Parabolic Renormalization-Group Flow for Interfaces and Membranes

Reinhard Lipowsky^(a)

Institut für Festkörperforschung, Kernforschungsanlage Jülich GmbH, Postfach 1913, D-5170 Jülich, West Germany (Received 31 May 1988; revised manuscript received 13 December 1988)

The effective interaction between interfaces or membranes is renormalized by thermally excited shape fluctuations of these surfaces. For a large class of interactions, this renormalization leads to a complex phase diagram which is governed by an unusual renormalization-group flow. This flow exhibits a line of renormalization-group fixed points and leads to essential singularities and nonuniversal critical exponents; it must, however, be distinguished from the well-known Kosterlitz-Thouless flow since it has a parabolic character.

PACS numbers: 05.70.Jk, 68.10.Cr, 87.22.-q

The macroscopic shape of interfaces and membranes reflects their elastic properties. The shape of *interfaces* separating two different phases is controlled by surface (or interfacial) *tension:* For liquids, the tension is isotropic and leads to spherical droplets; for crystals, the tension is anisotropic and can lead to the formation of facets. On the other hand, the shape of *membranes*, which are sheets of amphiphilic molecules, is controlled by *bending rigidity*. This can lead to nonconvex shapes as observed for lipid vesicles and red blood cells.¹

On mesocopic scales, interfaces and membranes undulate and, thus, change their shape as a result of thermally excited fluctuations.¹⁻³ In this paper, I will be concerned with fluctuations away from nearly planar surfaces. Then, the elastic energy per unit area is given by $\frac{1}{2} K(\nabla^n l)^2$, where $l(\mathbf{x})$ describes the deviation of the surface shape from its planar reference state. For interfaces, this energy arises from the change in surface area: K is the interfacial stiffness and n=1. For membranes, this energy represents the bending energy which is given by the squared mean curvature: K is the bending rigidity and n=2.^{1,4,5}

In many physical systems, one encounters two or more surfaces which are, on average, parallel. Such a behavior is found, e.g., for (i) wetting, surface melting, and related phenomena; (ii) adhesion of vesicles or biological cells; and (iii) lyotropic liquid crystals consisting of stacks of membranes.^{1.3} In all cases, the surfaces experience a mutual *interaction*. The direct interaction V(l) between two *planar* surfaces with separation l reflects the intermolecular forces such as van der Waals electrostatic forces. This interaction has two generic features: (i) It contains a hard wall, i.e., $V(l) = \infty$ for l < 0 which prevents intersections of the surfaces; and (ii) it decays to zero for large l (in the absence of external forces).

It has been realized recently that the direct interaction V(l) is *renormalized* by the thermally excited shape fluctuations described above. This renormalization can be studied in a systematic way starting from the effective

Hamiltonian^{6,7}

$$\mathcal{H}\{l\} = \int d^{d-1} x \{ \frac{1}{2} K(\nabla^n l)^2 + V(l) \}, \qquad (1)$$

with an implicit small-distance cutoff a, where $l(\mathbf{x})$ now measures the separation of two (d-1)-dimensional interfaces or membranes.^{5,8} At finite temperature T > 0, the statistical weight for $l(\mathbf{x})$ is then given by $\exp[-\mathcal{H}\{l\}/T]$

It will be shown below that the models (1) lead to the renormalization-group (RG) flow shown in Fig. 1 whenever d < 2n+1. The two coordinates, $\rho \sim R$ and $\bar{\rho} \sim \bar{R}$, parametrize the *tails* of V(l) according to⁹

$$V(l) \approx R/l^{t} + \bar{R}l^{t-1} \exp[-(l/l_0)^2]$$
(2)

for large *l*, with

$$\tau \equiv 2(d-1)/(2n+1-d).$$
 (3)

Thus, ρ is the rescaled amplitude of a long-ranged power-law tail while $\bar{\rho}$ is the rescaled amplitude of a short-ranged Gaussian tail. The parabola displayed in Fig. 1 is a line of RG fixed points. This line has two

FIG. 1. Parabolic renormalization-group flow in the interaction subspace with coordinates $\rho \sim R$ and $\bar{\rho} \sim \bar{R}$. The line of fixed points has two branches, $\bar{\rho}_0$ and $\bar{\rho}_c$.

© 1989 The American Physical Society

branches, $\bar{\rho} - \bar{\rho_c}(\rho)$ and $\bar{\rho} - \bar{\rho_0}(\rho)$, which merge at the bifurcation point ($\rho_{ES}, \bar{\rho}_{ES}$) (see Fig. 1). All parameter values which flow into the upper branch $\bar{\rho_0}$ correspond to unbound states of the surfaces. All parameter values which are mapped under the RG to large negative values of $\bar{\rho}$ correspond to *bound states* of the surfaces. The separatrix between these two regions of the ($\rho, \bar{\rho}$) space is the locus of *critical unbinding transitions*. This locus consists (A) of the unique RG trajectory which flows into the bifurcation point ($\rho_{ES}, \bar{\rho}_{ES}$), and (B) of the lower branch $\bar{\rho_c}$ of the line of fixed points. The critical behavior along part (A) and part (B) is characterized by essential singularities and by ρ -dependent critical exponents, respectively, see Eqs. (16)-(18) below.

In general, the direct interaction V(l) between two surfaces contains various contributions and, thus, will involve a large number of parameters. However, as far as the universal aspects of the critical behavior are concerned, all features of V(l) are *irrelevant* apart from the character of its tail at large *l*. Now, consider the space of all interactions which behave as $V(l) \approx R/l^{\tau}$ $+C_W W(l)$ with $R \sim \rho$ for large *l*. For each function $W(l) \ll 1/l^{\tau}$, the phase diagram in the (ρ, C_W) space is predicted to have the same topology as in Fig. 1. This follows from the RG flow which maps all (ρ, C_W) spaces onto the $(\rho, \bar{\rho})$ space shown in Fig. 1: All interactions which correspond to unbound surface states or critical unbinding transitions are again mapped onto the two branches, $\bar{\rho}_0$ and $\bar{\rho}_c$, of RG fixed points. Therefore, the phase diagram in Fig. 1 is not restricted to the interactions given by (2) but applies, in fact, to a much larger class of interactions.

The flow shown in Fig. 1 follows from the differential recursion relation

$$\frac{\partial \rho}{\partial t} = 0, \qquad (4)$$

$$\frac{\partial \bar{\rho}}{\partial t} = c_1(\rho - \rho_{ES}) - c_2(\bar{\rho} - \bar{\rho}_{ES})^2,$$

with flow parameter t and $c_1, c_2 > 0$. This will be derived below from a functional RG approach^{6,7,10} which represents an extension of Wilson's approximate recursion relations.¹¹ In terms of the transformed coordinates, $x \equiv c_2(\bar{\rho} - \bar{\rho}_{ES})$ and $y \equiv x^2 - c_1c_2(\rho - \rho_{ES})$, Eq. (4) becomes $\partial x/\partial t = -y$ and $\partial y/\partial t = -2xy$. Then y = 0 describes the line of fixed points, and the RG trajectories are *parabolas* given by $y = x^2 + \text{const.}^{12,13}$

It is instructive to compare the flow given by (4) with other RG flows. The critical behavior at a *bulk* critical point is governed by *one* nontrivial RG fixed point.^{1,14} On the other hand, the Kosterlitz-Thouless transition also involves a whole line of fixed points. However, if $\tilde{y} = 0$ represents this latter line, the associated flow is given by $\partial \tilde{x}/\partial t = -\tilde{y}^2$ and $\partial \tilde{y}/\partial t = -\tilde{x}\tilde{y}$, and the RG trajectories are *hyperbolas* given by $\tilde{y}^2 = \tilde{x}^2$ +const rather than parabolas.

The topologies of the hyperbolic Kosterlitz-Thouless

flow and of the parabolic flow derived here are quite different.¹² The separatrix for the hyperbolic flow consists of the fixed-point line with $\tilde{x} < 0$ and of *two* straight lines with $\tilde{y} = \pm |c_h| \tilde{x}$. In contrast, the separatrix for the parabolic flow consists of the fixed-point line with x < 0 and of *one* parabolic piece given by $y = |c_p| x^2$

For infinitesimal rescaling factor $b \rightarrow 1 + \Delta t$, the functional RG developed in Refs. 6 and 7 leads to

$$V/\partial t = (d-1)V + \zeta l \,\partial V/\partial l$$

$$+ \frac{1}{2} v \ln[1 + (a_1^2/v) \partial^2 V/\partial l^2].$$
 (5)

For the models given by (1), one has $\zeta = 0$ for $d \ge 2n+1$ and $\zeta = (2n+1-d)/2 > 0$ for d < 2n+1. The parameters $a_{1}^{2} \sim (T/K)a^{2\zeta}$ and $v \sim T/a^{d-1}$ represent scale factors.

A RG fixed point $V^*(l)$ satisfies $\partial V^*/\partial t = 0$. It follows from (5) that there is no (nontrivial) fixed point for $\zeta = 0$,⁶ but a whole line of fixed points for $\zeta > 0$.¹⁰ This line has been previously parametrized by the parameter $\sigma > 0$ which governs the form of $V^*(l)$ for small *l*. In terms of the dimensionless variables $z \equiv (2\zeta)^{1/2} l/a_{\perp}$ and $U(z) \equiv 2\zeta V(l)/v$, the fixed points U^* behave as¹⁰

$$U^{*}(z) \approx \sigma/z^{\tau} + [(\tau+2)/\tau] \ln(z) \text{ with } \sigma > 0 \qquad (6)$$

for small z, and

9

$$U^{*}(z) \approx \rho(\sigma)/z^{\tau} + \bar{\rho}(\sigma)z^{\tau-1}\exp(-z^{2}/2)$$
(7)

for large z, where the amplitudes ρ and $\bar{\rho}$ are uniquely determined by σ .

Numerical integration of the fixed-point equation reveals (i) that $\rho(\sigma)$ has a unique minimum at $\sigma = \sigma_{ES}$ and, thus, $\rho(\sigma) \approx \rho_{ES} + \frac{1}{2}R_1(\sigma - \sigma_{ES})^2$ close to $\sigma = \sigma_{ES}$; and (ii) that $\rho(\sigma)$ has two zeros at $\sigma = \sigma_{OS}$ and $\sigma = \sigma_{CS} < \sigma_{OS}$. The function $\rho(\sigma)$ is displayed in Fig. 2 and the parameters σ_{ES} , ρ_{ES} , and R_1 are given in Table I for several values of τ . Inspection of this table shows that these parameters are *singular* both at small and at large τ .

The function $\bar{\rho}(\sigma)$ is more difficult to determine ex-

FIG. 2. The function $\rho = \rho(\sigma)$ for $\tau = \frac{1}{2}$, 2, and 3. This function has a unique minimum at $\sigma = \sigma_{ES}$ with $\rho - \rho_{ES} \approx \frac{1}{2} R_1 (\sigma - \sigma_{ES})^2$; compare with Table I.

705

TABLE I. τ dependence (i) of σ_{ES} ρ_{ES} , and R_1 which characterize the minimum of $\rho(\sigma)$ and (ii) of *L* and ω/ζ which govern the relevant eigenvalue λ_1 , see Eq. (13). The numerical error is of the order of a few percent.

τ	σ _{ES}	$-\rho_{ES}$	R_1	L	ω/ζ
1 8	125	21.8	0.17	0.019	0.065
14	31.5	8.36	0.28	0.059	0.16
$\frac{1}{2}$	9.05	3.00	0.36	0.155	0.37
1	3.83	1.15	0.35	0.313	0.75
2	4.12	0.73	0.14	0.304	1.16
3	9.9	1.06	3.4×10^{-2}	0.134	1.03
4	35	2.37	6.3×10^{-3}	0.040	0.72
8	35 700	520	1.5×10^{-6}	4.5×10 ⁻⁵	0.051

cept for $\sigma = \sigma_{OS}$ and $\sigma = \sigma_{CS}$, where $\rho(\sigma) = 0$: One finds $\bar{\rho}(\sigma_{OS}) > 0$ and $\bar{\rho}(\sigma_{CS}) < 0$ corresponding to a repulsive and an attractive Gaussian tail, respectively. For $\sigma_{CS} < \sigma < \sigma_{OS}$, $\bar{\rho}(\sigma)$ should increase monotonically. Then, the line of fixed points can be rewritten as

$$\rho(\bar{\rho}) \approx \rho_{ES} + \frac{1}{2} R_2 (\bar{\rho} - \bar{\rho}_{ES})^2 \tag{8}$$

for small $\bar{\rho} - \bar{\rho}_{ES}$

The eigenperturbations $f_{\lambda}(z)$ at the fixed points $U^{*}(z)$ are governed by

$$[(\tau - \lambda/\zeta) + z \,\partial/\partial z + (1 + \partial^2 U^*/\partial z^2)^{-1} \partial^2/\partial z^2] f_\lambda(z) = 0.$$
(9)

Two eigenperturbations can be found exactly: (i) the marginal perturbation $f_0 \equiv \partial U^* / \partial \sigma$ with eigenvalue $\lambda = 0$ which gives an infinitesimal translation along the line of fixed points; and (ii) the irrelevant (and redundant) perturbation $f_{-\zeta} \equiv \partial U^* / \partial z$ with eigenvalue $\lambda = -\zeta$.

For small z, both f_0 and $f_{-\zeta}$ behave as

$$f_{\lambda}(z) \sim 1/z^{\tau - \lambda/\zeta}.$$
 (10)

This relation will be imposed, for all λ , as the boundary condition for small z. The second, linearly independent solution to (9) blows up exponentially $-\exp[(\tau+1)\sigma/z^{\tau}]$ at small z. Such a perturbation would change the character of the wall region and will be discarded.¹⁵

For large z, the general solution to (9) behaves as

$$f_{\lambda}(z) \approx C/z^{\tau-\lambda/\zeta} + Dz^{\tau-1-\lambda/\zeta} \exp(-z^2/2), \qquad (11)$$

with $C = C(\sigma, \lambda/\zeta)$. If a relevant perturbation with $\lambda > 0$ had a power-law tail $\approx C/z^{\tau-\lambda/\zeta}$, it would dominate the tail of $U^* \approx \rho/z^{\tau}$. Therefore, the boundary condition at large z is taken to be

$$C(\sigma,\lambda/\zeta) = 0$$
 for $\lambda > 0$. (12)

Numerical integration of (9) shows that there is exactly *one* relevant perturbation, $f_1(z)$, with eigenvalue $\lambda = \lambda_1 > 0$ for $\sigma < \sigma_{ES}$. As $\sigma \rightarrow \sigma_{ES}$ from below, λ_1 goes to zero and f_1 becomes proportional to $f_0 = \partial U^* / \partial \sigma$. This implies $C(\sigma_{ES}, \lambda_1 / \zeta = 0) = 0$. It then follows from

an expansion around the bifurcation point that $\lambda_1/\zeta \approx L(\sigma_{ES} - \sigma)$. On the other hand, one has $\rho - \rho_{ES} \approx \frac{1}{2} R_1 (\sigma - \sigma_{ES})^2$ which leads to

$$\lambda_1 \approx \omega (\rho - \rho_{ES})^{1/2} \text{ with } \omega / \zeta \equiv L(2/R_1)^{1/2}.$$
(13)

The parameters L and ω/ζ as determined from (9) and (12) are given in Table I.

Now, consider $U \equiv U^* + \Delta \bar{\rho} f_1$. Close to the bifurcation point, one then has

$$U(z) \approx \rho(\bar{\rho})/z^{\tau} + (\bar{\rho} + \Delta \bar{\rho}) z^{\tau-1} \exp(-z^2/2) \qquad (14)$$

for large z, with $\rho(\bar{\rho})$ as in (8), and terms of $O(\lambda_1 \ln(z))$ neglected. Under the RG with rescaling factor b, ρ remains unchanged while $\bar{\rho} + \Delta \bar{\rho} \rightarrow \bar{\rho} + b^{\lambda_1} \Delta \bar{\rho}$ for small $\Delta \bar{\rho}$. It then follows from (8) and (13) that ρ and $\bar{\rho}$ are renormalized according to (4) with

$$c_1 = \omega/(2R_2)^{1/2}$$
 and $c_2 = \frac{1}{2}R_2c_1$. (15)

As the interfaces or membranes unbind, long-ranged correlations build up along the surfaces which are governed by the longitudinal correlation length ξ_{\parallel} . The RG flow given by (4) and (15) implies the following singular behavior for ξ_{\parallel} : (i) Along the branch $\bar{\rho_c}$ with $\rho > \rho_{ES}$, one has $\xi_{\parallel} \sim (\bar{\rho} - \bar{\rho_c})^{-\nu_1}$ with

$$v_{\parallel} = 1/\lambda_1 = 1/\omega(\rho - \rho_{ES})^{1/2}$$
. (16)

(ii) For $\rho = \rho_{ES}$, integration of (4) gives $t \sim [1/y(t) - 1/y(0)]$ with $y \equiv \bar{\rho} - \bar{\rho}_{ES}$. Then, matching at $t = t_m$ with $y(t_m) \sim 1$ implies $t_m \sim -1/y(0)$ for small y(0) and

$$\xi_{\parallel} \sim \exp(t_m) \sim \exp\{2\sqrt{2}/\omega\sqrt{R_2}(\bar{\rho}_{ES} - \bar{\rho})\}, \qquad (17)$$

as $\bar{\rho}$ approaches $\bar{\rho}_{ES}$ from below. (iii) For $\rho < \rho_{ES}$, the same matching procedure leads to

$$\xi_{\parallel} \sim \begin{cases} \exp[2\pi/\omega(\rho_{ES}-\rho)^{1/2}] \text{ for } \bar{\rho} > \bar{\rho}_{ES}, \\ \exp[\pi/\omega(\rho_{ES}-\rho)^{1/2}] \text{ for } \bar{\rho} = \bar{\rho}_{ES}, \end{cases}$$
(18)

as ρ approaches ρ_{ES} from below.

The flow equation (4) has been derived in the vicinity of the bifurcation point at $(\rho_{ES}, \bar{\rho}_{ES})$. However, for $\tau = 2$, the form of this equation is valid for *all* values of ρ up to a maximal value, $\rho = \rho_{DIS}$. This follows by comparison with the exact critical behavior for wetting transitions with n=1 and d=1+1.¹⁶ One then finds that the form of the singularities as given by (16)-(18) is *exact* provided $\rho < \rho_{DIS}$. For $\rho > \rho_{DIS}$, one enters subregime (C) of Ref. 16 in which the continuous unbinding transition is preempted by a discontinuous transition.^{17,18}

For $\tau = 2$, a parabolic RG flow as in (4) gives the exact critical behavior even far away from the bifurcation point. For general τ , $\partial \rho / \partial t = 0$ should still apply globally but the flow equation for $\partial \bar{\rho} / \partial t$ should contain correction terms, $(\bar{\rho} - \bar{\rho}_{ES})^m$ with $m = 3, 4, \ldots$, which will affect the flow far from the bifurcation point. One might hope that such a flow can be calculated perturbatively in the limit of large or small τ . However, for $\tau = \infty$ or $\zeta = 0$, only the trivial fixed point $V^*(l) = 0$ has been found.⁶ Therefore, the evolution of the line of fixed points is highly singular for large τ . Unfortunately, the limit of small τ is also singular as can be seen from Table I. Therefore, a small parameter which allows for a perturbative calculation of the RG flow for interacting surfaces remains to be found.

I thank Daniel M. Kroll for a critical reading of the manuscript.

^(a)Present address: Sektion Physik der Universität München, Theresienstrasse 37, D-8000 München, West Germany.

¹*Physics of Amphiphilic Layers*, edited by J. Meunier, D. Langevin, and N. Boccara, Springer Proceedings in Physics Vol. 21 (Springer-Verlag, Berlin 1987).

²"Statistical Mechanics of Membranes and Surfaces," edited by D. R. Nelson (to be published).

³Random Fluctuations and Growth, edited by G. Stanley

and N. Ostrowsky (Kluwer Academic, Dordrecht, 1988).

⁴W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

³In some systems, the stiffness and the rigidity are scale dependent and grow on large scales. Such a behavior corresponds to noninteger n < 1 and n < 2 respectively.

⁶R. Lipowsky and M. E. Fisher, Phys. Rev. Lett. **57**, 2411 (1986); Phys. Rev. **B 36**, 2126 (1987).

⁷R. Lipowsky and S. Leibler, Phys. Rev. Lett. **56**, 2541 (1986); **59**, 1983(E) (1987); in Ref. 1, p. 98.

⁸If the two surfaces are characterized by the elastic parameters K_1 and K_2 , one has $K = K_1 K_2/(K_1 + K_2)$ in Eq. (1).

The rescaling of R and \overline{R} involves T: $\rho \sim RT^{-1-\tau/2}$ and $\overline{\rho} \sim \overline{R}T^{(\tau-3)/2}$

¹⁰R. Lipowsky, Europhys. Lett. **7**, 255 (1988); in Ref. 3.

¹¹K. G. Wilson, Phys. Rev. **B** 4, 3184 (1971); K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. 28, 240 (1972).

¹²F. Wegner, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and M. S. Green (Academic, London, 1976), Vol. 6.

¹³A parabolic flow is also contained within the critical manifold of the q-state Potts model with a dilution field, say ψ , where q and ψ correspond to ρ and $\bar{\rho} - \bar{\rho}_{ES}$, respectively. This can be inferred from B. Nienhuis, A. N. Berker, E. K. Riedel, and M. Schick, Phys. Rev. Lett. **43**, 737 (1979); M. Nauenberg and D. J. Scalapino, Phys. Rev. Lett. **44**, 837 (1980).

¹⁴For a review, see M. E. Fisher, in *Critical Phenomena*, edited by F. J. W. Hahne, Lecture Notes in Physics Vol. 186 (Springer-Verlag, Berlin, 1983).

"Strictly speaking, the interactions V(l) considered here which satisfy $V(l) = \infty$ for l < 0 should not grow faster than a power law for small l > 0. However, this should be an artifact of the RG procedure used here.

¹⁶R. Lipowsky and T. M. Nieuwenhuizen, J. Phys. A 21, L89 (1988).

¹⁷This follows from the singular part of the surface free energy, $f_s \sim 1/\xi_{\mu}^{r} \sim (\bar{\rho}_c - \bar{\rho})^{\nu_{\mu} c_{\tau}}$, with $\nu_{\mu} \zeta_{\tau} \geq 1$

¹⁸M. E. Fisher and M. Gelfand (to be published) discuss this subregime in terms of random walks.