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Abstract. - Unbinding transitions of amphiphilic membranes are studied by a renormalization
group (RG) approach. Both for fluid and for crystalline membranes, a whole line of RG fixed
points is found. Each line consists of two branches: one branch describes complete unbinding,
the other branch represents continuous unbinding transitions. The critical behaviour at the
unbinding transition exhibits three scaling regimes A), B), and C). Regime A) is characterized
by essential singularities, and regime B) by parameter-dependent critical exponents. In regime
C), a discontinuous transition with rather unusual scaling properties is expected by analogy with
wetting transitions.

Amphiphilic membranes play an essential role for the organization of biological systems
and for the polymorphism of microemulsions [1]. These membranes exhibit two different
types of interactions: i) direct interactions, , between planar membrane segments
arising from the intermolecular forces such as [2] van der Waals or electrostatic forces; and

ii) fluctuation-induced interactions, , as a result of thermally excited bending
modes [3, 4].

From a theoretical point of view, the interplay between and represents a
challenging problem, since it involves many length scales. Indeed, the smallest wavelength
of the membrane fluctuations is set by the size, , of the amphiphilic molecules, while
their largest wavelength is of the order of the membrane dimension, which is typically

. These fluctuations renormalize the direct interaction, , in a nontrivial
way. The renormalized interaction may be attractive or repulsive at large membrane
separation corresponding to a bound or an unbound state of the membranes. These two
different states are separated by a phase boundary at which the membranes undergo an
unbinding transition [4]. Such a transition which resembles a wetting transition [5] can also
occur for a membrane interacting with a solid wall.

The bending modes of a single membrane can be described by a variable, , which
measures the local distance of the membrane from a reference plane. The associated bending
energy depends on the internal structure of the membrane. For a fluid membrane, the
bending energy per unit area is given by , where is the bending rigidity and is
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the leading term of the mean curvature [6]. This form is valid for wave numbers ,
where [7] is the persistence length of the membrane and is the
temperature. For wave numbers , the membrane looses its orientation and starts to
crumble [7]. For the fluid phase of lipid bilayers and of biological membranes [8, 9],

erg which implies at room temperature. Thus, in these
systems, is large compared to the length scales which are experimentally accessible.

Lipid bilayers often exhibit crystalline phases in which the molecules form a lattice
and cannot diffuse freely. Free diffusion is also suppressed in polymerized membranes at
sufficiently high cross-linking [10]. Then, the variabile is coupled to the internal
displacement fields [11, 12]. At low , this leads to an effective rigidity [12]

(1) The bending energy per unit area for both membranes is . Then,
the linear transformation and leads to

with

for small . (1)

A self-consistent calculation gives , while a systematic perturbation expansion
yields

In this paper, the unbinding of membranes with will be studied. Two nontrivial
scaling regimes for the direct interactions, , are identified both of which are accessible to
experiments. The scaling properties within these regimes are analysed by a functional
renormalization group (RG) approach which leads to a simple differential recursion
relation [5]. In spite of its simplicity, this RG transformation is shown to predict a wide
variety of critical behaviour, since it leads to whole lines of RG fixed points both for fluid and
for crystalline membranes.

To proceed, consider two membrane segments with effective bending rigidities,
and K

2
/q , which are on average parallel. The effective Hamiltonian for their local

separation, , or its Fourier transform, , is taken to be

(2)

with (1) and . The first term in (2) represents the -
dependent part of the bending energies. For fluid membranes, , while
for crystalline (or polymerized) membranes. In the following, I will consider the general case
with

The second term in (2) represents the free-energy increase resulting from an external
pressure, , and from the direct interaction, , of the membranes. The direct interaction

includes hydration, van der Waals, and electrostatic forces [4, 1]. It has two generic
properties: i) it has a hard wall at , i.e. for ; and ii) it decays to zero for
large , i.e.

Now, assume that the membranes are in a bound state. Then, their fluctuations are
bounded as well, and have an amplitude . Furthermore, their longitudinal extension will
be set by another scale, . Following the scaling arguments developed in ref. [5, 4], the first
term in (2) leads to

with (3)
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This implies that the bending free energy per unit area scales as

with . (4)

The scaling form (4) can be used in order to classify the direct interactions, . Four
different scaling regimes must be distinguished [4, 5, 15]. Here I will study those two regimes at

[16] for which the critical behaviour cannot be obtained by the superposition ansatz,
: i) the intermediate-fluctuation (IFL) regime with ; and ii) the

strong-fluctuation (SFL) regime with for large .
For fluid membranes with , the SFL regime contains i) the usual van der Waals

attraction between two membranes which decays as , and ii) the van der Waals
attraction between a membrane and a solid wall which decays as . Two examples for
the IFL regime are: i) membranes interacting across a binary solution at its consolute point;
then, the critical concentration fluctuations lead to , compare ref. [17];
ii) membranes with adsorbed polymers; for two walls with adsorbed polymers,

has been theoretically predicted [18].
For crystalline membranes, the precise value of and, therefore, the precise boundary of

the SFL regime is presently unknown. For , the usual van der Waals attraction
between membranes would belong to the IFL regime; for , this interaction would still
belong to the SFL regime but then, the van der Waals attraction between a
membrane and a solid wall would lie in the IFL regime.

The functional renormalization group (RG) developed in ref. [5, 4] can also be applied to
the effective Hamiltonian as given by (2). In the infinitesimal rescaling limit with rescaling
factor , one obtains

(5)

where the prime indicates a derivative with respect to , and the scale factors are given by
and ( is the short-distance cut-off). The above differential

recursion also applies to wetting transitions in dimensions, provided is replaced by
and the scale factors and are chosen in an appropriate way [5].

It is convenient to use the dimensionless variables

and . (6)

Then, the flow equation becomes

(7)

The fixed points, , of finite RG transformation satisfy

(8)

Therefore, the rescaled fixed points depend only on one parameter, namely . This implies
that the unbinding of fluid membranes in is characterized by the same RG fixed points
as wetting in , since in both cases.

The differential equation (8) must be supplemented by appropriate boundary conditions.
These are i) the presence of a hard wall at with for , and ii)
for large . Local analysis of (8) shows that is not possible: any singularity at
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has the form and, thus, does not represent a wall. On the other
hand, a wall may be present at with

(9)

for small with and . The leading
term in (9) comes from the linear terms in (8), and thus involves the arbitrary coefficient .
However, must be positive which implies .

The tails of can be determined by linearizing (8). One finds two independent
solutions, and , with

and

(10)

(11)

for large with two independent coefficients, and . This indicates that all solutions to (8)

decay to zero for large irrespective of the value for in (9). This is indeed confirmed by
numerical integration of (8): each value of yields a unique solution, , with its tail
characterized by . The function is displayed in fig. 1 for

Fig. 1. - The function for . The parameter determines the wall of the fixed points, see eq.
(9); the parameter determines their tails, see eq. (10).

Thus, for each , the fixed-point equation (8) together with the boundary condition (9)

leads to a whole line of RG fixed points, , parameterized by . This line consists of
several parts as indicated in fig. 1. For , the fixed points are purely repulsive

and decay as for large . For , is still repulsive but decays as for
large since , see fig. 2a). For , the fixed points have an attractive
part, since with a power law tail . For , the tail of the attractive
part is short-ranged and behaves as , see fig. 2a). For , the fixed points
are repulsive for large , but attractive for small , see fig. 2b).

In order to understand the physical meaning of these fixed points, one must analyse the
nature of their eigenperturbations, . These perturbations are governed by

(12)

.
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Fig. 2. - a) The fixed points have a minimum, the fixed points are purely
repulsive. The full and dashed curves are for and , respectively, b) Fixed points with

and for (full curve) and (dashed curve).

which follows from (8) by linearization. This linear problem can be analysed in detail [19].
For each , the RG flow is found to change its character at : i) for , there is no
relevant perturbation with ; ii) for , there is exactly one such perturbation with

Inspection of (12) shows that depends only on and, via , on . The
function as determined from (12) behaves as for small ,
increases monotonically with , and has the limiting behaviour for large . The
case includes wetting in for which can be determined exactly. Using the

results of ref. [15], one finds

(13)

From the above analysis, one can identify three subregimes A), B), and C) within the
IFL regime. The SFL regime is then viewed as a special case in subregime B). As
mentioned, these regimes contain all direct interactions, , which decay at
least as     for large  .

Subregime A). - For , one has no fixed point and the minimum of becomes
deeper and deeper under the RG which implies a bound state of the membranes. As
from below, the membranes can undergo a continuous unbinding transition characterized by
a vanishing scaling index . This scaling index determines the critical exponent, , for
the divergence of the correlation length [5, 4]: . Thus, at ,
corresponding to an essential singularity of [19].

Subregime B). - For , the RG is governed by two fixed points: i) one of these
fixed points has and no relevant perturbation. It describes the completely
unbounded state of the membranes; ii) the second fixed point has and one relevant
perturbation with scaling index . It represents a continuous unbinding transition with

which depends on , and .
The case corresponds to the SFL regime: it contains all direct interactions, ,

which decay faster than for large . The RG flow within this regime is again governed by
two fixed points as has been found previously from functional renormalization with rescaling
factor [5, 4]. For , the numerical values and were

for

for
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found for wetting in [5] and for fluid membranes in [4]. These values for
compare very well with presumably exact value which follows from (13) for
Thus, the SFL regime for fluid membranes is characterized by

When the RG with is applied to membranes with and ,

one obtains and , respectively. It follows that the SFL regime for
crystalline membranes is characterized by a universal value for with

It is important to notice that only two fixed points are found for the SFL regime. This
implies the absence of tricritical behaviour and, therefore, the absence of discontinuous
unbinding transitions within the SFL regime: the fluctuations are so strong that they
overcome any potential barrier of the direct interaction.

For , the RG flow is still governed by two fixed points. Within the RG approach used
here, all unbinding transitions with are predicted to have the same character as the
continuous transition for . However, it follows by analogy with wetting in [15] that
this holds only up to a boundary value, with

Subregime C). - For , the unbinding transitions are expected to acquire very
unusual properties. Indeed, for wetting in , the transition is discontinuous in that the
interfacial energy exhibits a jump, but the correlation length and the moments

, for sufficiently large , diverge in a continuous fashion (where
independent of ) [15, 20]. This reflects the strongly non-Gaussian character of the surface
fluctuations: at the unbinding transition, the distribution, , which gives the probability
to find a certain value for , has a power law tail for large with as
follows from the results of ref. [15]. Thus, the distribution is scale-invariant. Similar
behaviour with should also occur for fluid and crystalline membranes in
For fluid membranes with , I expect that the tail of exhibits the same power law
as for wetting in [21].

In summary, the interplay between fluctuations and interactions of membranes leads to
unbinding transitions which can exhibit a wide variety of critical behaviour. These critical
phenomena should be accessible to experiments on the cohesion of vesicles and on the
swelling of lamellar phases. Particularly interesting behaviour should be observable for the
unbinding of fluid membranes which are separated by a (near) critical solution close to its
consolute point. Finally, one might speculate about the biological relevance of these
phenomena. Indeed, near an unbinding transition, a small change in the physical
parameters leads to a large change in the state of the membranes. Therefore, these
transitions represent a possible mechanism by which biological cells could alter their
separation in a very efficient way.

* * *
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REFERENCES

[1] See, e.g., Physics of Amphiphilic Layers, edited by J. MEUNIER, D. LANGEVIN and N. BOCCARA,
Springer Proceedings in Physics, Vol. 21 (Springer-Verlag, Berlin) 1987.

[2] See, e.g., ISRAELACHVILI J. N., Intermolecular and Surface Forces (Academic Press, New
York, N.Y.) 1985).

[3] HELFRICH W., Z. Naturforsch. Teil A, 33 (1978) 305.
[4] LIPOWSKY R. and LEIBLER S., Phys. Rev. Lett., 56 (1986) 2541; Erratum, 59 (1987) 1983; and p.

98 in ref. [1].



R. LIPOWSKY: LINES OF RENORMALIZATION GROUP FIXED POINTS ETC.                          261

[5] LIPOWSKY R. and FISHER M. E., Phys. Rev. Lett., 57 (1986) 2411; Phys. Rev. B, 36 (1987) 2126.
[6] HELFRICH W., Z. Naturforsch. Teil C, 28 (1973) 693.
[7] DE GENNES P.-G. and TAUPIN C., J. Phys. Chem., 88 (1982) 2294.
[8] For the rigidity of lecithin membranes, see BEBLIK S., SERVUSS R. M. and HELFRICH W., J.

Phys. (Paris), 46 (1985) 1773.
[9] For the rigidity of the plasma membrane of red blood cells, see ZILKER A., ENGELHARDT H. and

SACKMANN E., J. Phys. (Paris), 48 (1987) 2139.
[10] SACKMANN E., EGGL P., FAHN C., BADER H., RINGSDORF H. and SCHOLLMAIER M., Ber.

Bunsenges. Phys. Chem., 89 (1985) 1198.
[11] LANDAU L. D. and LIFSCHITZ E. M., Elastizitätstheorie (Akademie-Verlag, Berlin) 1975.
[12] NELSON D. R. and PELITI L., J. Phys. (Paris), 48 (1987) 1085.
[13] DAVID F. and GUITTER E., Europhys. Lett., 5 (1988) 709.
[14] The case also applies to hexotic membranes which have been studied in ref. [12] and by

DAVID F., GUITTER E. and PELITI L., J. Phys. (Paris), 48 (1987) 2059.
[15] LIPOWSKY R. and NIEUWENHUIZEN T. M., J. Phys. A, 21 (1988) L-89.
[16] For complete unbinding and , the mean separation, , of the membranes grows as

with see ref. [4] and LEIBLER S. and LIPOWSKY R., Phys. Rev. Lett., 58 (1987) 1796;
Phys. Rev. B, 35 (1987) 7004.

[17] FISHER M. E. and DE GENNES P.-G., C.R. Seances Acad. Sci., Ser. B, 287 (1978) 207.
[18] DE GENNES P.-G., Macromolecules, 15 (1982) 492.
[19] LIPOWSKY R., to be published.
[20] Discontinuous transitions also occur in the necklace model for three or more random walkers, see

HUSE D. A. and FISHER M. E., Phys. Rev. B, 29 (1984) 239. It has been recently shown by
FISHER M. E. and GEL'FAND M. P. (to be published) that these transitions have properties which
are very similar to those in subregime C).

[21] HELFRICH W. (private communication) has also obtained a scale-invariant for fluid
membranes interacting with


