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Diffusion-Limited Growth of Wetting Layers

Reinhard Lipowsky
Baker Laboratory, Cornell University, Ithaca, Ne~ York I4853

David A. Huse
A Tck T Bel/ Laboratories, Murray Hill, Xe~ Jersey 07974

(Received 11 February 1986)

In binary liquid mixtures, the growth of wetting layers can be limited by diffusion. At complete
wetting, the distance i between the interfaces bounding the layer is shown to grow as i(t) = A «t'
for large times t where A~ increases near the consolute point. In three dimensions where this
growth behavior should be accessible to experiments, 8 = T and ~ for nonretarded and retarded
van der %aals forces, respectively. The interfacial motion resulting from diffusion-limited growth
is studied for general interactions, and a planar interface is found to be stable for 8 & ~.

PACS numbers: 68.10.—m

Let us consider a binary mixture of two liquids A

and 8 in contact with a third phase which we will take
to be a solid wall. Below the temperature T, of the
consolute point of the mixture, ' an A -rich phase, u,
can coexist with a 8-rich phase, p. One of those
phases, say P, may completely wet the wall. 2 In ther-
mal equilibrium at or near aP coexistence, a wetting
layer of the p phase intrudes between the bulk phase a
of the mixture and the solid. During the growth of
such a wetting layer, the region of n phase adjacent to
the layer becomes depleted of 8 molecules. If there is
no flow or convection, further growth of the wetting
layer can occur only by diffusion of 8 molecules
through the depleted region. Such diffusion-limited
growth will be studied here. As shown below, the cor-
responding motion of the aP interface bounding the
layer is rather slow.

The dynamics of interfaces resulting from diffu-
sion-limited growth has been studied previously in
various contexts such as precipitation, 3 crystal growth, ~

and aggregation. s Here, we investigate the effect of in-
teractions on the interfacial dynamics In the con.text of
wetting, the two interfaces bounding the layer can in-
teract by direct microscopic or by fluctuation-induced
forces. Our approach is, however, more general and
applies to the interfacial motion in any interface poten-
tial [see (8) and (14) below].

Let us assume that the binary mixture is initially in
the one-phase region ~ith an equilibrium composition
(= fraction of 8 molecules) X=X corresponding to
the A-rich phase o, . In such a situation, there is no
wetting layer of the P phase or only a thin one consist-
ing of a few atomic layers. Then, suppose that the
mixture is quenched by a change of pressure or tem-
perature to reach the boundary of the two-phase region
at temperature T- T,(X ). Since the P phase is as-
sumed to ~et the solid w'all completely, the equilibri-

um thickness of the wetting layer is macroscopic.
After the quench, the wetting layer thickens continu-
ously. In fluids, the thermal diffusivity is usually large
compared to the chemical diffusivity, and the thicken-
ing of the wetting layer is limited by mass transport.
The early stages of this process are presumably
governed by microscopic kinetics which are outside the
scope of this paper. Here, we are concerned with the
later stages of this thickening when initial transients
have died out and the layer thickness is already large
compared to the bulk correlation length. We find that,
for nonretarded van der Waals interactions between
the molecules, these later stages are characterized by
the growth law

(,) A, tis

for the layer thickness l as a function of time t An ex.-
plicit expression for A, [see (11) below] leads to the
rough estimate A, = 10 nm/sectis for temperatures T„
away from T, . Closer to T„ this amplitude is found to
diverge as A. ~ (T, —T, ) ~, with /=0. 31. Note
that this behavior is contrary to the usual expectation
of critical slowing down. For thick layers with l 50
nm, retardation effects are important and the growth
law (1) is predicted to cross over to a t'i' behavior.

These estimates indicate that the growth behavior
(1) should be accessible to experimental observation.
Very fast pressure-quench techniques have been de-
veloped6 for bulk spinodal decomposition of binary
mixtures. These techniques should also be useful in
the present context. Furthermore, the wetting of a
solid by one liquid phase of a binary mixture has al-
ready been studied experimentally by Wu et al. ' In
their experiments, the equilibrium thickness Ieq of the
wetting layer was finite either because the layer was
thinned by gravitys or because the bulk mixture was
near but not at aP coexistence. If such a layer grows
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isothermally by diffusion, its equilibration time t«can
be roughly estimated from (1) via i(t«) =A„t,'~~s

= i«which gives r«= (l,gA. )s. For t & t«, the fi-

nal approach to I« is given by i« —l(t) —I/Qt [see
(10) below].

The growth law (1) can be most easily obtained
from the following heuristic argument. First, let us as-

sume that the composition gradients within the bulk
phase a are characterized by a single length scale, the
diffusion length

combination of (2)-(6) leads to

[i(r) —i(0) ]/(Dr )'i'- —(K/X) a V/ai,

with

K/x = (ax/a&). /&(x, —x.)'.
The parameters K and X are a capillary length4 and the
tension of the aP interface, respectively.

For hp ) 0, the equilibrium thickness l« is finite,
and (8) implies that

5(r) —(Dr )"', i., i(r)-- [i,„-i(0)]/( r)'i' (10)

where D is the diffusion coefficient for 8 molecules in
the a phase. In this case, the total amount of de-
pletion of 8 molecules per unit area within the specta-
tor phase is of order p[x —X(i)]5, where p is the to-
tal number density of the mixture and X(i) is the
composition in front of the nP interface. Then con-
servation of the number of 8 molecules implies that

[X, X.] [—i(r) —i(0)1- [X.—X(i) ]S(r). (3)

If i is large compared to the bulk correlation length and
if the fluid and solid molecules interact via nonretard-
ed van der Waals forces, then

V(i) = pAp, i+ W/i2, (6)

~here 8'is the Hamaker constant. The linear term in
(6) describes the deviation of p, (X,T) from uP coex-
istence at T. For gravity-thinned layers,

p~p= (i. Cp)«—
~here p, p&, g, and I && I are the mass densities of
the a and P phases, the gravitational acceleration, and
the thickness of the o. phase, respectively. Now, a

Now, we anticipate that l(i) « 5(t), i.e., that the re-
laxation of composition gradients is fast compared to
the motion of the uP interface. 3'0 Thus, we assume
local equilibrium on length scales comparable to l(t).
This implies that X(i) has the same value as when i is
the layer thickness in equilibrium. It is convenient to
express the small difference X —X(i) in terms of
the relative chemical potential p. (X,T) = ps (X,T)
—p,z (X,T) for Band A molecules:

x. X(i)—
= [p, (x,T) p(x(i),—T) l(ax/ap). , (4)

where the derivative is taken in the u phase. The
chemical potential difference can be related to the in-
terface potential V(i) which is the free energy per unit
area of a film of thickness i 2 ":

p (x, —x.) [p (x., T) —& (x ( i), T) ]

= —a v/ai. (5)

for large times, with co=—[D(a2 V/ai2)«K/X]2. For
5p, = 0, on the other hand, the solution of (8) is
i(t) = A.t' s as in (1) with

~.—(D'i'WK/X) 'i4.

Note that for b, p, small and i„large, 1(t) will obey (1)
until it becomes of order i„after which (10) holds. "

Away from T„ typical values for the parameters in

(11) are D =10 ' cm2/sec, W =10 '~ erg, and
K/X=10 s cm3/erg. As a result, one obtains A.
= 10 nm/sec'is as mentioned. For T= T, T„we

&(&+x )
have D —(T, —T) ", where u = 0.63 and'3 x„
=0.06 are the critical exponents for the bulk corre-
lation length and dynamic viscosity, respectively;
W —(T, —T)&, where P= 0.33 is the order-param-
eter exponent; and K/X —(T, —T) ~2&+~~, with

y = 1.24. This results in A. —( T, —T) ~, with

y = 0.31."
Let us now proceed to a more systematic derivation

of the growth laws (1) and (10). We denote the coor-
dinate perpendicular to the solid wall by z and consider
a planar aP interface at distance z = i (t) from the wall.
Furthermore, we introduce the equilibrium composi-
tion profile X,~(z ~l) which has its nP interface at the
same position z = i(t). If the instantaneous composi-
tion profile X (z, t) were identical with X,q(z ~ i), no dif-
fusion would occur. Therefore, the diffusive current
is taken to be proportional to the gradient of the excess
quantity X(z, t) —X«(z ~i), and

2

X(z, t) =D [X(z,t) —X (z ~l}]. (12)az'
On length scales large compared to the bulk correlation
length, the equilibrium composition profile may be
written, for z ~ i, as

X, (z ~i) = X(i) + a (Xp —X )/(z —i+ b)3, (13)

with X(i) =X«(oo)l), a/b « 1, and b of the order
of the bulk correlation length. The power-law tail in
(13) arises from the long-range van der Waals forces. s

In accordance with the local-equilibrium assump-
tion, X(z, t) is now taken to be identical with X«(z ~i)

for z ~ I, i,e., within the wetting layer. This assump-
tion implies two boundary conditions at the aP inter-

354



VoLUME 57, NUM@Em. 3 PHYSICAL REVIEW LETTERS 21 JULY 1986

face. First, it follows that X(z= I+,t) =X,q(l+ ~I). In addition, conservation of the total amount of 8 relates
dl/dt to the diffusive current at z = I+. Starting from these boundary conditions and the diffusion equation (12),
one can derive an integral equation for I( t) using Green's-function techniques. '5 As a result we obtain

K BV
Bl » dt'

K BV(I') I —I' +I (I )+I (I )
Bl' 2(t —t')

(14)

with I'= l(t'), 4 = I —tz/6', and

G(l t il', t') = e(t —t')exp[ —(I —I')'/4D(t —t')]/[4mD(t —t')]'I'. (15)

I (t) —t s, II = 1/2(p + 2). (17)

For d-dimensional systems with long-ranged interac-
tions between the molecules which decay as I/r~+
for large separations r, one has" p = a —1 for
d ) d"(o ) ~ (3a —1)/(o-+ 1) and p = 2(d —1)/(3
—d) for d & d'(o. ), where the latter value for p can
be obtained from the overall loss of entropy'6 of the
uP interface due to the presence of the solid wall. For
retarded van der Waals forces, one has o.=4 and,
thus, 8= —,', in d=3 as mentioned. For short-range
forces with V(l) =exp( —I), one has 8-0 (loga-
rithmic divergence). If the wall is charged with ions,
the counterions in the fluid lead to'7 p = I in d =3
and, thus, 8= —,'. Furthermore, for d=2 and a. ) 2,
one obtains the universal growth law l(t) —t'Is This.
behavior should be accessible to Monte Carlo simula-
tions of two-dimensional lattice models with spin-
exchange dynamics. '8

It is instructive to compare the exponent 8 as given
by (17) with the corresponding exponent for a one-
component system where a liquid or solid layer is
deposited from the vapor phase. '9 For such systems,
the chemical potential is determined by the pressure
which is a propagating mode, and, thus, mass transport

The term lo(I, t) depends on the initial composition
profile at t =0. The term ls(l, t) arises from the inho-
mogeneity in (12) which acts as a source term.

We now make the Ansatz I (t) = A „te for large t, and
insert the form (6) for the effective interface potential
Y(I) with Lip. =0 into (14). The term ~a/b3 con-
tained in hdl'/dt' is exactly canceled by the leading
contribution from ls(l, t) As a. result, we recover the
growth law (1) with 8= —,', and the amplitude (11). In
the same way, (10) is recovered from (14) when the
equilibrium thickness is finite.

The growth law (I) holds for the effective interface
potential (6) (with hp, =0) which is appropriate for
three-dimensional systems governed by nonretarded
van der Waals forces. We will now briefly discuss the
corresponding behavior for the general potential

(16)

for large I, with p ~ —1 and Up & 0. Such a potential,
when used in (14), leads to

is not limited by diffusion. Then one may assume that
the deposition rate from the vapor phase onto the in-
terface is proportional to the pressure while the evap-
oration rate depends on the binding energies within
the condensed phase but not on the pressure. '0 This
leads to the equation dl/dt~ —8 V/Bl which has been
studied before. '9 As a result, one finds that l(t)~ t',
with" e' = 2e.2t

It turns out that the above analysis leads to the
growth behavior (17) even for interface potentials
(16) with U & 0 and —1 ~ p ( 0, i.e., for potentials
which are not bounded from below. However, we
have assumed so far that the n/3 interface has a planar
geometry. Such an interface could be unstable with
respect to the diffusive Mullins-Sekerka2z instability.
In order to investigate this possibility, we have per-
formed a linear stability analysis of the planar inter-
face. This analysis starts from a generalization of (14)
for I = I (x, t), where x are the coordinates parallel to
the solid wall. Within the quasistationary approxima-
tion, ~ we find that a perturbation of the form
e'~'"q(q, t) behaves as

q(q, t) =q(q, 0) exp[E&(q, t)+E2(q, t)],
with

E& (q, t ) = —(p + 1)C'q (Dt) 'I —2Kq3Dt

E2(q, t) = (pUK/X)'~[C"qz(Dt)~+'I2+ C'"q (Dt)~],

(20)
with p and 8 from (16) and (17), and positive numeri-
cal coefficients C', C", and C'".23 The negative term
E~ stabilizes the planar interface whereas the positive
term E2 destabilizes it. As long as p ) —1 in (16)
which implies that the planar interface moves out with
8 & —, , the time dependence of all perturbing modes
q(q, t) is governed by E& both for short and for long
times. Thus, all perturbations will eventually decay
and we conclude that the long-time behavior of the
mean interfacial position is correctly described by the
planar geometry studied above. On the other hand,
for p = —1 in (16), i.e., for an interfacial potential
Y(l) = —~U~I, the time dependence of perturbations
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q{q,t) with small q is controlled by E2 as given by {20)
since 9+ —,

' =1 for p = —l. Therefore, the planar in-

terface is unstable for p = —I with respect to the
Mullins-Sekerka instability and the long-time behavior
cannot be deduced from the planar interface. 24

The interface potential &(I) = —
) U~i does, in fact,

correspond to a physical situation, namely to a quench
into the two-phase region [compare (6) with b p, ( 0].
If one stays close to the boundary of this region, the
bulk of the mixture is metastable as a result of nu-
cleation barriers. In contrast, there are usually no such
barriers25 for the formation of the wetting layer near
the solid wall which means that this layer starts to grow
even though the bulk remains in its metastable state.
The above stability analysis implies, however, that the
interface will be convoluted as a result of the Mullins-
Sekerka instability, and that its mean position
l (t) —t e could grow superdiffusively with 8 ) —,

' . Ex-
perimental studies of this growth behavior would be
very interesting.
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