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The scaling behavior of interfaces is studied for ideal and random quasicrystals in two and three di- 
mensions, and its consequences for the equilibrium crystal shape are discussed. For a 3D decagonal 
phase, a facet with a fivefold symmetry axis is found to undergo a roughening transition. For a 3D 
icosahedral phase, such a facet is likely to stay smooth at all temperatures, T, in the ideal case, but is 
predicted to be rough on sufficiently large scales for T > 0 in the random case. The singular behavior of 
the equilibrium crystal shape near the edge of a facet is also determined. 
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In thermal equilibrium, an interface separating a crys- 
tal from a disordered phase can be smooth or rough. A 
smooth interface is essentially flat and leads to a facet of 
the equilibrium crystal shape (ECS); a rough interface 
makes arbitrarily large excursions from its average posi- 
tion and leads to a rounded part of the ECS. In the 
latter case, the interface has nontrivial scaling properties 
characterized by critical exponents. As the temperature 
is changed, the interface may undergo a roughening 
transition from a smooth to a rough state. 

In this paper, we study the interfacial roughness and 
the ECS for quaiscrystals. This theoretical study is 
motivated by the recent observation of the icosahedral 
phases of Al-Cu-Li, Ga-Mg-Zn, and Al-Cu-Fe,' which 
are believed to be equilibrium structures. Two simple 
models will be considered2: (i) ideal tilings of space 
which are characterized by long-ranged orientational 
and quasiperiodic translational order (in this case, the 
tiles have to fulfill certain matching rules) and (ii) equi- 
librium ensembles of random tilings which can be ob- 
tained by a random rearrangement of the tiles in the 
ideal tiling thereby abandoning the matching rules. 

With each tiling, we associate a cell mode14t5 in which 
we place lattice-gas atoms or spins on the tiles. Spins on 
nearest-neighbor tiles are taken to interact with a cou- 
pling constant J12. Then, we enforce an interface which 
runs through the tiling by imposing appropriate bound- 
ary  condition^.^ The effective Hamiltonian % for this 
interface is JNs, where Ns is the total number of bonds 
broken by the interface, and the probability to find a cer- 
tain interface configuration is given by the Boltzmann 
factor =exp( - %IT). 

As a result, we find that the interfacial behavior is, in 
general, very different for ideal and for random quasi- 
crystals. Compared with a periodic system, the interfa- 
cial roughness is found to be reduced for the ideal tilings 
but to be enhanced for the random tilings both in 2D and 

in 3D systems. For the 3D icosahedral phase at T > 0, a 
facet with a fivefold axis is predicted to stay smooth in 
the ideal case but to be rough on sufficiently large scales 
in the random case. In the latter casey a sharp crossover 
is found which could mimic a roughening transition. 
The interfacial free energy is discussed for T =O and for 
T > 0, and its scaling properties are used to determine 
the ECS. The details of this study will be presented else- 
where. 

Interfacial roughness: d -1 4- 1.- First, let us review 
the interfacial behavior in an ideal Penrose tiling4>'; see 
Fig. l(a). Within the cell model, the interface runs 
along the tile edges and has minimal energy when its 
normal points along one of the five possible edge orienta- 
tions. We take the x and z axes to be perpendicular and 
parallel to such an orientation. Now, the tiling can be 
decomposed into lanes and rows; see Fig. 1 (a). At T =O, 
the interface is confined to one of the lanes and is, there- 
fore, smooth. Howevery its ground state within a lane is 
degenerate. There are essentially two types of lanes, 
narrow and wide ones [see Fig. 1 (a)], with interfacial 

(a) (b) 

FIG. 1. Decomposition of (a) ideal and (b) random Penrose 
tiling into Ianes and shaded rows. The rows contain all tiles 
with two edges parallel to the z axis. 
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ground-state entropies per step, SN20.45 and Sw 
30.54, which form a Fibonacci sequence. Thus, the in- 
terface feels a quasiperiodic potential of entropic origin 
which has been studied within a lattice modeL4t5 
As a result, the difference correlation function, AC(X) 
zz { lz (x - z (0) I ')12, was found to behave as 

i.e., the interface is less rough than in a periodic system 
with C= &. 

Next, consider a random Penrose tiling as shown in 
Fig. 1 (b) which is obtained by "reshuffling" the tiles of 
the ideal tiling until one reaches a steady statee89' Such a 
tiling can again be decomposed into rows and lanes. 
However, the sharp division into two categories of wide 
and narrow lanes is now lost: The rows go up and down 
in an erratic fashion and frequently collide. On large 
scales, these behave like random walks with short-ranged 
repulsive interactions. The difference correlation func- 
tion of such a walk diverges l~garithmically.~ Thus, the 
difference correlation function, ACR(X), of a row in the 
random Penrose tiling behaves in the same way. This 
can be derived more systematically if one represents the 
random tiling by an undulating 2D hypersurface with 
coordinate hL(x,z) embedded in 5D space. It can be 
shown that, when the hypersurface is projected to make 
a tiling, A C ~ ( X )  -([hL(x,O) - h~(0 ,0)1  2). It has been 
argued2v8 that the hypersurface undulations are governed 
by a gradient-squared free energy of entropic origin. 
This leads again to ACR(X) -Ink).  Now, consider the 
cell model for the random tiling and an interface running 
along the tile edges. At T-0, the interface is confined 
to a lane, and 

For T > 0, the interface makes excursions from one 
lane to another. Within each lane, the interface samples 
a random sequence of contact zones where the two rows 
bounding the lane touch each other. Between two con- 
tact zones, the lane has a finite and highly variable 
width. An interface within such a lane has a unique 
ground state along the contact zones but a degenerate 
one between the zones. Now, consider a partition of the 
lane into segments m consisting of the same number b of 
steps within the lane. Then, the degeneracy gb (m) of 
the possible ground states within segment m gives rise to 
an effective random potential V(m = T ln[gb (m )l/b act- 
ing on the interface. Such a potential belongs to the 
same universality class as the 2D random-bond Ising 
model for which lo C= +. Therefore, 

Ac(x)-xZc with 6 -  for T >  0. (3) 

At low T, one has a crossover from (3) to the logarithm 
in (2). An interface, which samples -L entropically in- 
duced random bonds of strength -T, has free energy 
fluctuations of size -TL 'I2. This also represents the 

free energy which the interface of length L can gain in 
one lane compared with a neighboring lane. It will then 
stay within a lane for Lo- (J/T) steps in order to over- 
come the energy loss, J ,  from hopping across a row. 
Thus, (3) and (2) hold for x >>LO and x <<Lo, respec- 
tively. 

Interfacial roughness: d =2+ 1.-First, consider a 3D 
decagonal phase'' which is modeled by a periodic stack 
of an ideal or a random 2D Penrose tiling such that the 
tiles are parallelepipeds with four faces parallel to the 
fivefold axis. Within the cell model, an interface with a 
fivefold axis is parallel to the 2D tilings and feels a 
periodic potential, V(z =B cos(2zz 1, where z =z(xl, 
xz) is the interfacial height parallel to the fivefold axis. 
Such a potential leads to a roughening transition at 
T =TR > 0 as can be shown, e.g., l2 by renormalization 
up to v2. 

On the other hand, an interface within the ideal de- 
cagonal phase, which is perpendicular to the 2D Penrose 
tilings but paralllel to the rows within this tiling, feels a 
quasiperiodic potential of entropic origin as in d = 1 + 1. 
At T-0, such an interface is smooth. At T > 0, the 
quasiperiodic potential tends to reduce the interfacial 
roughness and, thus, to increase TR. In fact, TR may 
even become infinite. Indeed, renormalization up to v', 
when applied to V(z) = B  cos(2rz) +B&os(~zz/D) with 
lj,Bc< 0 and irrational D, leads to an i~finite stiffness, 
X ==, for a11 T > 0. l2 As argued below, 2 == implies a 
smooth interface in d =2+ I .  

An ideal icosahedral tiling can be constructed, e.g., by 
the dual-grid rne th~d . '~  Then the tiling is built up from 
parallelepipeds ([rhombohedra) and can be decomposed, 
for each of the six edge orientations, into parallel sheets 
and slabs. The sheets contain all tiles with four faces 
parallel to the chosen orientation, and the slabs are com- 
posed of the remaining tiles. At T=O, an interface 
parallel to the sheets is confined to a slab and, thus, is 
smooth. Furthe~rmore, it has a finite ground-state entro- 
py per unit area which should vary quasiperiodically 
from slab to slab. This should lead to TR == as men- 
tioned. 

Now, let us define a random icosahedral tiling in d =3 
just as in d =2. The random rearrangement of the tiles 
in the ideal structure leads to undulations and frequent 
collisions of the ,sheets. On large scales, these sheets can 
be described by a displacement field u(z,xl,x2), and an 
effective Hamiltonian for u which is harmonic in all 
three derivatives of u. It then follows that the sheets are 
smooth, and this also applies to an interface in the ran- 
dom tiling at T -0. At T > 0, the random fluctuations 
in the width of the slab act on the interface like random 
bonds with strength -T. Now, consider a step across a 
sheet which connects two interfacial segments within two 
neighboring slabls. A step segment of length L, which 
makes a transv~sse fluctuation -LL, sweeps -LLL 
new random bonds. It can then gain a free energy 
-T(LLL)'I2 since the scale of the random bonds is 
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again set by T. Thus? it behaves like a 1D interface in a 
2D random-field Ising model for which the random field 
is - T. This implies that the step free energy becomes 
scale dependent and vanishes on scales L >> Lo7 where LO 
is expected to be - ~ X ~ ( J / T ) ~ / ~ .  l4  Thus? it costs no free 
energy to create steps of length L>>Lo7 and the 2D in- 
terface is rough with 0 < C <  + as in the 3D random- 
bond Ising model. l5 

Interfacial free energy.-At T=Oy the step free ener- 
gy per tile? Zsy is equal to the step energy per tile? J. 
Now? consider a macroscopic interface and let 0 denote 
the tilt of the interface normal from its easy axis. Then7 
the interfacial free energy per unit area? Z7 behaves as 

At T > Oy (4) remains valid provided that Zs is still 
finite. For Zs =07 the 0 dependence of Z can be obtained 
as follows. Consider an interfacial segment of size L and 
area -L~- ' .  Its fluctuations have a typical amplitude? 
LL-LC. These fluctuations make two contributions to 
the free energy1'? (i) an overall increase in the bending 
energy per unit area? Ae - (LLIL) 27 and (ii) an overall 
loss of entropy per unit area7 As - - l / ~ ~ - ' .  Therefore? 
the total free-energy increase per unit area scales as 

with 

The exponent (6) agrees with various results for random 
systems. l6 The exponent (7) represents a new prediction 
which has been confirmed for d -2 in the context of wet- 
ting. l7  

The scaling behavior as given by (5)-(7) implies? via 
0 = L JLY that 

with 

Usuallyy one ha: k =2 for a rough interface implying a 
finite stiffness, g=Zo+ (a2~/W2)0.  However? it follows 
from (10) that Z is infinite in the ideal 2D Penrose tiling 
even though the interface is rough. On the other hand, 
this cannot happen in d a 3  since? in this case? the overall 
entropy loss - 11L cannot dominate the overall energy 
increase - (L L / ~  2. Therefore Z - w implies a smooth 
interface in d =3. 

Equilibrium crystal shape (ECS).- For the ideal and 
random 2D Penrose tilings? the interfacial free energy 
behaves as in (4) at T=O. Then the ECS is a regular 
decagona4y5 At T > Oy the decagon becomes rounded but 
the ECS is anomalously~at for the ideal tiling. Indeed7 

the Wulff construction together with (8) and (10) leads 
to an ECS which is given by z(x)  s z0[1- C(X/ZO) llc] 
for small x -sin (0) with ( < $ and c E < ( ~ 0 / ~ k  -c)lc. ' 

For the ideal and random 3D decagonal tiling defined 
above7 the Wulff construction leads to a T =O ECS com- 
posed of two decagons and ten rectangles which form a 
column with decagonal cross sectiona7 Such columns 
have been observed in the growth morphology of Al- 
Mn. l l For T > Oy the two decagonal facets undergo a 
roughening transition with 0 < T A ~ )  < w while? in the 
ideal tiling? the ten rectangular facets are likely to have 
~ k )  w as a result of the quasiperiodic potential. Fur- 
thermore? for T > Oy the facets will often be separated by 
rounded parts composed of terraces and steps. Let z(x) 
describe the ECS near an edge of a facet [at z(x=O) 
=Ol. Then the excess free energy of the steps is IAZ(1 
-HI11 where 1 is the mean step separation with 111 
-dz/dxy d l )  is given by (5Iy and1* H-x acts as an 
effective thermodynamic field. l9 Minimization of this 
free energy with respect to 1 leads to 

as x+ 0. It then follows from (6)? (1l7 (7)? and (3) that 
the edge of a decagonal facet has L = 1 + c(T) < and 
L=2 for the ideal and random case? respectively (while 
L = $ near the edge of a rectangular facet as for periodic 
crystals). 

For the 3D icosahedral tiling at T=Oy the ECS is 
composed of decagonal, hexagonal? and square  facet^.^^^ 
The decagonal facets are parallel to the sheets and slabs 
of the icosahedral tiling. Then? the above results on the 
interfacial roughness imply that these facets should stay 
smooth foi all T > 0 in the ideal quasicrystal. The edge 
of such a facet again has L = 1 + c(T) < *. For the ran- 
dom tiling? two T regimes must be distinguished: For 
T << J7 the scale Lo will exceed the size of the quasicrys- 
tal which implies that the ECS has decagonal pseu- 
dofacets; for T > J7 LO is microscopic and these facets 
have disappeared. Since LO depends exponentially on 
J/Ty this crossover will be sharp and thus could mimic a 
roughening transition. The steps near the edge of a de- 
cagonal pseudofacet feel an effective random field 
which implies 4 = 1 r =O and L = w indicating an essen- 
tial singularity of z(x 1. 

In summary7 we have determined the interfacial 
roughness for several models of 2D and 3D quasicrystals 
and its consequences for the ECS. Two aspects of our 
study should be accessible to experiments: (i) the 
thermal evolution of facets with a fivefold axis? and (ii) 
the singular behavior of the ECS near the edge of such 
facets. The shape of real crystals will often reflect the 
nonequilibrium growth conditions. However? for small 
crystals with a size of a few micrometers7 equilibration 
via surface diffusion could be rapid enough to obtain the 
ECS as has been observed7 e.g.? l8 for lead. Thus? we sug- 
gest systematic experiments on sufficiently small crystals 
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of Al-Cu-Li, Ga-Mg-Zn, and Al-Cu-Fe. 
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