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Lamellar phases of lyotropic liquid crystals can be swollen by addition of solvent. Such a process, 
which leads to a strong increase of the mean interlamellar separation /, can be viewed as a phase 
transition, termed complete unbinding. Starting from the microscopic interaction for a pair of lamel- 
lae, we derive an effective model for the multilayer phase. We predict a power-law increase of /, and 
show that the system exhibits quasi-long-range translational order characterized by an exponent X,,, , 
which is either universal or, for sufficiently long-range repulsive interactions, depends on molecular 
details. 

I. INTRODUCTION 

One of the simplest of the large variety1 of different 
structures found in solutions of amphiphilic molecules is 
the so-called lamellar phase in which the molecules form 
roughly parallel layers separated by layers of solvent. 
Lamellar structures have recently regained the attention 
of the physicists from both and theoreti- 
ca14 viewpoints. Experimental studies have been carried 
out in lyotropic liquid crystals: in binary systems, such as 
phospholipid bilayers alternating by water5 [Fig. l(a)], or 
in (quasi) ternary solutions where the surfactant films 
separate two different solvents usually water and 
[Fig. Kb)]. The second class of experiments is more 
robust since the lamellar structure can be swollen either 
by adding water or oil: in the latter case unusually large 
spacings up to 6500 A have been observed. 

A recently developed theory6 describing the interactions 
of two fluctuating membranes predicted the existence of 
critical unbinding transitions between a state in which the 
membranes are bound together to a state in which they 
are completely separated. Here, we address the issue of 
how this theory can be applied to the case of lyotropic 
liquid crystals, and to the swelling of lamellar structures. 

Toward those ends, we generalize the model of Ref. 6 
to a stack of fluctuating membranes (or lamellae), and to 
constrained systems. The latter notion arises because in 
the process of swelling the separation between the lamel- 
lae is usually determined by the composition of the mix- 
ture, a situation different from the case in which the mem- 
branes are allowed to equilibrate in excess solvent, so that 
their mean separation is directly determined by the inter- 
membrane forces. 

In Sec. I1 we first consider two lamellae interacting via 
molecular forces, such as van der Wads attraction and 
short-range hydration repulsion, in the presence of an 
external constraint, such as an external pressure. We ar- 
gue that the process of swelling is equivalent to relaxing 
this constraint, and can also be viewed as an unbinding 
transition. However, this new transition, which we call 
complete unbinding, is quite different from the critical un- 
binding t r an~i t ion .~  While the former is again driven by 
thermal fluctuations, their effect is much weaker and can 

be accurately taken into account by introducing an 
effective entropic (steric) repulsion between the mem- 
branes.' We show that complete unbinding can be de- 
scribed by an effective Gaussian model. 

In Sec. I l l  we extend these results to the case of a stack 
of lamellae. The effective Gaussian model leads naturally 
to the prediction of quasi-long-range order in the lamellar 
structure. If the interactions are sufficiently short-ranged, 
the characteristic exponent Xm which describes the decay 
of correlations of the lamellae does not depend asymptoti- 
cally on the mean separation /, between the layers and is, 
in fact, a pure number. These results seem to be con- 
sistent with recent experiments in (quasi) ternary solu- 
tions, where the quasi-long-range order manifests itself in 
power-law decay of the scattering i n t e n ~ i t i e s . ~ ~  

Sections I1 and I11 describe the case of electrically neu- 

FIG. 1. A schematic view of the lamellar phases of lyotropic 
liquid crystals. (a) Binary system. (b) Quasiternary system. In 
the latter case one can swell the structure either by addition of 
water or oil. /is the mean spacing between the lamellae, 6 is the 
thickness of the layers. 
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tral lamellae. The case of charged layers is taken up in 
Sec. IV, with emphasis on the interesting situation in 
which the lamellae interact via long-range, unscreened 
repulsive forces. Such interactions drastically change the 
critical properties of complete unbinding, as well as the 
power-law decay of the scattering peaks. In addition the 
presence of such long-range interactions can lead to first- 
order transitions among two different lamellar structures. 
In the concluding section (V), we discuss the relevance of 
our theory to experiments in lyotropic liquid crystals. 

11. TWO LAMELLAE UNDER CONSTRAINT 

The effective interaction between two lamellae resulting 
from the microscopic forces between the various mole- 
cules are complicated and despite many experimental and 
theoretical studies, ' are not understood thoroughly. We 
shall therefore concentrate on the generic situation in 
which the free energy per unit area or the interaction po- 
tential 

between two neighboring lamellae at spacing 1 has a repul- 
sive part VR(I), and an attractive part VAI), which dom- 
inates for large The attractive part is usually due to 
the van der Waals interaction. lo For large I, one has 

where W is the Hamaker constant,ll and 6 the typical 
thickness of the lamellae which is assumed small com- 
pared to the mean separation /. If unscreened electrostati- 
ic interactions, resulting from charges on the lamellae are 
present, one must add a repulsive long-range part to Vo(l) 
given by12 

Vel(l)aE/l , (3) 

for sufficiently large I. We postpone this case to the end 
of the paper. 

In many experimental cases, 3 ~ 5  the lamellar phase does 
not coexist with a bulk solvent phase but rather, the 
lamellar structure is progressively swollen as oil or water 
is added. This is accounted for by including a pressure- 
like term in the interaction potential: 

The parameter P can be viewed as a Lagrange multiplier 
if the mean spacing between the lamellae is determined by 
the total volume fraction of solvent. By increasing the 
amount of solvent one decreases this external constraint, 
and thus P+0. Alternatively, P may represent the exter- 
nal osmotic, mechanical, or vapor pressure applied to the 
lamellar system in equilibrium with a reservoir of sol- 
vent. lo 

The interaction potential V(l) is the free energy per 
unit area for two planar membranes which are at a con- 
strained distance. Undulations of the membranes give rise 

where KQ is the rigidity constant, and a high-momentum 
cutoff A- l /8 is implicitly included. This model cmbo- 
dies several simplifying assumptions: it neglects finite-size 
effects, highly curved configurations of the lamellae, inter- 
nal degrees of freedom of the layers, etc. In addition it 
does not account for other forms of aggegation such as 
micelles or vesicles. From an experimental point of view 
this could be an oversimplifying assumption, as wz dis- 
cuss in the end of this paper. 

We aim to describe the process of swelling of the lamel- 
lae, as has been observed, for instance, by Larche et al. 
in experiments on extremely dilute lyotropic liquid crys- 
tals. Thus we take the potential V(l) in the form (4,) and 
study the limit P-0. We have recently shown6 that for 
two membranes or lamellae under no external constraint, 
i.e., P =0, a critical unbinding transition can occur be- 
tween a state in which the lamellae are bound and a state 
in which they are completely separated. This c:ritical 
transition is driven by fluctuations. For a pote&d V(1) 
of the form (1) and (2) (and P =0) the critical unbinding 
transition takes place in three-dimensional systems at a 
nonzero value of the Hamaker constant We >0, for 
0 < W < We the two membranes are completely unbound 
even though their molecular interaction has a minimum at 
a finite distance I. This is an example of unbinding in the 
strong-fluctuation regime. This regime contains all in- 
teraction potentials V(l) such that,6 for large I, 

with 

Suppose now that one approaches P =PC =0 with 
W < Wc, as shown in Fig. 2. Then, P is the only relevant 
scaling field. On the other hand, at the critical point 
( W, PI = ( Wc ,0) there are two relevant fields: the "pres- 
sure" P and the critical-point deviation, W - Wc, of the 
Hamaker constant. l3  In both cases, the mean sepa:ration 

1 Critical 
unbinding 

I * - - - -  
** ........... ** .... ****..*..**# - 

UNBOUND wc BOUND w 

FIG. 2. The swelling of the lamellar phase can be viewed as 
the limit P+O, where P is a pressurelike variable. For values of - 

to an elastic contribution to the free energy which leads to + . the Hamaker constant w than the critical value we -- . 
the effective ~amil tonian~ complete unbinding takes place. In this (P, W )  diagram thi; criti- 

cal unbinding transition corresponds to the approach of 
WW= [ d d - 1 ~ ~ ~ ~ 2 ~ ) 2 +  v [ ~ ( x ) I / w  , (5) ( W,PH wC,o). 
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between lamellae diverges asymptotically for P+0, with a 
power law characterized by a new exponent $: 

i-P-+, (8) 

as P-0. For the slightly generalized interface potential 

we find that 

Thus, in particular, for q = 1 in the physical, three- 
dimensional case, 

The result (8) is derived from a self-consistency argu- 
ment. l4 We put 1 =i+d) ,  where i is to be determined, 
and build a field theory for 4 with the potential 

The un =u,,(P,/) represent the perturbation theoretic "ver- 
tices." Now, we express i in terms of the correlation 
lengths Ji and S,\\ which describe the fluctuation of the 
lamellae, 

with given by Eq. (1 1). 
From the form (13) for the potential V(1) it follows that 

all vertices vanish for P-0, as un - piq -n - P${' 
Now, let us consider the Fourier transform of the two- 
point correlation function 

One can show14 that any Feynman diagram of the pertur- 
bation expansion for l /G (k =0) is proportional to 
6ir4(P{f9 -l+d)N, where N is the number of vertices which 
appear in the Feynman diagram. Self-consistency then re- 
quires l /G(k = 0 ) - c 4  which, together with the scaling 
relation (14) yields (8) and (10). Further, one finds the 
scaling form 

The expansion coefficients f i n  ( n  =O,2,4,. . . represent 
sums of Feynman diagrams which all give a finite contri- 
bution for d 5 5  even when the cutoff A in (5) goes to 
infinity. It is interesting to note that one recovers 
d <d2=3+ as a condition for the self-consistency of this 
approach. 

The scaling form (16) has important consequences. 
First, it shows that the k2  term which might be regarded 
as a surface tension contribution has a prefactor -6n2, 
which vanishes at the transition. Furthermore, at the 

transition point, with ell= a, the scaling form (16) implies 
that 

for large x, which leads to 

This shows that there is no anomalous decay of the corre- 
lation Function of the two lamellae when the transition 
point P =0  is approached. l6 The only effect of the in- 
teractions is to change the rigidity coefficient KO to an 
effective rigidity K. Therefore, we can use an effective 
Gaussian model to describe the separation of the lamellae. 
Let us consider the three-dimensional case, where (14) can 
be written more precisely as 

Here, co is a numerical constant of order unity. Then the 
effective Gaussian Hamiltonian for two lamellae is given 
by 

where K is the rigidity constant renormalized by the in- 
teraction. 

So far, we have tacitly assumed that the interaction po- 
tential V(/) has only one minimum for P =0. However, 
one expects that, in the strong fluctuation regime, the fluc- 
tuations of the lamellae are so large that they can over- 
come barriers between two competing minima. This ex- 
pectation is indeed confirmed by the results of a function- 
al renormalization group ca l~ula t ion .~~~ '  We find that the 
critical behavior for potentials V(1) with two minima 
which are separated by a small barrier is governed by the 
same fixed point as for potentials with only one minimum. 
Thus, for P =0, and for potentials V(l) in the strong fluc- 
tuation regime satisfying (6), a first-order transition can 
only occur for a sufficiently deep minimum. l8 By con- 
tinuity, we expect this to be also valid for the approach to 
complete unbinding, e.g., for P > 0. 

In. STACK OF LAMELLAE 

Now, we consider a stack of lamellae and describe the 
interaction of each pair of nearest neighbors within this 
stack by the Hamiltonian (5). Then we take the continu- 
um limit, and introduce a coarse-grained displacement 
variable u (x,z) which depends on z in a continuous way. 
In this way, we obtain the effective Gaussian model 

with 

where the scaling relation (14) has been used (for d =3). 
A model analogous to this has been introduced in the 
context of smectic liquid crystals. l9 It leads to the predic- 
tion of quasi-long-range translational order characterized 
by the algebraic decay of correlations with exponent 
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where q,,, = 2 ~ m  // (m = 1,2,. . . 1. The quasi-long-range 
order can be observed by analyzing the power-law scatter- 
ing intensity peaks. 3120 

At the approach to complete unbinding, because of the 
particular behavior of the effective elastic constants B and 
K, as given by Eq. (22), the exponent Xm is given by 

X,n =rm2/2c$ , (25) - 

and is therefore a pure number. In particular, it does ~~~~~ not 
depend on the mean separation /, when /is large, i.e., on 
approach to complete unbinding. 

In practice, there is a correction to (25) resulting from- 
the finite thickness, 8, of the  membrane^.'^ If one 
neglects the lateral variations of 8, then a simple geometri- 
cal consideration leads to the effective elastic coupling 
constants 

where / is now the period of the structure. When these 
formulae for the elastic constants are inserted into (231, 
one obtains - 

an expression which seems to beconfirmed by recent ex- 
periments.21 For small ratios 8/1 this formula reduces to 
Eq. (25). In fact the experiment by Safinya et al. shows 
that X,n comes close to its asymptotic value for a spacing 
of the order of 200 A. 

For smectic liquid crystals, it has been shown2' that 
higher-order anharmonic terms in the gradients of u 
should be included in (20). The form of these terms is, in 
fact, dictated by symmetry. The anharmonic terms have 
been shown to be important for wavelengths 1 /(qz .-qm) 
large compared to a crossover length z *.22 In the case 
considered here, this length scale is given by 

In lyotropic liquid crystals, the rigidity constant is expect- 
ed to be kB T ̂ K .̂ 100 kB T. Therefore, at room tempera- 
tures and for co == 1, Eq. (28) leads to z * > 10~~8'//, which 
is much larger than the size of the experimentally studied 
systems. Because of the exponential dependence of z* on 
c0 and K, the anharmonic effects could easily become im- 
portant, e.g., for KEO. 1 kB T, or ~ ~ = = 5 . ~ ~  Note, however, 
that one should be careful in applying the result (28) to 
the case of lamellar system because of the singular behav- 
ior of the elastic constant B and K. 

Until now, we have assumed, that the electrostatic in- 
teractions do not play any important role, at least in 
(quasi) ternary lyotropic liquid crystals which are swollen 
by the addition of oil. If, however, on approach to com- 
plete unbinding, the swelling of lamellae is not governed 

by thermal fluctuations, but rather by an unscreened 
long-range electrostatic repulsion (31, then Eq. (25) must 
be modified. 

In this case, the approach to the unbound phase as 
P 4  is described by mean-field theory which leads to - 
~ - p - l ' ~  and s\\ -P 3 / 8 .  This implies effective elastic 
constants vanishing as B - 1 / - P and K - 1 //- P 'I2, 
and therefore the exponent 

-- 
depends explicitly on the mean lamellar spacing / and 
vanishes as P 4 .  

Furthermore, since mean-field theory is valid here, we 
conclude that the separation of two lamellae now changes 
in a discontinuous way if the potential has two competing 
minima. Hence, in the presence of long-range electrostat- 
ic repulsions, it would be easier to find physical systems in 
which two lamellar phases which differ in their spacing / 
coexist. More complicated structures could also be possi- 
ble in which the mean separation /varies within a lamellar 
phase. For this, one would have to take further neighbor 
interactions into account in order to determine the struc- 
ture. 

V. CONCLUSIONS 

-Let us now return to the generic case without electro- 
static interactions (1) and to the results (8) and (10). 
These expressions can also be obtained in a heuristic; way 
by assuming that the thermal fluctuations induce the 
effective steric repulsion 

between lamellae, as postulated by  elfr rich,^ and then us- 
ing, for instance B =/(d 2 ~ s t / d l  indeed, such an ap- 
proach has been adopted by several authors.317 But note, 
first, that the steric repulsion alone cannot lead to a finite 
separation /of the lamellae: one has also to include the 
molecular potential with its attractive part VAl) of the 
pressure-like term, PI. Second, it is important to realize 
that the simple superposition of the molecular potential 
V(1) and the effective entropic interactions Vst(l) is not 
correct in general. Indeed, this reasoning is certainly not 
valid for the critical unbinding transition in three dimen- 
s i o n ~ : ~  even to predict the existence of a continuous un- 
binding transition it is necessary there to carry out a full 
statistical treatment of the model. One may therefore ask 
why, in the present case, the simple-minded derivation 
gives the correct asymptotic behavior. This arises from 
the fact that for the complete unbinding transition the 
phase boundary at P =PC =0 cannot be shifted by fluctua- 
tions. As a result, one has only two scaling regimes for 
complete unbinding: a mean-field regime for d > d2 = 3+, 
and a weak fluctuation regime for d <d2. Both regimes 
are in principle accessible experimentally: in the presence 
of electrostatic repulsion (31, one would probe the rnean- 
field regime, whereas in the absence of such interactions, 
the weak-fluctuation regime is entered. 

For sufficiently weak attraction between the lamellae 
our theory predicts that the mean separation / can in- 
crease without limits when a solvent is added. However, 
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the theoretical description of the swelling of the lamellae 
presented here does not take into account other forms of 
aggregation such as micelles, vesicles, hexagonal struc- 
tures, etc. It also ignores the possible formation of de- 
fects. Such structures can have a lower free energy than 
the lamellar phase. In this case, the swelling of lamellae 
could still be large, but would eventually be limited, in 
thermal equilibrium, by the appearance of a new amphi- 
philic phase. Even then one could still study the ap- 
proach to complete unbinding along the metastable 
branch of the lamellar phase if the time scale which 
governs the decay into new structures is sufficiently large. 

The results described in this paper also depend crucial- 
ly on the assumption that the thermal fluctuations of the 
lamellae are controlled by their curvature energy. Indeed, 
by analogy with the smectic liquid crystals one can argue 
on the basis of symmetry arguments19122 that a surface 
tension-like term is absent in the effective Hamiltonian 
(21). On the other hand, one expects that, in some cases, 
a nonzero tension of the lamellae can be induced by the 
boundary  condition^,^^ fast exchange of molecules with 
other aggegates,24 or other factors. 

The presence of a surface tension term, D ( V / ) ~ ,  in the 
effective Hamiltonian (5) and (21) would have several in- 
teresting consequences: (i) it would introduce additional 
scales +(kB T/o)"~  and for the perpen- 
dicular and parallel correlations, respectively; (ii) for 
i<<ki, the steric entropic repulsion would still be given 
by Eq. (30), but for i>>k1, it would be replaced by a 
Gaussian tail;25 (iii) the scattering intensity would exhibit 

Bragg peaks since the Debye-Waller factor would no 
longer vanish. 26 

In conclusion, we have shown that in some situations 
the swelling of lamellar liquid crystals can be considered 
as a new phase transition termed complete unbinding. 
The quantitative predictions of our model, such as the be- 
havior of the mean separation between lamellae 7 or the 
existence of quasi-long-range order characterized by the 
exponent Xm can be checked experimentally. 

Note added in proof. Recent experiments by D. Roux 
and C .  Safinya and collaborators have shown that in the 
presence of unscreened electrostatic interactions, the 
effective exponent Xu indeed decreases with 1, in qualita- 
tive agreement with our prediction (29). For details, see 
D. Roux, Proceedings of Les Houches Conference "Am- 
phiphilic films," February 1987 (to be published). 

ACKNOWLEDGMENTS 

We are grateful to Michael E. Fisher and Ben Widom 
for their kind hospitality and helpful discussions. We 
thank Geoffrey Grinstein, Fredkric Nallet, Jacques Prost, 
Didier Roux, Cyrus R. Safinya, Marilyn Schneider, and 
Daniel Wack for stimulating interactions, and Michael E. 
Fisher and R. E. Goldstein for their critical readings of 
the manuscript. The support of the National Science 
Foundation both through the Condensed Matter Theory 
Program and through the Materials Science Center at 
Cornell University is gratefully acknowledged. 

'Permanent address: Service de Physique Theorique, Centre 
#Etudes Nucleaires de Saclay, 9 1191 Gif-sur-Yvette, France. 

present address: Institut fir Festk&-perforschung, KFA Jiilich, 
D-5170 Jiilich, Federal Republic of Germany. 

'See, e.g., Surfactants in Solution, Vol 1-3, edited by K. L. Mit- 
tal and B. Lindman (Plenum, New York, 1984). 

2 ~ .  M. DiMeglio, M. Dvolaitzky, L. Leger, and C. Taupin, Phys. 
Rev. Lett. 54, 1686 (1985). 

3F. C. Larche, J. Appel. G. Porte, P. Bassereau, and J. Marig- 
nan, Phys. Rev. Lett. 56, 1700 (1986); C. R. Safinya, D. Roux, 
G. S. Smith, S. K. Sinha, P. Dimon, N. A. Clark, and A. M. 
Bellocq, Phys. Rev. Lett. 57, 2718 (1986). 
0̂. Parodi, in CollcZdes et Interfaces., edited by A. M. Cazabat 
and D. Langevin, (Editions de Physique, Paris, 1983. p. 355; 
see also V. A. Parsegian and E. Evans (unpublished). 

%ee, e.g., W. Harbich and W. Helfrich, Chem. Phys. Lipids 36, 
39 (1984); L. J. Lis, M. McAlister, N. Fuller, R. P. Rand, 
and V. A. Parsegian, Biophys. J. 37, 657 (1982). 

Lipowsky and S. Leibler, Phys. Rev. Lett. 56, 2541 (1986). 
"W. Helfrich, Z. Naturfosch. 33a, 305 (1978). 
^J. N. Israelachvili, Intermolecular and Surface Forces, 

(Academic, Orlando, 1985). 
'D. F. Evans and B. W. Ninham, J. Phys. Chem. 90,226 (1986). 
I0A review is R. P. Rand, Ann. Rev. Biophys. Bioeng. 10, 277 

(1981). 
"Note that in the systems considered here the van der Waals in- 

teraction between two lamellae is always attractive (see Ref. 6). 

^See the Langmuir equation in Ref. 8. 
^In experimental systems it can be easier to control other physi- 

cal parameters such as the elastic constant K (Ref. 81, the 
thickness 8 of the lamellae [D. Roux and C. Safinya (private 
communication)], etc., rather than the value of the Hamaker 
constant W. The scaling field W - Wc should then be re- 
placed by an appropriate linear combination of the deviations: 
K-Kc,6-&, etc. 

14D. M. Kroll, R. Lipowsky and R. K. P. Zia, Phys. Rev. B 32, 
1862 (1985). 

1 5 ~ y  the arguments used for the critical unbinding transition 
(Ref. 6), one can show that for complete unbinding the first re- 
lation i - s ~  and the second relation &-^f hold for 
d < d -  and for d <d l  =5, respectively. 

^Here, we assume that the fully renormalized rigidity constant 
remains positive at complete unbinding. This is true for the 
effective Hamiltonian (5) considered here. 

^R. Lipowsky and M. E. Fisher, Phys. Rev. Lett. 57, 2411 
(1986). 

 h his is also suggested by analogy with wetting transitions. In 
the latter case, one can show for d =2 that there are no first- 
order transitions in the strong fluctuation regime (Ref. 14). 

"see, e.g., P.-G. de Gennes, The Physics of Liquid Crystals, (Ox- 
ford University Press, Oxford, 1974). 

^A. Caillk, C. R. Acad. Sci. 274B, 891 (1972). 
"See C. R. Safinya, et al., Ref. 3. 
^G. Grinstein and R. Pelcovits, Phys. Rev. A 26, 915 (1982). 



35 COMPLETE UNBINDING AND QUASI-LONG-RANGE ORDER I N .  . . 7009 

^w. Helfrich (private communication). ^L. Gunther, Y. Imry, and J. Lajzerowicz, Phys. Rev. A 22, 
^F. Brochard, P.-G. de Gennes, and P. Pfeuty, J. Phys. (Paris) 1733 (1980). 
37, 1099 (1976); R. E. Goldstein and S. Leibler (unpublished). ^F. Nallet and J. Prost, Proceedings of Les Houches Conference 

"M. E. Fisher and D. S. Fisher, Phys. Rev. B 25, 3192 (1982). - "Amphiphilic films," February 1987 (to be published). 


