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Frequently, first-order phase transitions in solids are characterized by the coexistence of a disordered
phase and several ordered phases. Near such a transition, the disordered phase may appear in the surface
region of the crystal even though the bulk crystal remains in one of its ordered states. This leads to
several critical effects which are characterized by critical exponents. Recent experimental data on
order-disorder transitions and on surface melting seem to agree with the theoretical predictions.

I. INTRODUCTION

Let us consider a material that undergoes a first-order phase transition. At the

transition temperature , several thermodynamic phases may coexist. Frequently,

one of those phases is microscopically disordered and characterized by the vanishing

of some appropriate order parameter. Examples for such first-order transitions are:

1) order-disorder transitions in some binary alloys;
1
 2) antiferromagnetic to para-

magnetic transitions in the presence of a magnetic field; 3) some ferroelectric to

paraelectric transitions;
2
 4) melting of a crystalline solid.

3
 In these examples, the

order parameter is: 1) the Bragg-Williams long-range order parameter; 2)

the staggered magnetization; 3) the polarization; 4) the Fourier component of the

density with the lattice periodicity.

At the transition temperature the bulk order parameter, any , jumps from

a finite value which characterizes one of the ordered phases to the value

associated with the disordered phase, see Figure 1a. Such a discontinuous behavior

does not seem to be particularly interesting. However, much more interesting effects

can occur if one studies surface4
 rather than bulk phenomena. It turns out that the

surface of a crystal can induce critical phenomena at a first-order phase transition.
5-11

In particular, the surface order parameter, say , may go continuously to zero, see

Figure 1b. Thus, surface critical exponents can be defined and studied even though

there are no bulk exponents.

The basic physical mechanism behind these critical effects is the following. At the

crystal surface, the number of nearest neighbors of a given atom or molecule is

smaller than in the bulk. As a consequence, the surface may start to disorder as the

transition temperature of the first-order phase transition is approached even

though the bulk crystal remains in its ordered state. Then, a layer of the disordered

phase intervenes between the surface and the bulk, and the material may undergo a

surface-induced disorder transition.5-8
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FIGURE 1 (a) Bulk order parameter, and (b) surface order parameter as a function of temperature
The first-order phase transition occurs at

The layer of the disordered phase is shown schematically in Figure 2. In this

figure, the vacuum
12

 surrounding the crystal has been included as a distinct

thermodynamic phase. In this way, it becomes apparent that the disordered layer is

contained in the interface between the ordered phase and the vacuum. Thus if one

introduces three interfacial tensions , and where the subscripts , ,

and stand for ordered phase, disordered phase, and vacuum, the phenomenon of

surface-induced disorder implies that . In a fluid context, this

equality is known as Antonow's rule,13
 and the corresponding three phase equi-

librium as wetting.14-16
 Thus, one might say that, at a surface-induced disorder

transition, the disordered phase wets the interface between the ordered phase and

the vacuum.

At such a transition, several critical effects occur: 1) the surface order parameter

goes continuously to zero, see Figure 1b and Section II; 2) the thickness of the

disordered layer diverges, see Section III; 3) if the interface between the disordered

layer and the ordered bulk is rough, the interfacial correlation length also diverges,

see Sections IV and V. The surface critical exponents which characterize these

critical effects are expected to be universal, i.e., they should depend only on the

spatial dimensionality , and, to some degree, on the nature of the underlying

microscopic forces. For the sake of clarity, only three-dimensional systems will be

discussed here. Furthermore, it will be assumed in Sections II-V that the critical

FIGURE 2 A layer of the disordered (DIS) phase appears in the surface region of the crystal while the
bulk crystal remains in one of its ordered (ORD) phases Thus, the disordered phase wets the interface
between the ordered bulk phase and the vacuum (VAC) surrounding the crystal
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behavior is governed by short-range forces. The influence of long-range forces is

discussed in Appendix A.

This paper is basically a review of previous work.
5-11

 However, it also contains

new results on critical surface scattering (Section V), on the possible influence of

long-range forces (Appendix A), and on the critical exponent for the surface

order parameter (Appendix B). Apart from Appendix B, all technical details have

been omitted while the physics of the phenomena involved has been emphasized.

The reader who is interested in a review of the more formal aspects of this work is

referred to Reference 5.

II. SURFACE ORDER PARAMETER

Let us consider a crystal with an ideal surface free of impurities, and let us focus on

the most typical case where the interactions between the atoms in the surface are

comparable to or smaller than those between the atoms in the bulk.
17-19

 It is also

assumed here that the field conjugate to the order parameter vanishes both in the

surface region and in the bulk.
20

 This is automatically fulfilled for order-disorder

transitions in binary alloys and for antiferromagnetic to paramagnetic transitions

since, in these cases, the conjugate field in a staggered field which is zero for real

physical systems. For ferroelectrics, on the other hand, the conjugate field is the

electric field. Therefore, only ferroelectrics in zero electric field are considered

here.
21

If the microscopic interactions have the properties just described, one expects that

the surface order parameter, say , is smaller than the bulk order parameter

since a surface atom has fewer nearest neighbors than a bulk atom. Thus, one would

also expect that the jump of at the temperature of the first-order phase

transition is smaller than the jump of . It turns out, however, that the surface

order parameter does not jump at all for the range of interactions considered

here, but goes, instead, continuously to zero as
6-8

with (1)

for where is the reduced temperature. The value for

the surface critical exponent is discussed in Section III below. Note that this

exponent was originally introduced for the critical behavior of the surface order

parameter at a second-order phase transition in the bulk,
4,22

 i.e., when the bulk

order parameter goes continuously to zero as well. Here, the same notation is

used even though the bulk phase transition is first order.

The rather different behavior of the bulk and the surface order parameter is

shown schematically in Figure 1. It seems that such behavior has already been

observed at the first-order phase transition of the binary alloy Cu3Au. This alloy

undergoes a discontinuous order-disorder transition in the bulk at the temperature

. In contrast, low energy electron diffraction experiments
23,24

 indicate

that the intensity of the superlattice reflection which measures the long-range order

parameter at the surface vanishes continuously as . Thus, this alloy

appears to undergo a surface-induced disorder transition.
8,25



72 R. LIPOWSKY

III. DISORDERED (OR "DEAD") SURFACE LAYER

A simple explanation for the surprising behavior (1) of the surface order parameter

can be obtained in the following way. Let us decompose the semi-infinite crystal

into a 2-dimensional surface region and a 3-dimensional bulk domain. If there were

no couplings between those two systems, the surface would become disordered at its

own transition temperature . If the couplings within the surface are comparable

to those within the bulk, mean field theory leads to the estimate . Thus,

for the temperature interval , the surface would be disordered while

the bulk is ordered. Of course, this picture is too crude since the surface is coupled

to the bulk. Its influence on the surface may be thought of as an effective field

exerted on the surface atoms. The continuous behavior (1) of the surface order

parameter would now be understandable if this effective field became weaker

and weaker as . This is, in fact, what happens for the systems considered

here since a whole layer of the disordered phase26 intrudes between the surface and the
ordered bulk. Thus, the growth of the disordered layer as "screens" the

effective field which the bulk exerts on the surface.

The thickness of the disordered layer is predicted to diverge as
6-8

(2)

where is the correlation length within the disordered phase. Note that is a

microscopic length here since the bulk phase transition is first order. As mentioned,

is the reduced temperature. More generally, one may define another critical

exponent by
7, 8, 22

(3)

The logarithmic behavior (2) corresponds to ; as stated, this is expected for

three-dimensional systems governed by short-range forces.

The continuous vanishing (1) of the surface order parameter and the diver-

gence (2) of the layer thickness are intimately related. This becomes clear if one

considers the order parameter profile which represents the mean value of the

order parameter at a distance from the surface. By definition, the surface is at

. Such a profile is shown schematically in Figure 3.
6-8

 The mean thickness of

the disordered layer can be defined, for instance, by where

FIGURE 3 Schematic shape of the order-parameter profile where measures the distances from
the surface The order parameters at the surface and in the bulk are and , respectively
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is the order parameter far away from the surface. The order

parameter , on the other hand, is determined by the tail of the order

parameter profile near the surface. As goes to infinity, this tail and, therefore,

go continuously to zero.

According to (2), the divergence of the layer thickness is logarithmic when

. Such a divergence is obtained for a semi-infinite geometry. In this case, the

thickness of the disordered layer can clearly diverge. This cannot happen, however,

in a real, finite system: how far does the disorder intrude into such a finite sample?

Consider, for example, a slab geometry, and denote the distance between the two

surfaces of the slab by . It is assumed here that the finite crystal consists of a

single domain of the ordered phase below . Otherwise, one should regard as

the typical size of such domains. The most important effect of finite is the shift of

the transition temperature.
11, 27

 In the limit of large , one finds
11

(4)

where . The parameter is the tension of the interface between

the ordered and the disordered phase. The entropy is the difference

between the entropies of the two phases per unit volume at . The tempera-

ture shift (4) implies that the continuous -dependence discussed so far is truncated

at , and, thus, that the transition becomes weakly discontinuous for large but

finite . The surface order parameter , for instance, will have a small discontinu-

ity at . Its magnitude is proportional to .
11

 From an experimental point

of view, this should be a rather small correction. The layer thickness , on the other

hand, no longer diverges but, rather, grows only up to a maximum value
11

. As a consequence, the disordered layer is expected to remain very thin
as a result of finite size effects.

Thin disordered surface layers have been observed in molecular dynamics studies
28

and in experiments
29

 on surface melting. The data obtained in those studies seem to

be consistent with a logarithmic divergence of the layer thickness as given by (2).

However, long-range van der Waals forces can play an important role as soon as the

layer gets sufficiently thick: see Appendix A. As a consequence, a crossover from a

logarithmic behavior as in (2) to a power law divergence is to be expected.
30

Apparently, a disordered surface layer has also been observed for the ferroelectric

NaNO
2
.

31
 This material undergoes a first-order phase transition of the order-

disorder type at . Both large, macroscopic crystals and small micro-

crystals with an average size  Å have been investigated by differential

thermal analysis. Compared to the bulk measurement, the signal from the micro-

crystals was found to be broadened towards lower temperatures. This was interpre-

ted as evidence for a surface layer which starts to disorder at about 10 K below
31

IV. SMOOTH VERSUS ROUGH INTERFACE

Although the disordered layer is expected to be quite thin in real systems, it is

instructive to consider the opposite case in which this layer is, in fact, very thick. In

such a situation, the interface between the disordered surface layer and the ordered
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bulk, see Figure 2, is no longer affected by the presence of the surface. Such an

interface can be either smooth or rough.32
 If the interface is smooth, it will be

essentially flat on length scales large compared to the lattice spacing. If it is rough, it

will make arbitrarily large excursions from its average position. A smooth interface

"feels" the underlying lattice structure; a rough interface does not.

For 3-dimensional systems, one expects a roughening transition
32

 to occur at

some roughening temperature . For , the interface is smooth while it is

rough for . In order to get an estimate for , let us consider a flat interface

with an interfacial tension at low temperatures.
33

 The low-energy excitations of

such an interface consist of humps with a longitudinal and a transverse dimension

comparable to the lattice spacing . Such small humps cost an energy . A

crude estimate for the roughening temperature follows from
34

where is the Boltzmann constant.

Let us now return to the critical surface effects which might occur as one

approaches the transition temperature of the first-order phase transition. In

order to discuss those effects quantitatively, one has to distinguish two cases:
10,35

1) and 2) . If is sufficiently large, the latter case is expected

to apply.

First, consider a system with . In such a situation, the interface between

the disordered layer and the ordered bulk will always be smooth as . This

implies that there are no interfacial fluctuations which could affect the growth of the

disordered layer. Therefore, the critical exponents and defined in (1) and (3)

should be given correctly by a mean-field theory. This leads to
6-8,36,37

(5)

(6)

for three-dimensional systems with

If , on the other hand, the interface will fluctuate more and more

strongly as the thickness of the surface layer grows since it is less and less

constrained by the surface. These interfacial fluctuations are characterized by two

length scales: the interfacial correlation length , and the interfacial roughness

As , both length scales diverge and one can write
9,10

(7)

(8)

For 3-dimensional systems, one has
9,10

(9)

(10)

i.e., the interfacial roughness diverges as

The interfacial fluctuations have a rather complicated effect on the critical

behavior of the surface order parameter and on the layer thickness . The
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FIGURE 4 The interface which separates the disordered phase near the surface from the ordered phase
in the bulk Note that the thickness of the disordered layer has been greatly exaggerated in comparison
to the interfacial correlation length

calculation described in Appendix B leads to a continuously varying exponent

with

and

(11)

(12)

for in systems with . Thus, the layer thickness still diverges

logarithmically
9
 while the exponent for is increased by the fluctuations.

The fluctuating interface which separates the disordered layer from the ordered

bulk is illustrated in Figure 4. Note that the layer thickness has been greatly

exaggerated in this figure since, in general, one has from (2), (7) and (9). The

correlation length governs the decay of the correlations within the interfacial

region. Thus, it would show up in scattering experiments which probe this region. It

turns out, however, that can be observed even directly at the surface. This is

discussed in the next section.

V. CRITICAL SURFACE SCATTERING

It is well known that the fluctuations of the order parameter can be investigated by

scattering experiments. The diffuse intensity measured in such experiments around

the specular beam or around a Bragg reflection contains information about the

correlation function of those fluctuations. Let us denote coordinates parallel to the

surface by , and the perpendicular coordinate by . In a semi-infinite

geometry, the correlation function of two fluctuations at and

at may be Fourier transformed with respect to the parallel coordinates to
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yield

(13)

This function can be calculated for general values of its arguments within the

approximation scheme described on Reference 10.
38

Let us now consider a scattering experiment such as low energy electron diffrac-

tion where the main contribution of the scattering comes from the first few surface

layers. In such an experiment, one can essentially observe the correlation function

. In general, this function has a somewhat complicated -depen-

dence. For two regimes of wavenumbers, namely for and one can

obtain separate approximate expressions. For , one finds
38

(14)

where the first factor, , is a surface susceptibility whose singu-

lar part behaves as
7,8,22

(15)

as with, in fact,
7

(16)

for three-dimensional systems. From (5) and (11), one obtains . Within

mean-field theory, there is also an analytic part of which is constant near

Although in (14) is not a simple Lorentzian,
39
 its width is determined by the

inverse correlation length which vanishes as owing to (7) and (9).

On the other hand, for , the correlation function is found to decay

as .
38

Near a bulk critical point, the amplitude of the diffuse scattering diverges while

its width goes to zero. In contrast, the surface critical effects considered here are

predicted to lead to a scattering line with an amplitude which remains bounded near

while the width decreases as . Apparently, such an unusual

behavior of the diffuse scattering has been observed in the recent low-energy

electron diffraction experiment on the binary alloy Cu
3
Au by McRae and Malic.

24

In fact, the width of the diffuse scattering observed in this experiment has been

found to decrease as , in agreement with the theoretical prediction (9)

for the critical exponent
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APPENDIX A: SHORT-RANGE VERSUS LONG-RANGE FORCES

As mentioned in the introduction, it has been assumed in Sections II-V that the

critical surface behavior is governed by short-range forces. In this case, a disordered

layer of thickness has an excess free energy per unit area or an effective interfacial

potential
9

(A.1)

The parameter is the tension of the interface between the ordered and the

disordered phase. The entropy is the difference between the entropies

of the two phases per unit volume at . The constant is of .
40
 As

before, is the correlation length within the disordered phase and

The first and the second term of (A.1) are repulsive and attractive in the sense

that they favor a large and a small value for the layer thickness respectively. The

exponential -dependence of the repulsive term is due to the exponential tails of the

order parameter profile discussed in Section III.
41
 If the interface is rough,

i.e., if as discussed in Section IV, the overall entropy loss of the interface

due to the presence of the surface leads to an additional repulsive term with a

similar   -dependence.
42

Short-range forces lead to the exponential term in (A.1) which favors the

formation of a disordered layer. It is well known, on the other hand, that any pair of

neutral or ionized particles interacts via long-range, induced-dipole–induced-dipole

or van der Waals forces.43
 If one ignores retardation effects, the potential energy for

a pair of particles decays as for large separations between the

particles. The parameters and are the energy and length scale of this pair

potential. This leads to an additional term in the excess free energy (A.1).

For large one has
43,44

(A.2)

where is the so-called Hamaker constant. In the present context, an estimate for

this constant is given by
45

(A.3)

where the parameters and are the particle number densities of the ordered and

the disordered phase, respectively. From (A.3), one concludes that the sign of

should be determined by the sign of              .

Let us consider the case , i.e., . First of all, it seems plausible to

assume that the tails of the interparticle forces do not significantly affect a thin

layer up to a thickness, say, . This implies that the term (A.2) can be

ignored for reduced temperatures with . For

, on the other hand, short-range forces alone would lead to , and the

term might become important. Two extreme cases have to be distinguished.

For a large Hamaker constant , with , the long-range
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forces will come into play as soon as . On the other hand, the Hamaker

constant might be so small that the term (A.2) will never play any role for a

single-phase domain of finite size. This happens for with

(A.4)

and

(A.5)

where is the linear dimension of the single-phase domains.

A rough estimate of the Hamaker constant (A.3) is

(A.6)

since can be taken to be of . Thus, if the particle densities of the two

phases are sufficiently close, may be much smaller than , and one could get into

the regime with where the van der Waals forces can be neglected.

For a solid phase, the particle number density is roughly equal to where

is the lattice parameter. Thus, the Hamaker constant (A.6) is large if the lattice

parameters of the two phases are sufficiently different. In such a situation, elastic

forces can also be important.
46

 Such forces tend to truncate the divergence of the

layer thickness. This has been found for models with both short-range
47, 48

 and with

long-range interactions.
49
 Therefore, in order to investigate the critical effect

described in this paper experimentally, one should look for physical systems where

the lattice parameter of the ordered and the disordered phase are as similar as

possible. In such systems, both van der Waals and elastic forces may be neglected.

APPENDIX B: THE CRITICAL EXPONENT

The effect of interfacial fluctuations on the surface critical behavior described in

Sections II and III can be studied in the framework of effective interface models.

The free energy functional or effective Hamiltonian of the interfacial coordinate

has the generic form
44

(B.1)

The parameter is the interfacial stiffness. In the present context, the interface

potential is

(B.2)

where, in addition to (A.1), a hard wall has been included at since the

interfacial coordinate should be positive. The parameters in (B.2) have been dis-

cussed in Appendix A after Equation (A.1).
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A variational approximation applied to the model defined by (B.1) and (B.2)

leads to the critical singularities
9

(B.3)

(B.4)

for the mean interfacial position and for the interfacial roughness . The

parameter

(B.5)

is dimensionless in . The above behavior for and is also found if one

ignores the hard wall in (B.2) and uses normal ordering to fully renormalize the

theory to first order in .
50
 Both calculations yield (B.3) and (B.4) for all values

of .

On the other hand, one may use the scheme described in Reference 51 in order to

include the Gaussian fluctuations in a self-consistent way. One then finds that (B.3)

and (B.4) are no longer valid for . The same conclusion follows from an

application of the full renormalization group to first order in using the

potential (B.2) but with the infinite hard wall replaced by one of finite height, i.e.,

(B.7)

for

In mean-field theory, the singular part of the surface order parameter is given

by
10

(B.8)

The Gaussian fluctuations change this relation to
53

(B.9)

A change of variables leads to

(B.10)

with

.
52
 In this way, one finds the critical behavior

53,54

(B.6)
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(B.11)

If one uses (B.3)-(B.7) in the expression (B.10), one finds with

It is interesting to note that an analogous calculation for the protocritical transition
5

which occurs in the presence of a symmetry breaking field at the surface leads to

for all values of .

It should be noted that the above calculation is approximate in the sense that all

terms which are nonlinear in have been ignored. Thus, it remains to be proven

that the nonlinear terms do not affect the critical behavior dicussed here. These

nonlinear terms can be investigated in the framework of Wilson's approximate

recursion relation as will be explained elsewhere.
55
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