ( l - t , ) .  Finally, for 
random bonds (6) leads explicitly to 

This power law for I and the result a = 0  have also 
been found recently by ~ a r d a r l ~  who used a replica 
technique. 

For d > 2 we have not yet determined A (or a ) .  
One might contemplate Monte Carlo simulations but 
relaxation to equilibrium is likely to be slow.18 Nu- 
merical renormalization-group methods may prove 
fruitful. Indeed, in studies1' using Wilson's approxi- 
mate renormalization group for pure systems19 a non- 
trivial ( wc < 0) SFL fixed point has been found where 
both repulsive and attractive parts of the wall potential 
are irrelevant. In the WFL regime the repulsive part 
becomes relevant and wc=O; in the MF regime both 
parts are relevant. It seems likely that these conditions 
remain valid in the presence of randomness. 

In summary, we have determined all exponents for 
complete wetting transitions in systems with quenched 
randomness. Our arguments extend also to critical 
wetting transitions except for d > 2 if only short-range 
forces act or if the roughness exponent, I,, exceeds 
t,* = 21 ( u  + 1) when the forces decay as l/rd"l"u. The 
results are testable by experiment. 
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