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Wetting in a two-dimensional random-bond Ising model 
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We analyze a square-lattice random-bond Ising model using a numerical transfer-matrix tech- 
nique to test the theory proposed by Lipowsky and Fisher for the complete wetting transition of a 
wall by one of two phases which coexist in a random medium. The theoretical scaling arguments 
are checked in detail. The transverse and longitudinal correlation lengths, a h )  and C$h), are found 
to be related by ~ i - ~ ~  with 6=0.65*0.02 as the external field, or chemical potential deviation, h, 
approaches 0: the theoretical expectation is S , = +  The mean wetting layer thickness diverges as 
- 
l(h)-h-*while&-hvlas h-0with $=vi=^. 

I. INTRODUCTION 

Interfacial wetting phenomena in random systems have 
been studied recently by Lipowsky and  fisher.'^^ On the 
basis of scaling arguments, various types of universal be- 
havior were predicted for the singularities arising at com- 
plete and critical wetting transitions. The aim of the 
work reported here is to test and explore aspects of this 
theory by explicit numerical calculations for a two- 

, dimensional random-lattice model which exhibits a com- 
plete wetting transition in which an interface bound to a 
wall delocalizes as the external field or chemical potential 
is varied. To provide the necessary background, a brief 
outline of the relevant scaling theory is presented first. 

Consider two phases, a and /?, which may coexist in a 
random medium which is bounded by an inert third 
phase which we will regard as a rigid, solid planar wall. 
If the interactions are such that phase /? is favored by the 
wall, the bulk phase a may be separated from the bound- 

- ary by a wetting layer of phase /?. The mean-layer thick- 
ness /( T, h ) may diverge continuously to oo in response to 
changes in the temperature T or in the field h which 
represents the deviation from bulk a/? coexistence as, say, 
the chemical potential difference Ap (which is positive on 
the a side of the bulk equilibrium phase boundary).If 
i ~ f -  oo as h -0 for fixed T one has complete wetting. 
(More precisely, if /+oo for T in anopen  interval 
around a fixed value one has complete wetting; at a criti- 
cal wetting point2 Tm the layer thickness remains finite 
as h 4 when T is on one side, generally the lower side, 
of TCw. ) The divergence of /may be characterized gen- 
erally by the power law 

Impurities which are quenched in a medium give rise 
to an inhomogeneous random potential VR(x,z) which 

may be regarded as acting on the interface separating the 
a and /? phases. Here we denote coordinates parallel to 
the ( d  - 1 )-dimensional boundary by x, while z denotes 
the orthogonal coordinate normal to the wall with origin 
on the wall. At nonzero T the interface will wander un- 
der the influence of thermal fluctuations. In the presence 
of a random potential it will wander even at T =O in an 
endeavor to find the configuration of lowest energy. This 
effect alone, in the absence of any walls or boundaries, 
can (for h =0) be characterized by a single roughness or 
wandering exponent2-' c: The typical transverse excur- 
sion L1, normal to the mean plane of the interface, over a 
longitudinal scale Lll varies as 

If the wandering exponent retains its significance in the 
presence of a wall and a bulk field h, scaling implies112 the 
relation 

where $(h is the longitudinal correlation length which 
describes the decay of the correlation function 

inwhich  1 (x)  is the local interface thickness. (The pre- 
cise definition of the expectation value ( - * . ) will be 
given below.) When the interactions between the constit- 
uent molecules, etc., in the three phases are of short 
range, or decay sufficiently any effective long- 
range force between interface and wall may be neglected. 
In these circumstances one is typically in a weak- 
fluctuation regime (as against a mean-field regime112) and 
one anticipates1r2 

- 
1-!5 ( 5 )  

39 2632 - @ 1989 The American Physical Society 



39 - WETTING IN A TWO-DIMENSIONAL RANDOM-BOND ISING MODEL 2633 

The total effective Hamiltonian for the interface may be 
taken as 

where X0 is the interfacial tension while 2 is the interfa- 
cial stiffness; these parameters may be regarded as fixed 
here. 

The basic scaling relation follows by focusing on the in- 
terface in a typical realization of the randomness and ar- 
guing that it wanders through a transverse displacement 
& over regions of longitudinal dimensions gll. Thus the 
gradient term in (6) can be estimated by 

When h vanishes the balance between this gradient term, 
which tends to make the interface flat and the random- 
interaction term, can be expected to result in the contri- 
bution to the free energy due to VR (xÃ 1 )  being of essen- 
tially the same magnitude. Finally, on including the field 
term in (61, the total free energy per unit ( d  -1)- 
dimensional area of the interface should be well 
represented by 

where A is a constant. Using ( 5 )  and minimizing this ex- 
pression yields (1) with1 

where v, is the, in principle independent, exponent for 
the divergence of fi. 

For a two-dimensional "random-bond" system,2 in 
which the random potential tends to pin the interface but 
does otherwise not distinguish between phases a and 0, 
one knows6" that t=+. Thus a complete wetting transi- 
tion of a one-dimensional interface in a two-dimensional 
random-coupling medium should have rf>=+. This pre- 
diction and relations (3) and (5) will be tested by our cal- 
culations, described below, for the square-lattice 
random-bond Ising model at T =0. 

11. LATTICE MODEL 

The model we have employed is adapted from that 
developed by Huse and Henley in their pioneering paper.6 
It  may be regarded as a semi-infinite square-lattice Ising 
model confined to z > 0 with random couplings between 
nearest-neighbor spins. A variable uniform bulk field h is 
applied in the "up" direction to favor the bulk, spin-up, a 
phase, while a fixed, strong local magnetic field in the 
"down" direction is applied at the boundary to favor the 
spin-down or f3 phase for spins close to the boundary. 
Explicitly we suppose that the closest layer of spins to the 
wall is fixed to be down under the influence of the local 
field. The effect of the random-bond impurities is as- 
sumed sufficiently weak so that the system still orders fer- 
romagnetically to form domains. Away from the bulk 
critical point, bubbles and overhangs can be ignored 
asymptotically.8 Thus, as illustrated in Fig. 1, a one- 
dimensional interface represented by a single-valued 

FIG. 1. Illustration of an interface or path lying on the dual 
of a lattice of Ising spins at T =0 and separating a bulk domain 
of up spins from a wetting layer of down spins in contact with a 
wall forming the lower edge of the lattice. Horizontal bonds of 
fixed strength J are intersected by vertical sections of the path; 
vertical bonds of strength Ji, distributed uniformly in an inter- 
val (-1'3, +WJ, are cut by the horizontal segments of the 

The integer coordinates (x,z) of the path z = l ( x )  are tak- 
en to lie on the vertical Ising bonds. 

function z(x) ,  which separates the two domains of up 
and down spins, can be used to account for all the de- 
grees of freedom of the system. For simplicity of 
language we will regard the system as at zero tempera- 
ture, T=0; however, since the thermal fluctuations are 
found to be technically irrele~ant ,~ the singular behavior 
discovered should apply equally for all T < Tc.  

In a particular realization of the randomness and for a 
given configuration of the interface, the total energy can 
be calculated simply by regarding the interface as break- 
ing the bonds it crosses (see Fig. 1). Horizontal or paral- 
lel bonds of strength Jll are intersected by vertical seg- 
ments of the path of the interface while vertical or per- 
pendicular bonds of strength JL are cut by horizontal seg- 
ments of the path. The total interface Hamiltonian can 
thus be written 

where 4 (x,z ( x  ;x + 1 1) represents the average strength 
of the horizontal bonds crossed by the path z (x )  between 
x and x + 1, while H denotes the bulk magnetic field and 
x and z are measured in units of the lattice spacing. At ' 

' 
T =0 the problem reduces to finding the configuration of 
lowest energy for a particular realization of random 
bonds, i.e., to an optimal path problem.6 An average 
over realizations of the randomness is then called for. 

The anticipated universal singular behavior should not 
be sensitive to details of the randomness: in particular, 
randomness or lack thereof in the horizontal bonds 
should ,not change the asymptotic forms.6 Accordingly, 
following Huse and Henley we take 4 = J to be constant. 
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On the other hand, we suppose that the vertical bonds 
are random with J, distributed uniformly in a range of 
width AJo, with no correlation from one bond location, 
(x,z) to another. Thus we have 

where ( - . . ) denotes an average over the random-bond 
distribution. A moment's reflection shows that the mean 
value (J ,  ) can play no significant role. In most of our 
calculations we have used the range A J ~ = ~ ^ / ~ J  or, 
equivalently, AJ =2J. This is the value adopted by Huse 
and ~ e n l e ~ ; ~  it is sufficiently large that one is not trou- 
bled by the crossover to a flat (or thermal) interface that 
arises when AJ/J -+O but is not so large that the path is 
displaced vertically by many lattice spacings on each 
step. 

Now let E (xl,zl;x2,z2) be the ground-state energy for 
all interfaces running from (x ,zl ) to (xDz2 ). For any x 
between x and x-, we evidently have 

This relation provides the basis for a transfer-matrix 
technique for calculating numerically the optimal path 
and its energy. The approach was devised originally by 
Derrida and ~annimenus .~  We have employed the 
efficient procedure developed by Huse and ~ e n l e ~ ; ~  the 
algorithm was not described in their paper but is ex- 
plained in the Appendix here. 

For a fixed starting point, say ( 0 , ~ ~  1, and a given reali- 
zation of random bonds <u, the method iteratively gen- 
erates the sets of energies Eo(O,zo; l,z), E^(0,zo;2,z), 
. . . , Eo(O,zo;x,z) and the corresponding optimal paths 
from (O,z0 to (x,z). In practice, at each step of iteration 
a new column of random bonds of height Az is chosen. 
The height of lattice explored, Az, is chosen large enough 
to avoid finite-size limitations. We used the pseudoran- 
dom number generator R AN1 of Press et al.1Â Exten- 
sive tests of this generator were performed to check the 
required lack of correlation between neighboring and 
further-neighbor assignments of the bond couplings Jl. 
The results were very satisfactory with no detectable sys- 
tematic effects. 

For a fixed choice of parameters, initial height I e O 7  
xmn =L,, , which ranged up to 1000, and external field 

we ran N distinct realizations. Typically No =3000- 
7000 provided satisfactory statistics and well-determined 
mean values, computed from 

( - k ~ ; l  . 
tt) 

In the main the starting height was set at lo=O. The 
overall optimal path or interface, ltt)( h ;x, L ) for 
0 5 x, 5 L is then defined by the values of ztt) (x ) for the 
path to x =Lll of lowest energy, EÃ£,(O,O;Lll,~) Two typi- 
cal graphs of lm(h ;x,L1 are shown in Fig. 2. The mean 

FIG. 2. Two examples (solid and dashed lines) of optimal 
paths or interfaces lu(h;x,Lll) with h ~ 0 . 1  and Lll = 100 in 
different realizations of the randomness with AJ/J=2.  The 
dotted line indicates the mean-layer thickness /(h) as estimated 
from 6000 realizations with Lll =300. 

interface is defined by 

and, ideally, varies smoothly with x. Figure 3 illustrates 
a mean interface for h =0.01 and L,, = 900; evidently the 
residual statistical noise is quite small. In addition to the 

FIG. 3. Mean optimal path lav( h ;x, Lll ) and corresponding 
transverse correlation length {,^(h;x,Lll) (bold curves) for 
h =0.01, Lll=900, and A J / J = 2  as estimated from Nu=4000 
realizations. The light curves represent the corresponding end- 
point trajectories le(h ; L )  and u h , L ) .  Also indicated is the 
equilibrium range XW and the longitudinal correlation length ill 
(see Sec. 111). 



mean path of the interface itself, it is useful, following the 
scaling theory, to define and compute the corresponding 
transverse fluctuation or correlation length 

This is also displayed in Fig. 3: it follows a similar course 
to lav(x) but is smaller in magnitude. 

One notices from Fig. 3 that around both ends, within 
a region that evidently must be comparable to gI1, the lon- 
gitudinal correlation length, the interface deviates from 
its apparent limiting (L Ã‘ oo ) equilibrium level, l{ h ). 
The starting part near (0,O) can be understood easily as 
the relaxation from the initial condition lo=O up to the 
equilibrium level. The reason for the unexpected up- 
wards deviation at the end near x =Ll, is somewhat more 
subtle; but it is worth discussing here because of the light 
it throws on the interplay between the gradient, field, and 
random terms in the effective Hamiltonian (6) or, 
equivalently, between the corresponding terms, with 
coefficients Jll =J, Ji, and H, in the model Hamiltonian 
(10). 

Accordingly, let us first define Xeq as the interval (k^ii, 
L l l - k ~ l , ) ,  where k is chosen sufficiently large, say 
k=5-8, so that lm(x) achieves, within the statistical 
noise level, the asymptotic equilibrium value i( h ) (see 
Fig. 3 where both Ejll and X are indicated). (A precise 
definition of CIl is given below.) The equilibrium level de- 
pends, for fixed J and AJ, only on the field h and results 
from a balance between the random potential character- 
ized by AJ and the gradient term corresponding to J. In 
a given realization, a>, in regions where the fluctuations in 
JL are small the interface will stay flat, to reduce the ten- 
sion, and low down, i.e., close to the wall, to reduce the 
bulk-field energy. However, if the J, bonds are particu- 
larly weak in a region away from the boundary, the inter- 
face tends to deviate upwards in order to save energy by 
crossing weaker bonds. However, if it stays away from 
the boundary it starts to pay, on average, an increased 
cost in bulk-field energy, accordingly it soon falls back to- 
wards the wall. Thus, as can be seen from the examples 
in Fig. 2, a typical interface repeatedly bounces off the 
boundary in its search for the minimum energy path. It 
cannot stay too low since the presence of the boundary 
restricts the choice of accessible favorable random bonds. 
For z =i(h)  fluctuations up and down balance in the long 
run. 

How does this description break down near the end of 
the path at x =L1,? As indicated, the interface will tend 
to rise above i( h in order to sample a wider range of ran- 
dom bonds: there is a local cost in field energyalthough 
that sacrifice may be well worthwhile; but for x in Xcq, 
extra bulk-field energy would have to be paid later unless 
the wall soon fluctuates downwards. Near the end of the 
path, however, the interface does not have to worry 
about this delayed cost since it never proceeds beyond 
x =Lil to learn that it is now above l{h ). In sum, then, it 
pays the interface, on average, to rise upwards at the end 
of the path as is observed. 

The same arguments apply to the increase observed in 

I 
I 

the fluctuation ^{h ;&La ) at the end of the range. It is 
actually instructive to study, two further, easily computed 
quantities yhich pertain directly to the end points of the 
optimal path, namely, 

i 
and 

Computed Versions of these endpoint trajectories for the 
case of h ='0.01 and AJ/J =2  are also shown in Fig. 3. 
Evidently, they display no final upturn; rather, for L > 6, 
they rapidly attain asymptotic equilibrium values <Ah) 
and L. B$ scaling, both these values should diverge like 
h ' p e  with ! qe =$=+ as h -0. Likewise the ratios - 
le( h )//(a Ce( h )/^(h 1, arid i( h I/^( h should approach 
universal values when h ->O. These expectations have 
been tested as described below. 

111. QUANTITATIVE ANALYSIS 
I 

The equilibrium interval Xcq 7 (k^, L - kgll de- 
scribed above (with k =5-8) provides estimates for the 
limiting wetting layer thickness and transverse correla- 
tion length h a  

I - I 
l (h)s ( l l^ ;X,Ll , ) )eq  , 

I 
(19) 

<l(h)-l(&(h ; x , L ~ ~ ) ) ~ ~  , 
I .  

(20) 

in which ( ! denotes an average over all x in Xu. For 
sufficiently (large Li, (and fixed AJ/J) the results depend 
only on h. [The limiting endpoint values Ah and ge (h ) 
are estimated similarly.  he statistical uncertainties at- 
tached to the mean-data values were generally of "one- 
sigma" magnitude 0.3 to 2 %. They were estimated by 
treating data lumped over disjoint intervals within Xeq of 
length 2,cll !is independent, by dividing the N ,  ( 2 3000) 
realizations into groups of ,ten taken as independent and 

I by evaluating the expression 
I 

these different routes gave quite similar results. 
The results for i (h ), etc., over a range of two to three 

decades in h from 0.1 to 0.0001 are shown on a log-log 
plot in Fig. 4. As indicated, scaling predicts that the 
asymptoticlforms, 

- I - 
l ( h ) + v h ^ ,  I , , = B ~ / ~ * ,  (21) 

will be obeyed with tfr=vl=+. The solid lines shown in 
Fig. 4 are (drawn with a slope corresponding to the ex- 
pected exponents. The data for S\n(h) follow the line 
rather closely. The other plots, especially for I ( h ) ,  show 
noticeable [deviations for lower values of h; however, if 
one plots (h 1 + + in place of /,, (h ), which amounts only 
to a half-lattice spacing change in the definition of the 
layer thickness, then the points fall, within graphical ac- 
curacy, on the uppermost line in Fig. 4. 

In order; to estimate the true asymptotic exponents for 

I 



FIG. 4. Logarithmic plots of layer thicknesses Rh), u h ) ,  
and transverse correlation lengths a h )  and CLc( h )  vs the field h 
for AJ/J  = 2 .  The solid lines have slopes of +. Note that plot- 

- - - - - - - - 
ting (z + +) in place of /,, brings thepoints essentially&to coin- 
cidence with the upper line; the plot of (/++) is, similarly, 
closely linear (see text). - 

solid connecting lines represent the central estimates; the 
statistical uncertainties are encompassed by the dashed- 
line envelope. This figure clearly suggests a common ex- 
ponent for all four functions and leads to the estimate 

corresponding to the uncertainty bar on the left side of 
the figure. The results are in full accord with the theory. 

If one accepts the values @=vl=+ the asymptotic am- 
plitudes in (21) and (22) may be estimated in a similar 
'way. In units of the lattice spacing, a, we find, for . 

A J / J  =2, 

The corresponding amplitude ratios, which should be 
universal, i.e., independent of A J / J  ( > 01, follow from 
these results or, somewhat more reliably, can be estimat- 
ed directly. Our preferred estimates are 

- 
l(h), etc., more systematically, we have computed the 
slopes on the log-log plot of successive segments (hahb ) 
of the data. The results are plotted in Fig. 5 versus h 'I2, 
which is defined precisely in the caption and seems a 
reasonable candidate for the form of the leading correc- 
tion to the power laws (21) and (22). The symbols and 

PIG. 5. Estimates of the exponent y5 (thin lines) and of v, 
(bold lines) derived from the segmental slopes of logarithmic 
plots of nh), l[h}++, and (lines with open symbols) and /,, - 
le + +, and &, (plain lines) over intervals (h , ,  hi+ ). The dashed 
lines indicated the outer uncertainty limits of the individual 
slopes which are plotted vs h+(h,h,+1)174.  As indicated on 
the left, the data suggest 1,&v~=0.500k0.008. 

If one combines the scaling expression (8) for the free- 
energy density with (21) and (22) one is led to 

with 2-a=  1 - @ = +  where 2 ( h )  is the overall interfa- 
cial tension or free energy per unit length parallel to the x 
axis. The equilibrium energy or ( T =0)  tension is easily 
calculated from the data for x in Xeq. It  is plotted in Fig. 
6 against h 'I2. For h 50.05 the data fit a straight line 
well, so confirming the theoretical expectation. 

It might be mentioned here that the amplitude 3 and 
limiting value 2 ( 0 )  in (26) as well as the amplitudes in 

I I I I I 

0 0.1 ^'I* 0.2 
- 

0.3 

FIG. 6. Plot of the energy density or interfacial tension 'S.( h) 
induced by the random bonds vs h1I2 for A J / J = 2 .  Note the 
data for a free walk at h =O. The straight line has an intercept 
W / J  = - 1.812 and a slope 1.785. 
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(24) will depend on AJ/J  and should exhibit universal 
power-law behavior as AJ-0, the exponents being asso- 
ciated with the crossover to flat (or, for T >0, pure 
thermal) behavior. This is an interesting topic for future 
study but we have not explored it so far. 

In order to test the underlying scaling ansatz (3), which 
we may write quantitatively as 

one must calculate &(h ). This is best done on the basis of 
the longitudinal correlation function 

Provided both x and x '  remain within the region Xeq, one 
observes, as expected, that C depends only on h and the 
difference [x -x11. Accordingly we estimate the true 
asymptotic correlation function from the average 

as for i (h) .  
The variation of the correlation function with x for 

various values of h is shown in Fig. 7. Evidently the de- 
cay becomes very slow for small h. To define the correla- 
tion length we use the second moment of C (h ;x)  via 

This definition, in addition to being sanctioned by large 
usage, pertains directly to scattering measurements at 
low momentum transfer. In fact, we tried definitions us- 

.ing other moments but found that the second seemed to 
balance the contributions of C(x )  at large and small x 
most reasonably. Note that if C(x )  had the precise form 
Co exp( -x /{Â¡ then (30) would yield Indeed, the 
observed decay is, after a small initial "transient" fairly 

I l l 1  I l l 1  

- 
correlation 

FIG. 7. Plots of the correlation functions C(h ;x) for various 
fields h with A J / J  =2. The intercept C(h ;0) is equal to & A  ). 

The double arrow measures 6, for h =0.005. 

close to exponential so one can roughly estimate lIl 
directly from a plot of logC(x) versus x. However, (30) 
provides a more systematic and reliable approach. 

A practical effect that must be allowed for arises from 
the statistical fluctuations in C(x )  at large x which, clear- 
ly, preclude a smooth decay to zero. Since the fluctua- 
tions are weighted by x 2  they can lead to significant er- 
rors. Accordingly, we introduced a cutoff xc on both in- 
tegrals in (30). Then xc was varied between the values x l  
and x2 over which the plot of logC(x) was seen to be 
close to linear; beyond x2 strong departures from this be- 
havior signal the effects of statistical noise. In evaluating 
the integrals for x >xc ,  a linear extrapolation of the 
linear region of the loge (x)  plot was used. Thus for each 
value of xc in (x ;,x2 ) a value for {[ was obtained; averag- 
ing over these produces a reliable overall estimate. The 
uncertainties were judged as for i (h  ), etc., and amounted 
to about 2%. 

The data obtained for &(h) are shown on a log-log plot 
versus Â£.A ) and cle (h in Fig. 8; the open rectangles indi- 
cate the uncertainties. A least-squares fit for g1 yields 

and this is confirmed by the technique used in Fig. 5. 
The data for Â£1,, analyzed along the same lines, suggest 
the slightly higher value c= 0.665*0.015. Evidently the 
results are fully consistent with the theoretical exp.ecta- 
tion1,2,6,7 w. 

If the theoretical prediction is accepted one finds, in 
(27L 

for A J / J  =2; note, however, that b must depend strongly 
on A J / J  and should, like the other nonuniversal ampli- 
tudes, display singular behavior as AJ-0. Data com- 
puted for larger values of AJ, ranging up to AJ/J  = 15, at 
fixed h (=0.1) can be fit roughly by b 2 ~ o [ ( ~ ~ / ~ ) - c , ' \  
with cQ=0.34 and c1 =0.67. One observes that most of 

1 I 1 . I . I  I ,  1  I 

3 5 10 50 
20 6, 100 200 

FIG. 8. Tests of the basic fluctuation scaling hypothesis via 
logarithmic plots of & and vs gIl for h from 0.1 to 0.001 (see 
some values marked on the graph) for A J / J = 2 .  The straight 
lines have the predicted slope (,=A, . 



the variations arise from changes in &(h); the value of 
S,s(h) drops only some 6 or 7 % as AJbcreases. A little 
reflection indicates that this is not very surprising. 

IV. SUMMARY 

In conclusion, our numerical studies have served to 
confirm in detail for d =2 dimensions the scaling theory 
of complete wetting in a random medium developed by 
Lipowsky and  ish her.',^ Furthermore, a number of 
universal amplitude ratios, not predicted by scaling alone, 
have been evaluated [see (25)]. An interesting issue left 
unexplored concerns the behavior of various nonuniversal 
amplitudes, for the wetting layer thickness l (h) ,  and the 
correlation lengths (̂ h and S,s( h 1, etc., in the weakly 
random limit AJ /J 4 0 .  

ACKNOWLEDGMENTS 

We are grateful to Dr. David A. Huse and Professor 
Christopher L. Henley for many helpful discussions and 
are particularly indebted to them for explaining the 
efficient transfer-matrix algorithm they developed which 
we adopted. The interest and advice of Professor James 
P. Sethna has also been appreciated. The continued sup- 
port of the National Science Foundation through the 
Condensed Matter Theory Program (under Grant No. 
DMR-87-01223/96299) is gratefully acknowledged. 

APPENDIX: TRANSFER-MATRIX ALGORITHMS 

In this appendix we describe the method used by Huse 
and ~ e n l e ~ ' l  to calculate numerically the ground-state 
energy Em(x,,zl;x2,z2) of an interface or path running 
from (x ,zl  ) to (x2,z2 ) for an Ising square lattice of size 
L ,, X Az under a given realization CD of all random bonds. 
For simplicity we restrict the presentation to the situa- 

I 

tion in which Ju =J is constant, as adopted in the practi- 
cal calculations. However, it is easy to generalize the 
procedure to the case where Jll is a random but still posi- 
tive variable (i.e., for random ferromagnetic couplings). 
Likewise we take (x,,zl  I =  (0,O) and write E0(0,0;x,z) 
-:E (x,z). 

The ground-state energy and the optimal path can 
clearly be calculated iteratively from 

E(x+ l ,z)= min [ ~ ( x , z ' ) + J \ z ' - z \ ] + J ( x  + 1,z) , 
2' 

where J(x,z)= ~ ~ ( x , z )  +HZ. The basic manipulation is 
thus to transfer the set of values E (x,z) for 0 <z  5 Az to 
the set E (x  + 1 , ~ ) .  A simple-minded method would take 
(AzI2 operations to do this, each operation being com- 
posed of computing E(x,z')+J\z'Ã‘~ once and making 
Az comparisons. The method explained here, which was 
used by Huse and Henley in their paper,6 takes only 2Az 
operations, thus substantially reducing the computational 
effort. 

To start, focus on the first term on the right-hand side 
of (Al) and write it as 

=E (x + 1,~) -J (x  + 1,z) . 
-- - - - - -- - - 

(A2) 

It is also helpful to define the restricted minimal energy - 

E"(x + l ,z)= rnin [E (x,zt)+J\zr-z\]  . 
2 '52  

(A31 

Then a crucial relation is 

which can be proved as follows: 

P(x,z)= rnin rnin {[E(x,z"}+J\z"-z'\}+J\zr-z\} = rnin [ rnin [E (X,Z~')+J\~~~-Z'\]+J\Z'-~\~ 
z '>z z"<z' 2" 2' ">. z"2 

= min [ ~ ( x , z ~ ' ) + ~ \ z " - z l ] = ~ ' ( x  +l ,z)  . 
- - -  2" - - - - 

(A51 

Now both Er'(x + 1,z) and EYx + 1,z) can be calculated iteratively by simple twofold comparisons since one has 

Et'(x + l , z  + l )=Q(x ,z )=min{E(x ,z  + l ) ;E r t (x  + l , z )+J j  , (A61 

E'(x + l ,z)=min(Et '(x + l,z);E1(x + l , z  + l ) + J ]  . (A71 

These relations are easily proved; thus by (A31 one has 

Erl(x + l ,z  + l ) =  rnin [ E ( x , z r ) + ~ \ z ' - ( z  + l ) l ] = m i n { ~ ( x , z + l ) ;  rn in[~(x ,z ' )+J \z ' - (z  + l ) I ] ] = ~ ( x , z )  . (AS) 
z ' < z + \  2'5.2 

A similar argument gives (A7). Finally one obtains E (x  4- 1,z) from E'(x + 1,z) by using (Al). Note that (A6) and (A71 
show that the total number of operations needed to effect the transfer from x to x + 1 is just 2Az. 
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