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1 Outline and Summary

This review deals with three topics: (i) Fluctuations of interfaces and membranes
(Sec. 2); (ii) Interactions of interfaces and membranes (Sec. 3); and (iii) Dy-
namics of interfaces and growth of wetting layers (Sec. 4). All three topics are
intimately related: fluctuations renormalize the interactions, and the interactions
act as a driving force for the dynamics.

I will focus on interfaces and membranes which are rough but not (yet) crum-
bled. The scaling properties of such surfaces are governed by the roughness
exponent, ζ (Sec. 2.2). For interfaces, this exponent depends on the nature of
the two phases separated by the interface which can be fluids, periodic crystals,
quasicrystals, or random systems (Sec. 2.3). For membranes, ζ depends on the
internal membrane structure which may be fluid, crystalline, or hexatic (Sec.
2.4). In all cases, the fluctuations give a singular contribution to the surface free
energy, see Sec. 2.5.

The effective interaction of surfaces represents a unifying concept by which
one can understand many different phenomena, see Sec. 3.1 and 3.2. This point
of view is not entirely new: there exists a huge literature on interactions between
planar surfaces (Sec. 3.3). However, it has been realized only recently that these
interactions are often renormalized by fluctuations. Several scaling regimes for
the renormalized interaction must be distinguished, see Sec. 3.4. These different
regimes can be studied in a systematic way, starting from an effective Hamiltonian
for the interacting surfaces (Sec. 3.5). So far, the most useful method has been
a functional renormalization group (RG), see Sec. 3.6. As a result, one finds RG
fixed points for the critical behavior associated with the unbinding of surfaces
(Sec. 3.7 and 3.8).
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Unbinding occurs for repulsive interactions which drive the surfaces apart.
The dynamics of this process is discussed in Sec. 4. Several growth modes for
interfaces are considered: adhesive growth (Sec. 4.1 and 4.2), diffusion- limited
growth (Sec. 4.3), and activated growth resulting from quenched impurities (Sec.
4.4). These growth modes are relevant for the thickening of wetting layers or thin
films.

2 Fluctuations of Interfaces and Membranes

2.1 Introduction

An interface or domain wall represents the contact region between two bulk phases
of matter. This contact region has an intrinsic width which is usually microscopic
and set by the bulk correlation lengths of the two phases. At finite temperatures,
T > 0, the interface undergoes thermally–excited fluctuations which lead to a
certain interfacial roughness. The interface may also be roughened by quenched
impurities which provide an effective random potential. These fluctuations change
the area of the interface and, thus, are controlled by tension.

Membranes are sheets of amphiphilic molecules which form spontaneously
when these molecules are dissolved in water or in mixtures of water and oil. Such
membranes play an essential role in biophysics since they provide the spatial
organization of cells and organelles. For T > 0, membranes are also deformed
by thermal fluctuations but typical undulations are bending modes controlled by
curvature.

In this section, I will discuss the properties of a single interface or membrane.
First, the roughness of surface fluctuations is defined in a precise way and the basic
roughness exponent, ζ, is introduced (Sec. 2.2). The possible values of ζ are then
summarized in Sec. 2.3 and Sec. 2.4 for interfaces and membranes, respectively.
Finally, the free energy arising from the surface fluctuations is discussed in Sec.
2.5. This free energy has a scaling form which is characterized by the decay
exponent, τ .

2.2 Scale invariance of surfaces and the roughness expo-
nent ζ

Consider a 2–dim surface segment with linear size ∼ L which is embedded in
3–dim space. At T > 0, the surface segment will make bumps in order to in-
crease its configurational entropy. The bumpy surface can be characterized by
two length scales, L‖ and L⊥. The scale L‖ gives the area ∼ L2

‖ of a typical
surface configuration when projected onto the planar reference state; the scale L⊥
measures the average distance of the surface from this reference state. In general,
I will consider (d-1)–dim surfaces with projected area ∼ Ld−1

‖ which fluctuate in
d–dim space. Two examples in d = 1 + 1 are: (a) domain boundaries within an
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adsorbed monolayer, and (b) steps or ledges on a crystal surface.
The two length scales L‖ and L⊥ are not independent but satisfy the scaling

relation L⊥ ∼ Lζ
‖ where ζ ≥ 0 is the roughness exponent.1,2 Several cases must be

distinguished: (i) A smooth surface with ζ = 0; in this case, the size of L⊥ is set
by a microscopic length scale (or cutoff), a; (ii) A marginally rough surface with
ζ = 0(

√
log) which corresponds to

L⊥ ∼ [ ln(L‖/a) ]1/2 for L‖ � a. (2.1)

(iii) A rough surface with 0 < ζ < 1 and

L⊥ ∼ Lζ
‖ for L‖ � a . (2.2)

(iv) A rough surface with ζ ≥ 1; in this case, the scaling relation between L⊥ and
L‖ holds only on intermediate length scales:

L⊥ ∼ Lζ
‖ for ξp � L‖ � a (2.3)

where ξp is the persistence length of the surface. This length which was introduced
in the context of membranes3 gives the correlation length of the surface normals.
For L‖ � ξp, the normals decorrelate and the surface is crumpled.3 For ζ < 1,
one always has ξp = ∞.

Thermal fluctuations provide an entropic mechanism for the roughening of
surfaces. Alternatively, the surface can be roughened by an external potential.
In this case, it tries to minimize its energy by adapting its shape to the minima
of the external potential. The latter mechanism underlies, e.g., the roughening
by quenched random impurities.

So far, a finite surface segment has been considered. Now, take the thermo-
dynamic limit, L‖ → ∞. Then, the roughness exponent ζ can be extracted from

the difference correlation function, ∆C(x) ≡< [ �(�x) − �(�0) ]2 >, for the variable
�(�x) which measures the distance of the fluctuating surface from its planar refer-
ence state with coordinate �x = (x1, . . . , xd−1). Indeed, the scaling relation (2.2)
implies1

∆C(x) ∼ x2ζ or ∆C(x) ≈ b2ζ∆C(x/b) for x � a . (2.4)

Thus, the bumpy surface is invariant under the rescaling transformation x → x/b
and � → �/bζ .

2.3 Roughness of interfaces

1. Fluid phases and periodic crystals — An interface separating two fluid
phases is characterized by the roughness exponent ζ = ζo with

ζo = 0(
√

log) d = 3
= (3 − d)/2 1 < d < 3.

(2.5)
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The same value applies to an interface which separates a periodic crystal from
another phase provided T exceeds the roughening temperature, TR.

2. Ideal quasicrystals — In this case, the interface feels a quasiperiodic
potential which stiffens the interface and decreases the value of ζ. A Fibonacci
potential in d = 2, which approximates the ideal Penrose tiling, leads to the
non-universal value 4,5

ζ < ζo = 1/2 and ζ ≈ 2 ln[(1 +
√

5)/2] T/J for small T . (2.6)

For Harper’s potential, the interface undergoes a roughening transition in d = 2.4

In general, the large scale properties of a rough interface with roughness ex-
ponent 0 < ζ ≤ ζo = (3 − d)/2 can be described by the scale–dependent stiffness

Σ̃eff (L‖) ∼ Lησ

‖ with ησ = 2(ζo − ζ) ≥ 0 . (2.7)

In fluids and in periodic crystals with T > TR, the exponent ησ = 0 and Σ̃eff (L‖ =

∞) ≡ Σ̃ is finite. A finite Σ̃ also applies to random systems with ζ < 1.
3. Random quasicrystals – Random tilings can be obtained from the

ideal tiling by a random rearrangement of the tiles thereby abandonning the
matching rules.6,7 Then, the interfacial roughness is enhanced compared to a
periodic system, and8

ζ = 2/3 in d = 1 + 1 for T > 0 . (2.8)

For T = 0, the interface is marginally rough and smooth in d = 1+1 and d = 2+1,
respectively.8

4. Quenched random impurities – Two types of impurities must be
distinguished; (i) Random fields which couple directly to the order parameter
density, and (ii) Random bonds which couple to the energy density. For random
fields, a scaling argument9 leads to10−12

ζ = 0 for d > 5
= (5 − d)/3 for 2 < d < 5 .

(2.9)

For random bonds, the corresponding scaling argument fails but

ζ = 2/3 in d = 1 + 1 . (2.10)

is known exactly both for T = 0 and for T > 0.13−16

2.4 Roughness of membranes

1. Fluid membranes – For fluid membranes such as lipid bilayers in the Lα

phase, 17 the elastic bending energy is governed by the mean curvature.18 This
leads to ζ = ζo with19

ζo = 0(
√

log) for d = 5
= (5 − d)/2 for 1 < d < 5 .

(2.11)
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Thus, in d = 3, ζ = 1,20 and the persistence length, ξp, is finite3.
2. Crystalline and polymerized membranes – Lipid bilayers usually

exhibit Lβ phases at low T in which the lipid molecules form a lattice or network.17

A similar situation occurs for membranes composed of polymerizable lipids which
provide models for biological systems.21 Then, the bending modes are coupled to
the internal degrees of freedom.22 At low T, these membranes exhibit a scale–
dependent bending rigidity:22,23

κeff (L‖) ∼ Lηκ

‖ with 2/3 ≤ ηκ ≤ 1 in d = 2 + 1 . (2.12)

In general, a scale–dependent rigidity implies

ζ = ζo − ηκ/2 (2.13)

with ζo as given by (2.11).
3. Hexatic membranes – The crystalline membrane could melt into a hex-

atic one if the free energy of a single dislocation is finite as a result of buckling.22

At low T, hexatic membranes acquire a scale–independent rigidity24 which implies

ηκ = 0 and ζ = 1 in d = 2 + 1 . (2.14)

2.5 Scaling of surface free energy

The surface fluctuations give a singular contribution, ∆f , to the surface free
energy. Consider again a surface segment with projected area ∼ Ld−1

‖ , and assume
that the surface is ‘clamped’ to a reference plane along one edge. The opposite
edge is free and will make transverse excursions ∼ L⊥ from the reference plane.
These largest humps have wavenumber ∼ 1/L‖ and should contain a thermal free
energy ∼ T as suggested by the equipartition theorem. This gives an entropic
contribution, ∆s, to the free energy per unit (projected) area which scales as

−T∆s ∼ T/Ld−1
‖ . (2.15)

On the other hand, the elastic free energy per unit area, ∆e, behaves as

∆e ∼ Σ̃eff (L⊥/L‖)
2 ∼ Lησ

‖ (L⊥/L‖)
2 (2.16)

for interfaces, and as

∆e ∼ κeff (L⊥/L
2
‖)

2 ∼ Lηκ

‖ (L⊥/L
2
‖)

2 (2.17)

for membranes. Therefore, ∆e has the general scaling form

∆e ∼ (L⊥/L
n
‖ )

2 (2.18)

with
n = 1 − ησ/2 for interfaces

= 2 − ηκ/2 for membranes.
(2.19)
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Now, the free energy per unit area, ∆f , is taken to be ∆f = ∆e − T∆s.25,8 For
a marginally rough surface with ζ = 0(

√
log), the elastic free energy dominates

and
∆f ∼ ln(L‖/a)/L2n

‖ ∼ L2
⊥exp{−2nL2

⊥/a
2
⊥} (2.20)

where a⊥ is a microscopic length scale which must be distinguished from a26.
For a rough surface with ζ > 0 (and a 
 L‖ 
 ξp), ∆f exhibits the power law
behavior

∆f ∼ 1/Lζτ
‖ ∼ 1/Lτ

⊥ (2.21)

The decay exponent, τ , depends on ζ, d, and n. Two cases must be distinguished:

(i)For thermally–excited surface fluctuations, one usually has ζ = (2n+1−d)/2.
Then, the entropic contribution and the elastic free energy have the same
order of magnitude, and

τ = 2(n/ζ − 1) = (d− 1)/ζ . (2.22)

(ii)For interface fluctuations induced by a random potential, the roughness ex-
ponent satisfies ζ > (2n + 1 − d)/2 with n = 1, and the elastic free energy
scales as the energy gain resulting from the potential. In this case, the
elastic free energy dominates and1

τ = 2(1/ζ − 1) < (d− 1)/ζ . (2.23)

3 Interactions of Interfaces and Membranes

3.1 Introduction

In the previous section, a single interface or membrane has been considered. In
real systems, one usually has two or several surfaces rather than a single one. In
some cases, the surfaces are oriented in such a way that they are, on average,
parallel. Condensed matter physics provides several examples for such a behavior
where the surfaces are 1– or 2–dimensional:

(a)Wetting, surface melting, and surface–induced disorder27 — In this case, the
contact region of two bulk phases, α and γ, contains a thin film or layer
of a third phase, β. This film is bounded by two interfaces which have
the same average orientation. Surface melting28−31, edge melting32, and
surface–induced disorder33−35 have recently been studied by a variety of
experimental methods.

(b)Equilibrium shape of crystals — This shape is determined, to a large extent,
by the behavior of the steps or ledges which separate flat terraces of the
crystal surface.36 The average orientation of these steps is determined by
the index of the crystal surface.
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(c)Commensurate–Incommensurate transitions — Near such a transition, the
system consists of commensurate domains which are separated by domain
walls. In many cases, these walls (or lines) are parallel and form a striped
phase, see Ref. 2 and references therein.

(d)Adhesion of vesicles or biological cells — A vesicle composed of an am-
phiphilic membrane can adhere to another surface (which may be a second
membrane). Within the region of contact, the membrane and the surface
are roughly parallel.17

(e)Lamellar phases of membranes — Such phases occur (i) in binary systems
of water and lipids, and (ii) in oil–water mixtures containing amphiphilic
molecules. They are composed of a stack of membranes which have the
same average orientation. For recent experimental studies, see Refs. 37 and
38.

In all of these examples, the surfaces experience a mutual interaction. In this
section, I discuss the nature and the form of this interaction. First, the total
interaction, VTI(�), of two surfaces with separation � is defined in Sec. 3.2. In the
absence of surface fluctuations, this interaction reflects the intermolecular forces
and is called the direct interaction, VDI(�), see Sec. 3.3.

Surface fluctuations lead to a nontrivial renormalization of VDI(�). Several
scaling regimes (or universality classes) must be distinguished (Sec. 3.4). In
general, one must include fluctuations on all length scales. This can be done
starting from a systematic theory, see Sec. 3.5. So far, the most powerful method
has been a nonperturbative functional renormalization group (RG). The results
of this RG will be described in Sec. 3.6. Finally, the critical behavior associated
with the unbinding of surfaces will be discussed in Sec. 3.7 and 3.8.

3.2 External pressure and total interaction of surfaces

Consider two roughly parallel surfaces (or surface segments) and assume that one
can change the separation, �, of these surfaces by an external pressure, H. I
will use the sign convention that increasing pressure leads to decreasing surface
separation.

In the context of wetting, a thin film of a metastable phase, β, intrudes
between two coexisting bulk phases, α and γ. Then, the free energy per unit
volume, f̂β, of the β phase exceeds the free energy per unit volume, fα = fγ =
fαγ, of the coexisting phases α and γ, and the external pressure is given by

H = f̂β − fαγ.
27 Thus, for wetting, H can be experimentelly controlled via the

temperature, T , and via the chemical potentials of the molecular species. For
membranes, H can be controlled by an osmotic or hydrostatic pressure, or by
changing a relative humidity.39

The external pressure H is balanced by a disjoining pressure, −∂VTI/∂�, aris-
ing from the total interaction, VTI(�), of the surfaces.40 Thus, the mean separa-
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tion, �̄, is determined by

H = −∂VTI/∂� for � = �̄ . (3.1)

In an experiment (or in a computer simulation), one can measure the mean surface
separation, �̄, as a function of H. Then, the total interaction, VTI(�), can be
obtained via a Legendre transformation from H to �.27 First, one inverts the
relation � = �̄(H) in order to obtain H = H̄(�). When this is inserted into (3.1),
one has −∂VTI/∂� = H̄(�) which determines VTI(�) up to a constant. This shows
that the total interaction, VTI(�), is a well–defined quantity which contains the
same information as � = �̄(H). Now, from a theoretical point of view, one would
like to predict the behavior of � = �̄(H) and, thus, of VTI(�). This can be done
in two steps: (i) First, one ignores surface fluctuations and studies the direct
interaction, VDI(�), between planar surfaces41; (ii) Secondly, one takes surface
fluctuations into account which renormalize VDI(�). This renormalized interaction
represents the theoretical prediction for VTI(�).

3.3 Direct interactions of planar surfaces

The direct interactions, VDI(�), depend on the microscopic forces acting between
the molecules. Two contributions have been known for a long time:42 (i) van der
Waals interactions — In d = 3, this interaction decays as ∼ 1/�2 and 1/�3 for
nonretarded and retarded forces, respectively. (ii) Electrostatic interactions —
Interfaces or membranes often contain electric charges. If the surface separation
� is large compared to the Debye screening length, λE, the associated direct
interaction decays as ∼ exp(−�/λE). For a 
 � 
 λE, VDI exhibits a power law
behavior.

More recently, the direct interaction between surfaces has been studied within
Landau or van der Waals theories. As a result, one finds several cases depending
on the nature of the phase, β, between the surfaces: (iii) Exponential interactions
— If the intervening β phase is composed of small molecules and has a microscopic
correlation length, ξβ, VDI ∼ exp(−�/ξβ).

43−45 (iv) Interactions induced by critical
fluctuations — If the intervening β phase is critical or near–critical, scaling theory
implies VDI ∼ 1/�d−1.46 (v) Polymer–induced interactions — When the surfaces
are covered by adsorbed polymers, one has additional direct interactions which
decay like a power of �.47

3.4 Different scaling regimes for the unbinding of surfaces

Now, consider a fluctuating surface which is bound, via attractive direct interac-
tions, to another surface. In such a situation, the roughness of the fluctuating
surface is restricted by the presence of the second surface. The size, ξ⊥, of this
roughness is set by the transverse extension of the largest bumps. For smaller
bumps with roughness L⊥ 
 ξ⊥, the fluctuations are essentially unrestricted,
and their lateral extension, L‖, scales as in (2.1)–(2.3). Therefore, the largest
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bumps can be characterized by a longitudinal correlation length, ξ‖, which satis-

fies ξ⊥ ∼ [ln(ξ‖/a)]1/2 for ζ = 0(
√

log) and ξ⊥ ∼ ξζ‖ for ζ > 0.
The two length scales, ξ‖ and ξ⊥, play essentially the same role for the bound

surfaces as the scales L‖ and L⊥ for a finite surface segment, compare Sec. 2.2.
Therefore, the excess free energy, VFL(ξ⊥), of these largest bumps can be esti-
mated as in Sec. 2.5:25

VFL(ξ⊥) ∼ 1/ξτ⊥ with τ = 2(n/ζ − 1) (3.2)

for a rough surface with ζ > 0, and

VFL(ξ⊥) ∼ ξ2
⊥ exp[−2nξ2

⊥/a
2
⊥] (3.3)

for a marginally rough surface, compare (2.21) and (2.20).
This excess free energy can be interpreted as a fluctuation–induced repulsion

acting between the surfaces. It can be used in order to identify different scaling
regimes for the unbinding of surfaces. In the process of unbinding, the mean sep-
aration, �̄, becomes large compared to microscopic length scales, and the surfaces
probe the tail of their direct interaction, VDI . Therefore, each scaling regime
contains a certain class of direct interactions.

1. Rough surfaces with ζ > 0 — In this case, one must distinguish four
scaling regimes: a mean–field (MF) regime and three different fluctuation (FL)
regimes. The two length scales, �̄ and ξ⊥, behave as48

�̄ � ξ⊥ in MF regime and �̄ ∼ ξ⊥ in FL regimes . (3.4)

(i) The MF regime is characterized by1,25

VDR(�) � VFL(�) ∼ 1/�τ for large � (3.5)

where VDR represents the repulsive part of VDI . (ii) The weak–fluctuation (WFL)
regime is defined by1,25

VDR(�) 
 VFL(�) ∼ 1/�τ 
 VDA(�) for large � (3.6)

where VDA represents the attractive part of VDI . In addition, one has two non-
trivial fluctuation regimes: (iii) the intermediate fluctuation (IFL) regime with49

|VDI(�)| ∼ VFL(�) ∼ 1/�τ for large � , (3.7)

which contains, in fact, three different subregimes; and (iv) the strong–fluctuation
(SFL) regime characterized by1,25

|VDI(�)| 
 VFL(�) ∼ 1/�τ for large � . (3.8)

2. Marginally rough surfaces with ζ = 0(
√

log) — In this case, the two
length scales, �̄ and ξ⊥, satisfy

�̄ � ξ2
⊥ in MF regime but �̄ ∼ ξ2

⊥ in FL regimes . (3.9)
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The MF regime is now characterized by VDR(�) � VFL(
√
�) ∼ exp(−c�/a) for

large �. Thus, one enters the FL regimes for a short–ranged repulsion VDR ∼
exp(−c�/a).

For VDI(�) ≈ −W/�r + Uexp(−�/a1), the linear renormalization group (RG)
introduced in Ref. 50 leads to two subregimes depending on the size of the
microscopic length scale, a1.

51 For VDI(�) ≈ −W exp(−�/a1)+Uexp(−�/a2), this
linear RG yields three subregimes50,52 as has been confirmed, to a certain extent,
by MC simulations of interface models53. Exponential interactions should apply
to 3–dim lattice models with short–ranged interactions. However, MC simulations
of such models have not produced, so far, any evidence for the FL regimes.54,55

3.5 Effective Hamiltonian for interacting surfaces

Consider two surface segments which are, on average, parallel and are described by
two coordinates, �1(�x) and �2(�x). For thermally–excited fluctuations their elastic
free energy per unit area is given by 1

2
K1(∇n�1)

2 and 1
2
K2(∇n�2)

2, respectively,
with n as in (2.19) and ζ = (2n + 1 − d)/2. Furthermore, the two surfaces
experience a direct interaction, VDI(�1−�2). Then, their separation � ≡ �1−�2 ≥ 0
is governed by the effective Hamiltonian

H{�} =
∫

dd−1x {1

2
K(∇n�)2 + V (�)} (3.10)

with K = K1K2/(K1 + K2) and V (�) ≡ H� + VDI(�) for � > 0.
The field � is restricted to positive values since the surfaces considered here

cannot intersect. Therefore, the model (3.10) should be supplemented with the
hard wall condition

V (�) = ∞ for � < 0 . (3.11)

Then, all configurations with negative �–values have a vanishing Boltzmann
weight, exp{−H/T}. For � > 0, the interaction V (�) has the generic form
V (�) = H� + VDI(�) with VDI(�) ≈ 0 for large �. For effective pressure H > 0,
the term H� provides an exponential cutoff in the weight for large �. For H = 0,
configurations with arbitarily large � have a finite weight. Therefore, the surfaces
are always unbound at H = 0 as long as the number of surface modes is finite
(L‖ < ∞). In order to get a bound state of the surfaces, one must first perform
the thermodynamic limit (L‖ → ∞) for H > 0, and subsequently let H approach
zero.27

The model (3.10) can be studied with a variety of theoretical methods. 27 So
far, the only approach which has been useful for general d and n is a functional
renormalization group (RG)56,19,25 which represents an extension of Wilson’s ap-
proximate recursion relations57.

3.6 Functional renormalization

1. Strong–fluctuation (SFL) regime — The functional RG acts as a nonlinear
map on the direct interaction, V (�) = VDI(�), of interfaces or membranes. When

10



applied to the model given by (3.10), this RG leads to the recursion relation56,19,25

V (N+1)(�) = R[V (N)(�)] (3.12)

with

R[V (�)] = −ṽbd−1ln{
∫ ∞

−∞

d�′√
2πã⊥

exp[−1

2
(�′/ã⊥)2 −G(�, �′)]} (3.13)

and
G(�, �′) = [V (bζ�− �′) + V (bζ� + �′)]/2ṽ . (3.14)

The parameters ã⊥ and ṽ which depend on the rescaling factor b > 1 represent
a length and a free energy scale. The length scale ã⊥ is determined by the
requirement that the RG transformation is exact to first order in V. This leads
to

ã2
⊥ = a2

⊥(b2ζ − 1)/2ζ with a2
⊥ = cd(T/K)a2ζ , (3.15)

cd = 2/(4π)(d−1)/2Γ(d−1
2

), and ζ = (2n + 1 − d)/2 as before. The scale ã⊥ has
a simple interpretation: it is the roughness of the small–scale fluctuations with
wavelengths a ≤ L‖ ≤ ba. The free energy scale, ṽ, is not determined by the
linearized RG. Wilson’s original decomposition of phase space leads to the choice

ṽ = v(1 − b1−d)/(d− 1) with v = cdT/ad−1 . (3.16)

For rough surfaces with ζ = (2n + 1 − d)/2 > 0, the above recursion relation
leads to two fixed points, V ∗

o (�) and V ∗
c (�), 56,19,25 which have a Gaussian tail

∼ exp(−�2). These two fixed points govern the behavior within the SFL regime
as defined by (3.8). The fixed point V ∗

o (�) is purely repulsive and describes the
unbound state of the surfaces. All direct interactions, V (�) = VDI(�), which
lead to completely separated surfaces are mapped onto this fixed point. On
the other hand, the fixed point V ∗

c (�) has an attractive well and describes the
continuous unbinding transition within the SFL regime. All direct interactions
which correspond to such a transition point are mapped onto V ∗

c . Thus, within
the SFL regime, the fixed points V ∗

o and V ∗
c have a domain of attraction with

codimension zero and one, respectively.
2. Intermediate (IFL) regime — Now, consider interactions V (�) = VDI(�)

which belong to the IFL regime and decay as ∼ 1/�τ for large �. This regime
is governed by a whole line of nontrivial RG fixed points as found from the
functional RG in the infinitesimal rescaling limit b → 1+�t. 58 In this limit, the
RG transformation (3.12) becomes25

∂V/∂t = (d− 1)V + ζ�∂V/∂� +
1

2
v ln[1 + (a2

⊥/v)∂
2V/∂�2] (3.17)

with a⊥ and v as in (3.15) and (3.16).
It is convenient to use the dimensionless variables z ≡

√
2ζ�/a⊥ and U(z) ≡

2ζ V (a⊥z/
√

2ζ)/v. Then, the flow equation becomes58

∂U/∂t = ζ[τU + zU ′ + ln(1 + U ′′)] . (3.18)
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The fixed points, U∗(z), of this RG transformation satisfy

τU∗ + z∂U∗/∂z + ln[1 + ∂2U∗/∂z2] = 0 . (3.19)

Therefore, the rescaled fixed point equation depends only on one parameter,
namely τ .

This fixed point equation has solutions which are singular at z = 0 and behave
as58

U∗(z) ≈ σ/zτ +
τ + 2

τ
ln(z) with σ > 0 (3.20)

for small z. For large z, all solutions to (3.19) decay, and U∗ is then governed by
the linear equation, τU∗ + z∂U∗/∂z + ∂2U∗/∂z2 = 0. This implies58

U∗(z) ≈ ρ(σ)/zτ + ρ̄(σ)zτ−1exp(−z2/2) (3.21)

for large z where the amplitudes ρ and ρ̄ are uniquely determined by σ. This
line of RG fixed points, U∗(z|σ), leads to non-universal critical behavior and
essential singularities in agreement with exact calculations49 for (d, n) = (2, 1).
The corresponding RG flow is unusual and has a parabolic character.

3. Fluctuation regimes for marginally rough surfaces — For the
marginal case ζ = (2n + 1 − d)/2 = 0, the flow equation (3.17) reduces to

∂V/∂t = 2nV +
1

2
v ln[1 + (a2

⊥/v)∂
2V/∂�2] (3.22)

Then, the equation for the fixed points, V ∗(�), can be written as ∂2V ∗/∂�2 =
−∂Φ(V ∗)/∂V ∗ where Φ(V ∗) has a unique minimum at V ∗ = 0.25 This implies
that one has no (stationary) unbinding fixed points for ζ = 0. Instead, a line
of drifting fixed points, V (�, t) = V †(� − gt), is found which move with constant
velocity, g, under the RG.56,25 They arise because the redundant perturbation,
∂V ∗/∂�, associated with a shift of the �–coordinate, becomes marginal for ζ = 0.

In the absence of a nontrivial fixed point, the critical behavior must be de-
termined by a matching procedure: one applies the RG up to a matching point
at which the renormalized interaction, V (N)(�) or V (�, t), can be analyzed by
mean–field theory. Such a matching procedure can be done analytically if one
linearizes the RG transformation. If the recursion relation (3.13) is linearized as
it stands, one obtains a linear RG for V (�)52,25 which is completely equivalent to
a normal ordering of V (�)59,48,27. On the other hand, one may first incorporate
the hard wall condition (3.11) into (3.13), and subsequently linearize. The latter
procedure leads to the modified linear RG introduced in Ref. 50.

3.7 Critical behavior at unbinding transitions

The critical behavior associated with the unbinding of surfaces can be character-
ized by critical exponents. First, consider the case of complete unbinding which
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occurs for a repulsive total interaction, VTI ≥ 0, as the effective pressure, H, goes
to zero.60,1,61 Then,

�̄ ∼ H−ψc

, ξ⊥ ∼ H−νc
⊥ , and ξ‖ ∼ H

−νc
‖ . (3.23)

with critical exponents ψc, νc⊥, and νc‖. (The superscript c stands for ’complete’).

Likewise, the surface free energy, fs(H) ≡ H�̄+VTI(�̄) with �̄ = �̄(H) contains
the singular part, fs ∼ H2−αc

, and

∂2fs/∂H
2 = ∂�̄/∂H ∼ H−αc

. (3.24)

The four critical exponents ψc, νc⊥, ν
c
‖, and αc are not independent but satisfy

the scaling relations

αc = ψc + 1 , νc⊥ = ζνc‖ , and 2nνc‖ = 2 − αc + 2ψc (3.25)

with n as in (2.19). Therefore, there is only one independent critical exponent,
say ψc.60 For a direct interaction, VDI(�) ∼ 1/�p, one has

ψc = 1/(1 + p) for p < τ
= 1/(1 + τ) for p ≥ τ.

(3.26)

This holds both for thermally–excited60,61 and for impurity– induced1,2,62 fluctu-
ations with τ as given by (2.22) and (2.23), respectively.

For H = 0, the surfaces may be bound (in the thermodynamic limit, L‖ = ∞),
i.e., the total interaction, VTI , may have an attractive part. The strength of this
attraction depends on various parameters, and can vanish as these parameters
are changed. Then, the surfaces undergo a continuous or discontinuous unbinding
transition.

At a discontinuous transition, the mean separation, �̄, jumps from a finite
value to infinity.63 Such a transition can occur for direct interactions which satisfy
VDI(�) � VFL(�) ∼ 1/�τ for large �, and which have an attractive part at smaller
values of �. In contrast, a discontinuous transition is impossible in the SFL
regime with |VDI(�)| 
 VFL(�) ∼ 1/�τ .48,58 In the IFL regime with |VDI(�)| ∼
VFL(�), discontinuous transitions are still possible but acquire very unusual scaling
properties.48,49,64

A continuous transition is critical if the singular behavior depends on two
scaling fields.65 This applies to all transitions in the SFL regime.58. At a critical
unbinding transition, one has �̄ = y−ψΩ�(H/y∆) where y is an appropriate scaling
field. Similar scaling forms with corresponding exponents ν⊥, ν‖, and 2 − α hold
for ξ⊥, ξ‖, and fs. For y = 0, one has �̄ ∼ H−ψ/∆ and, thus, ψc = ψ/∆ etc. It
then follows from (3.25) that ν⊥ = ζν‖ and 2nν‖ = 2 − α + 2ψ.

3.8 How far is it to asymptotia?

In the previous subsections, the asymptotic behavior associated with the unbind-
ing of surfaces has been discussed. If one wants to study these critical effects

13



in experiments or numerical simulations, one must worry about: (i) Crossover
behavior; (ii) Finite size effects; and (iii) Time scales for equilibration. The first
two topics are discussed in this subsection while equilibration will be considered
in Sec. 4.

1. Crossover behavior — As an example, consider complete wetting (or
edge melting) in d = 2 for a direct interaction, VDI(�) ≈ Cp/�

p with p > τ =
2. Then, the unbinding of the 1–dim interfaces is driven by thermally–excited
fluctuations for T > 0. Indeed, their mean separation behaves as60

�̄ ≈ cs1/3/h1/3 for small h ≡ H/Cp with s ≡ T 2/Σ̃Cp

and interfacial stiffness Σ̃ = Σ̃(T ). If the 1–dim interface feels a periodic potential,
one expects66 Σ̃ ∼ exp(J/T ) and, thus, s ∼ exp(−J/T ) for small T where J
is the step energy. At T = 0, on the other hand, the unbinding is entirely
controlled by VDI , and �̄ ∼ 1/h1/(p+1) for small h as follows from minimization of
V (�) ≈ H� + Cp/�

p.
Thus, one has a characteristic crossover at low T which can be described by

the scaling form

�̄ = h−1/(1+p) Ω(s/hφ) with φ = (p− 2)/(p + 1) (3.27)

where the shape function Ω(x) ≈ cx1/3 for large x. It seems that such a crossover
has been observed, for p = 3, in recent experiments31 on edge melting.

2. Finite size effects — Now, assume that the surfaces are embedded in a
finite system which has a linear extension, N‖ and N⊥, in the direction parallel
and perpendicular to the surfaces. The anisotropy of the surface fluctuations,
characterized by ξ⊥ ∼ ξζ‖ leads to different finite size effects in these two directions.

In the parallel direction, finite size effects set in once ξ‖ � N‖. This is very
important for the interpretation of computer simulations. It leads, in fact, to
quasicritical behavior as H → 0 for finite N‖.

67 In the perpendicular direction,
finite size effects are always present for ξ⊥ � N⊥ since the boundaries then act
as a confining potential on the surfaces. However, such effects may set in even
for ξ⊥ 
 N⊥. This happens in the context of wetting. In this case, a finite
value of N⊥ leads to a shift of the coexistence curve and the process of wetting
is truncated at H = H∗ > 0. Quite generally, one has H∗ ∼ 1/N⊥.68 Since the
limit H = 0 is no longer accessible, the mean separation �̄ of the surfaces can no
longer diverge. For a non-conserved order parameter, the maximal value of the
equilibrium separation is given by68

max(�̄) ∼ 1/Hψc

∗ ∼ Nψc

⊥ . (3.28)

with ψc as in (3.26). This behavior applies, e.g., to wetting by one–component
fluids (where it is called capillary condensation) and to surface melting. For
a conserved order parameter, the truncation of �̄ sets in somewhat earlier, and
max(�̄) ∼ N

ψc/(1+ψc)
⊥ .
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4 Interface Dynamics and Growth of Wetting

Layers

4.1 Introduction

In equilibrium, interacting surfaces feel two forces: an external pressure, H, which
is balanced, for H ≥ 0, by the disjoining pressure, −∂VTI/∂�, arising from the
interactions.40 Then, the total force,

Ĥ(�) ≡ H + ∂VTI/∂� (4.1)

acting on the surfaces, vanishes as in (3.1). Now, consider an unbalanced situation
away from equilibrium with Ĥ(�) �= 0. Then, the surfaces will move apart for
Ĥ(�) < 0 or will come closer together for Ĥ(�) > 0.

In the following, I will focus on the thickening of wetting layers or on the
growth of thin films. In this case, the total force, Ĥ < 0, corresponds to an
effective undersaturation. This undersaturation scales as

Ĥ ∼ ∂VTI/∂� ∼ −1/�1/ψc

for H = 0 (4.2)

with ψc = 1/(1 + p) or ψc = 1/(1 + τ) as in (3.26). Thus, for H = 0, the driving
force for the dynamics is either determined by the direct repulsion VDR ∼ 1/�p

or by the fluctuation–induced repulsion VFL ∼ 1/ξτ⊥.
Several growth modes for the thickening of wetting layers will be discussed:

(i) Adhesive growth for rough interfaces;69 (ii) Adhesive growth for smooth inter-
faces; (iii) Diffusion–limited growth;70 and (iv) Activated growth in the presence
of quenched impurities. In all cases, the wetting layers are taken to be close to
thermal and chemical equilibrium. This has to be distinguished from the dynam-
ics of dry spreading71 where the total volume of the wetting film is fixed.

4.2 Adhesive growth for rough interfaces

Consider a liquid phase, β, which is adsorbed from a vapor phase, α, onto a
solid substrate, γ. Then, a wetting layer builds up and the mean separation,
�̄, of the (αβ) interface from the solid wall steadily increases with time, t. The
deposition rate from the vapor phase is proportional to the vapor pressure while
the evaporation rate depends on the binding energies within the condensed phase.
The growth rate is then proportional to the undersaturation: ∂�/∂t ∼ −Ĥ(�),
which implies69

�̄(t) ∼ tθ with θ = ψc/(1 + ψc) for H = 0 (4.3)

where ψc is given by (3.26) and τ = (d−1)/ζ. On the other hand, for small H > 0,
the equilibrium thickness �̄(∞) ∼ 1/Hψc

. It then follows that the equilibration
time, teq, scales as teq ∼ 1/H1+ψc

for small H > 0. For a marginally rough
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interface in d = 3 and VDI(�) ∼ exp(−�/a1), the mean separation �̄(t) ∼ ln(t),
and the equilibration time teq ∼ 1/H.72

This growth mode also applies to wetting in lattice models with nonconserved
dynamics provided T > Tαβ

R where Tαβ
R is the roughening temperature of the (αβ)

interface. Indeed, the growth law (4.3) has been confirmed by MC simulations
of SOS–models in d = 2 and d = 373, of a 3–state chiral Potts model in d = 2
74, and of an Ising model in d = 375. For a 2–dim model on a periodic lattice
(with short–ranged interactions), the growth law (4.3) becomes �̄(t) ≈ A�t

1/4 with
amplitude A� ∼ (T 2/Σ̃)1/4 ∼ exp(−J/T ) since the stiffness Σ̃ ∼ exp(J/T ) for low
T . Therefore, �̄(t) exhibits strong crossover behavior at low T which has indeed
been observed in one of the MC studies.

What about the length scales ξ‖ and ξ⊥ ? Scaling implies that ξ‖(t) ≈ bξ‖(b
−zt)

and, thus,69

ξ‖(t) ∼ tθ‖ with θ‖ = 1/z (4.4)

which will be taken as a definition of the dynamic critical exponent, z. On the
other hand, one may again define a roughness exponent, ζ, via ξ⊥(t) ∼ ξ‖(t)

ζ as
before. Then,

ξ⊥(t) ∼ tθ⊥ with θ⊥ = ζ/z . (4.5)

The growth of �̄ as given by (4.3) is rather slow. Then, one may assume local
equilibrium such that the length scales �̄, ξ‖, and ξ⊥ are related via ξ‖ ∼ �̄ν‖/ψ and

ξ⊥ ∼ ξζ‖ where the exponents ν‖/ψ = νc‖/ψ
c and ζ have the same values as in

equilibrium. This implies that θ‖ = θνc‖/ψ
c = 1/(2 − ησ), θ⊥ = ζ/(2 − ησ) and

z = 2− ησ with ησ ≥ 0. The local equilibrium assumption is indeed confirmed by
a systematic study of the Langevin equation ∂�/∂t = −CδH/δ�+f with effective
Hamiltonian H{�} as in (3.10) and Gaussian white noise, f .69

It is possible, however, that the value of ζ is determined by the dynamics
rather than by the statics. Such a behavior has been found for a single interface
which grows by ballistic deposition with a local growth rule.76,77 For some growth
rules, the interfacial coordinate, �(x, t) = gt + h(x, t), evolves according to76

∂h/∂t = g(∇h)2+CK∇2�+f . This leads to z = z1 and ζ = ζ1 with z1+ζ1 = 2.78

In d = 1 + 1, one has z1 = 3/2 and ζ1 = 1/2.76 For d > 2, the exponents are
expected to satisfy the bounds 1/d ≤ ζ1 ≤ 1/2 and 3/2 ≤ z1 ≤ 2 − 1/d.76,79

In the present context, the velocity, g, is not constant but depends on time:
g = ∂�/∂t ∼ tθ−1. Therefore, the fluctuations, h(�x, t) = �(�x, t) − �̄(t), should
evolve according to

∂h/∂t = Btθ−1(∇h)2 + CK∇2n� + f . (4.6)

where f is again a Gaussian white noise. A scaling analysis of this equation shows
that the nonlinear term ∼ (∇h)2 is irrelevant for θ < θ∗ ≡ z1/2n. The adhesive
growth law (4.3) implies θ < 1/2 for ψc < 1, while θ∗ ≥ 3/4 follows from the
bound z1 ≥ 3/2. Thus, local equilibrium should be generally valid for (4.3).

On the other hand, if θ > θ∗ is enforced by H < 0 or by an external potential,
one may enter the ballistic deposition regime which is then characterized by
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ζ = ζ1 and z = z1/θ. Even in this regime, ξ⊥ is always small compared to �̄ since
θ⊥ = ζ/z = θζ1/(2 − ζ1) ≤ θ/3.

4.3 Adhesive growth for smooth interfaces

Now, consider a wetting layer in d = 3 consisting of a periodic crystal or an
ideal quasicrystal. At low T, the interfaces bounding this layer are smooth (with
ζ = 0), and the approach to complete wetting proceeds via multilayering. Each
new layer starts from 2–dim nucleation clusters with critical radius � Σs/a(−Ĥ)
and free energy �F � Σ2

s/a(−Ĥ) where Σs is the step free energy per unit length.
Therefore, the growth is activated, and ∂�/∂t ∼ exp(−�F/T ) ∼ exp[C/Ĥ(�)].
For H = 0 and VDI ∼ 1/�p , this leads to the logarithmic growth law

�̄(t) ∼ [ln(t)]ψ
c

with ψc = 1/(1 + p) (4.7)

in d = 3. For small H > 0, the equilibrium separation �̄(∞) ∼ 1/Hψc
which

implies the equilibration time teq ∼ exp[C/H] for small H > 0.
The above analysis applies to multilayering in the 3–dim Ising model as has

been studied in a MC simulation.54 In this case, VTI(�) ∼ exp(−c�/a) which im-
plies �̄(t) ∼ ln[ln(t)] for H = 0, and teq ∼ exp[C/H] as before. Thus, observation
of more than the first few layers requires an exponentially large time.

In real solid films, defects have a dramatic effect on the growth rate. In
epitaxial growth, mismatch dislocations lead to an effective interaction, VDI(�) ∼
−1/�, which is attractive and, thus, prevents complete wetting at H = 0.80 On the
other hand, for non–epitaxial growth, the growth rate can be greatly enhanced
by the presence of screw dislocations which act as a source for steps. Classical
theories for spiral growth predict that the rate is ∼ (supersaturation)2.81 In the
present context, this leads to ∂�/∂t ∼ [Ĥ(�)]2. For H = 0 and VDI(�) ∼ 1/�p,
this implies the power law growth

�̄(t) ∼ tθ with θ = ψc/(ψc + 2) and ψc = 1/(1 + p) (4.8)

in d = 3.

4.4 Diffusion–limited growth

Next, consider a binary mixture or alloy of two molecular species, A and B, which
separates into two phases, α and β, below its consolute point. Assume that the
B–rich phase β forms a wetting layer which intrudes beween the α phase and
a solid wall, γ. At complete wetting, the β layer will grow into the α phase,
and the region of α phase adjacent to the (αβ) interface becomes depleted of B
molecules. If there is no hydrodynamic flow, further growth can only occur by
diffusion through the depleted region.

The thickness of the depleted region is set by the diffusion length, δ(t) ∼ t1/2.
Mass conservation implies that �(t) ∼ [Xα−X(�)]δ(t) where Xα is the concentra-
tion of B molecules deep in the α phase while X(�) is the concentration in front
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of the (αβ) interface. In local equilibrium, one has Xα−X(�) ∼ undersaturation
of the relative chemical potential. Then, the thickness, � of the wetting layer
evolves according to �(t) ∼ −Ĥ(�)/δ(t), which leads to70

�̄(t) ∼ tθ with θ = ψc/2(1 + ψc) . (4.9)

where ψc is given by (3.26) with τ = (d−1)/ζ. This is confirmed by a systematic
study of the interfacial motion using the Green’s function formalism.70

An interface which moves as a result of bulk diffusion can be unstable with
respect to the Mullins–Sekerka instability.82 It turns out, however, that the in-
terfacial motion is stable as long as the growth exponent θ < 1/2 which applies
to the growth given by (4.9).70 On the other hand, for effective pressure H < 0,
the above scaling analysis leads to �̄(t) ∼ δ(t) ∼ t1/2, and the interface devel-
ops ’fingers’ as a result of the Mullins–Sekerka instability. This fingering could
accelerate the interfacial motion and θ could become larger than 1/2.

4.5 Activated growth in the presence of quenched impu-
rities

Finally, consider the same wetting geometry as in the previous subsections but
assume that the (αβ) interface feels a random potential arising from the presence
of quenched impurities. In such a situation, the interface gets caught in metastable
states and its dynamics is then controlled by the size of activation barriers.83,13

In order to make an interfacial fluctuation of longitudinal and transverse
extension, ξ‖ and ξ⊥ ∼ ξζ‖ , one must overcome free energy barriers, �F ∼
ξd−1
‖ (ξ⊥/ξ‖)

2. On the other hand, if the interface moves out by such a hump,

it will typically gain a free energy ∼ (−Ĥ)ξ⊥ξ
d−1
‖ . Therefore, the interface must

nucleate humps which are characterized by a critical size ξ‖ = ξ‖c ∼ (−Ĥ)−1/(2−ζ)

corresponding to an activation free energy �F ∼ (−Ĥ)−(d−3+2ζ)/(2−ζ). This leads
to ∂�/∂t ∼ exp[−�F/T ] ∼ exp[−C/(−Ĥ(�))χ], and

�̄(t) ∼ [ln(t)]ψ
c/χ with χ = (d− 3 + 2ζ)/(2 − ζ) (4.10)

where ψc is given by (3.26) with τ = 2(1/ζ − 1).
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