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Parabolic Renormalization-Group Flow for Interfaces and Membranes
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The effective interaction between interfaces or membranes is renormalized by thermally excited shape
fluctuations of these surfaces. For a large class of interactions, this renormalization leads to a complex
phase diagram which is governed by an unusual renormalization-group flow. This flow exhibits a line of
renormalization-group fixed points and leads to essential singularities and nonuniversal critical ex-
ponents; it must, however, be distinguished from the well-known Kosterlitz-Thouless flow since it has a
parabolic character.

PACS numbers: 05.70.Jk, 68.10.Cr, 87.22.-q

The macroscopic shape of interfaces and membranes
reflects their elastic properties. The shape of interfaces
separating two different phases is controlled by surface
(or interfacial) tension: For liquids, the tension is
isotropic and leads to spherical droplets; for crystals, the
tension is anisotropic and can lead to the formation of
facets. On the other hand, the shape of membranes,
which are sheets of amphiphilic molecules, is controlled
by bending rigidity. This can lead to nonconvex shapes
as observed for lipid vesicles and red blood cells.1

On mesocopic scales, interfaces and membranes undu-
late and, thus, change their shape as a result of thermal-
ly excited fluctuations.1-3 In this paper, I will be con-
cerned with fluctuations away from nearly planar sur-
faces. Then, the elastic energy per unit area is given by

, where describes the deviation of the sur-
face shape from its planar reference state. For inter-
faces, this energy arises from the change in surface area:

is the interfacial stiffness and . For membranes,
this energy represents the bending energy which is given
by the squared mean curvature: is the bending rigidity
and .1,4,5

In many physical systems, one encounters two or more
surfaces which are, on average, parallel. Such a behav-
ior is found, e.g., for (i) wetting, surface melting, and re-
lated phenomena; (ii) adhesion of vesicles or biological
cells; and (iii) lyotropic liquid crystals consisting of
stacks of membranes.1-3 In all cases, the surfaces ex-
perience a mutual interaction. The direct interaction

between two planar surfaces with separation
reflects the intermolecular forces such as van der Waals
electrostatic forces. This interaction has two generic
features: (i) It contains a hard wall, i.e., for

which prevents intersections of the surfaces; and
(ii) it decays to zero for large (in the absence of exter-
nal forces).

It has been realized recently that the direct interaction
is renormalized by the thermally excited shape fluc-

tuations described above. This renormalization can be
studied in a systematic way starting from the effective

Hamiltonian6,7

(1)

with an implicit small-distance cutoff , where now
measures the separation of two dimensional in-
terfaces or membranes.5,8 At finite temperature ,
the statistical weight for is then given by

It will be shown below that the models (1) lead to the
renormalization-group (RG) flow shown in Fig. 1 when-
ever . The two coordinates, and ,
parametrize the tails of according to9

(2)

for large with

(3)

Thus, is the rescaled amplitude of a long-ranged
power-law tail while is the rescaled amplitude of a
short-ranged Gaussian tail. The parabola displayed in
Fig. 1 is a line of RG fixed points. This line has two

FIG. 1. Parabolic renormalization-group flow in the interac-
tion subspace with coordinates and . The line of
fixed points has two branches, and .
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branches, and , which merge at the
bifurcation point (see Fig. 1). All parameter
values which flow into the upper branch correspond to
unbound states of the surfaces. All parameter values
which are mapped under the RG to large negative values
of correspond to bound states of the surfaces. The
separatrix between these two regions of the space
is the locus of critical unbinding transitions. This locus
consists (A) of the unique RG trajectory which flows
into the bifurcation point , and (B) of the
lower branch of the line of fixed points. The critical
behavior along part (A) and part (B) is characterized by
essential singularities and by dependent critical ex-
ponents, respectively, see Eqs. (16)-(18) below.

In general, the direct interaction between two
surfaces contains various contributions and, thus, will in-
volve a large number of parameters. However, as far as
the universal aspects of the critical behavior are con-
cerned, all features of are irrelevant apart from the
character of its tail at large Now, consider the space
of all interactions which behave as

with for large For each function
, the phase diagram in the space is

predicted to have the same topology as in Fig. 1. This
follows from the RG flow which maps all spaces
onto the space shown in Fig. 1: All interactions
which correspond to unbound surface states or critical
unbinding transitions are again mapped onto the two
branches, and , of RG fixed points. Therefore, the
phase diagram in Fig. 1 is not restricted to the interac-
tions given by (2) but applies, in fact, to a much larger
class of interactions.

The flow shown in Fig. 1 follows from the differential
recursion relation

(4)

with flow parameter and . This will be derived
below from a functional RG approach6,7,10 which repre-
sents an extension of Wilson's approximate recursion re-
lations.11 In terms of the transformed coordinates,

and , Eq. (4) be-
comes and . Then de-
scribes the line of fixed points, and the RG trajectories
are parabolas given by const.12,13

It is instructive to compare the flow given by (4) with
other RG flows. The critical behavior at a bulk critical
point is governed by one nontrivial RG fixed point.1,14

On the other hand, the Kosterlitz-Thouless transition
also involves a whole line of fixed points. However, if

represents this latter line, the associated flow is
given by and , and the RG
trajectories are hyperbolas given by const rath-
er than parabolas.

The topologies of the hyperbolic Kosterlitz-Thouless

flow and of the parabolic flow derived here are quite
different.12 The separatrix for the hyperbolic flow con-
sists of the fixed-point line with and of two straight
lines with . In contrast, the separatrix for
the parabolic flow consists of the fixed-point line with

and of one parabolic piece given by
For infinitesimal rescaling factor , the func-

tional RG developed in Refs. 6 and 7 leads to

(5)

For the models given by (1), one has for
and for . The parame-
ters and represent scale fac-
tors.6,10

A RG fixed point satisfies . It fol-
lows from (5) that there is no (nontrivial) fixed point for

,6 but a whole line of fixed points for .10 This
line has been previously parametrized by the parameter

which governs the form of for small In
terms of the dimensionless variables and

, the fixed points behave as10

(6)

for small , and

(7)

for large , where the amplitudes and are uniquely
determined by .

Numerical integration of the fixed-point equation re-
veals (i) that has a unique minimum at
and, thus, close to

; and (ii) that has two zeros at and
. The function is displayed in Fig. 2

and the parameters , , and are given in Table
I for several values of . Inspection of this table shows
that these parameters are singular both at small and at
large .

The function is more difficult to determine ex-

FIG. 2. The function for , 2, and 3. This
function has a unique minimum at with

; compare with Table I.
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TABLE I. dependence (i) of , , and which characterize the minimum of
and (ii) of and which govern the relevant eigenvalue , see Eq. (13). The numerical er-
ror is of the order of a few percent.

cept for and , where : One
finds and corresponding to a
repulsive and an attractive Gaussian tail, respectively.
For , should increase monotonically.
Then, the line of fixed points can be rewritten as

(8)

for small
The eigenperturbations at the fixed points

are governed by

(9)

Two eigenperturbations can be found exactly: (i) the
marginal perturbation with eigenvalue

which gives an infinitesimal translation along the
line of fixed points; and (ii) the irrelevant (and redun-
dant) perturbation with eigenvalue

For small , both and behave as

(10)

This relation will be imposed, for all , as the boundary
condition for small . The second, linearly independent
solution to (9) blows up exponentially

at small . Such a perturbation would change the
character of the wall region and will be discarded.15

For large , the general solution to (9) behaves as

(11)

with . If a relevant perturbation with
had a power-law tail , it would dominate the
tail of . Therefore, the boundary condition at
large is taken to be

(12)

Numerical integration of (9) shows that there is exact-
ly one relevant perturbation, , with eigenvalue

for . As from below, goes
to zero and becomes proportional to
This implies . It then follows from

an expansion around the bifurcation point that
. On the other hand, one has

which leads to

(13)

The parameters and as determined from (9) and
(12) are given in Table I.

Now, consider . Close to the bifurca-
tion point, one then has

(14)

for large , with as in (8), and terms of
neglected. Under the RG with rescaling factor ,
remains unchanged while for small

. It then follows from (8) and (13) that and are
renormalized according to (4) with

(15)

As the interfaces or membranes unbind, long-ranged
correlations build up along the surfaces which are
governed by the longitudinal correlation length . The
RG flow given by (4) and (15) implies the following
singular behavior for : (i) Along the branch with

, one has with

(16)

(ii) For , integration of (4) gives
with . Then, matching at

with implies for small and

(17)

as approaches from below. (iii) For , the
same matching procedure leads to

(18)

as approaches from below.
The flow equation (4) has been derived in the vicinity

of the bifurcation point at . However, for
, the form of this equation is valid for all values of

up to a maximal value, . This follows by com-
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parison with the exact critical behavior for wetting tran-
sitions with and .16 One then finds that
the form of the singularities as given by (16)-(18) is ex-
act provided . For , one enters subre-
gime (C) of Ref. 16 in which the continuous unbinding
transition is preempted by a discontinuous transition.17,18

For , a parabolic RG flow as in (4) gives the ex-
act critical behavior even far away from the bifurcation
point. For general should still apply globally
but the flow equation for should contain correction
terms, with , which will affect

the flow far from the bifurcation point. One might hope
that such a flow can be calculated perturbatively in the
limit of large or small . However, for or ,
only the trivial fixed point has been found.6

Therefore, the evolution of the line of fixed points is
highly singular for large . Unfortunately, the limit of
small is also singular as can be seen from Table I.
Therefore, a small parameter which allows for a pertur-
bative calculation of the RG flow for interacting surfaces
remains to be found.

I thank Daniel M. Kroll for a critical reading of the
manuscript.
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