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Adsorption transitions of polymers and crumpled membranes are studied for general substrate 
potentials in d-dimensional systems. Several regimes for the critical behavior are identified: (i) a 
weak-fluctuation regime for sufficiently long-ranged potentials which is well described by an ensem- 
ble of independent blobs; (ii) a complex intermediate fluctuation regime with infinite-order, second- 
order, and anomalous first-order transitions; and h i )  a strong-fluctuation regime for sufficiently 
short-ranged interactions which is characterized by second-order transitions with universal critical 
behavior. 

I. INTRODUCTION 

On large scales, polymers are crumpled (i.e., highly 
convoluted) as a result of thermal fluctuations. They 
then form random coils with a gyration radius Rr which 
grows as RG - N "  with the total length N of the polymer 
chain.' Recently, it has been realized that thermally ex- 
cited crumpling can also occur for two-dimensional 
sheets of molecules such as fluid membranes in mi- 
croemulsions2 and tethered (or polymerized) membranes3 
For crumpled membranes, the gyration radius also scales 
as Rr  - N "  where N ^  is now the total area of the mem- 
brane. 

Here, we consider crumpled polymers and membranes 
that are adsorbed onto a solid substrate or any other in- 
terface. Adsorbed polymers are important from a tech- 
nological point of view since they can be used to stabilize 
colloidal suspensions. Likewise, in the context of bio- 
physics, they serve as simple model systems for the ma- 
cromolecules which are attached to the surfaces of cells 
and organelles. Adsorbed states of crumpled membranes 
represent a possible structure for the interface between a 
microemulsion and another thermodynamic phase. 

We will study the dilute case in which the adsorbed po- 
lymers or membranes have no overlap and can be treated 
as independent. Furthermore, we focus on length scales 
which are small compared to the gyration radius RG of a 
free polymer or membrane. The system may then under- 
go an adsorption (or unbinding) transition in which the 
adsorbed manifold unbinds from the substrate surface in 
a continuous or discontinuous fashion. 

We show below that the form of the substrate potential 
acting on the polymer or membrane segment has impor- 
tant consequences for the nature of this transition and for 
its scaling properties. In real systems, the substrate po- 
tential contains short-ranged and long-ranged contribu- 
tions such as electrostatic, van der Waals, or structural 
interactions. The latter interactions typically arise from 
the decay of short-range order within the solvent. If the 
attractive part of the potential is sufficiently strong, it will 
bind the polymer or membrane to the substrate surface. 
However, thermally excited shape fluctuations of the ad- 

sorbed manifolds renormalize the substrate potential: 
quite generally, they act to reduce its attractive part and 
to enhance its repulsive part. At the transition tempera- 
ture T =  T *  of the adsorption (or unbinding) transition, 
these shape fluctuations lead to a renormalized potential 
which is completely repulsive. 

Three different scaling regimes for such transitions will 
be identified: (i) a weak-fluctuation (WFL) regime for 
sufficiently long-ranged substrate potentials4 where the 
adsorbed chain or membrane can undergo a first-order 
transition at  a finite temperature T = T *  but a second- 
order transition is only possible at T* = oo or when the 
potential strength is decreased to zero; (ii) an intermedi- 
ate fluctuation (IFL) regime characterized by a complex 
interplay of short-ranged and long-ranged potentials. 
This regime exhibits three subregimes including anoma- 
lous first-order transitions and transitions of infinite order 
governed by essential singularities; and (iii) a strong- 
fluctuation (SFL) regime for sufficiently short-ranged po- 
tentials. In this latter regime, the system undergoes a 
second-order transition at finite T* which is character- 
ized by universal critical behavior. First-order transi- 
tions, on the other hand, are impossible in the SFL re- 
gime as a result of the strong fluctuations. 

Our derivation of these properties starts from a heuris- 
tic scaling picture in which the adsorbed polymer is 
viewed as a collection of independent blobs5 We find 
that this intuitively appealing picture correctly identifies 
the various scaling regimes. As far as the critical behav- 
ior is concerned, the picture gives a reliable description in 
the WFL regime but fails in the IFL and in the SFL re- 
gimes. We also show how to extend the blob picture to 
crumpled membranes. 

11. INDEPENDENT BLOB PICTURE FOR POLYMERS 

Consider a linear or branched polymer chain which is 
adsorbed onto a ( d  - 1 )-dimensional surface (with d 3) 
and which forms a layer of thickness 1. It will be useful 
to view this layer as a string of blobs which have a linear 
size -1. On scales small compared to 1, the chain should 
not feel the constraint arising from the external potential 
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and thus should crumple as if it were free.5 Then, a blob 
will contain N, monomers with 

l / a - N f  for / > > a  , (1) 

where a is the microscopic persistence length. Further- 
more, one may assume that the correlations between 
different blobs are destroyed by the external potential.5 
Then, the chain with N monomers can be viewed as a 
string of - N/N, independent blobs. The elastic free en- 
ergy stored within each blob should be - T as suggested 
by the equipartition theorem. Therefore the elastic free 
energy Fd of the whole chain should scale as 

This represents the loss of entropy resulting from the 
confinement; it acts to thicken the blobs and, thus, to 
reduce the overall entropy loss. However, thicker blobs 
have a larger potential energy Fpot arising from the sub- 
strate potential per monomer U ( z )  where z measures the 
distance from the substrate surface. This energy is 

Now, one can attempt to determine 1 in a self-consistent 
way by minimization of 

Note that T ( a  /l)l'v is the entropy loss per monomer. It 
turns out that this heuristic procedure correctly identifies 
the three scaling regimes for U ( z )  even though it does not 
yield the correct critical behavior in two of the three re- 
gimes. Indeed, the superposition ansatz in (4) immediate- 
ly leads to the following classification: (i) the WFL re- 
gime characterized by4 

~ ( l ) \ Ã ˆ l / l " '  for large 1 . (5) 

In this regime, the entropy gain from crumbling cannot 
compete with the substrate potential U ( l )  for large I; (ii) 
IFL  regime with 

U ( l ) \ - l / l l ' v  for large 1 . (6) 

Now, the shape o f f  (1) in (4) crucially depends on the 
amplitude W of U ( 1 ) ~  - w/ll'". For W < 0, the super- 
position can lead to a first-order transition in the pres- 
ence of a short-ranged attractive part. In addition, a 
second-order transition is also found when W is de- 
creased from large positive values. I t  will be shown 
below that this regime does indeed exhibit rather com- 
plex critical behavior; and (iii) the SFL regime with 

U ( l ) \  <<l/ll/v for large 1 . ( 7 )  

In this case, the minimization procedure leads to a first- 
order transition at  finite T *  if U ( z )  contains a sufficiently 
strong attractive part. There is indeed a transition at  
finite T *  but it is of second order as will be shown in the 
following. 

111. ADSORPTION OF IDEAL CHAINS 

Now, we will confirm the above scaling regimes for the 
case of an ideal chain with v = i .  The configuration of 
the chain will be described by r ( s ) = ( x ( s ) , z ( s ) )  where 
x = ( x  . . . , xJ _, ) and z are coordinates parallel and per- 
pendicular to the substrate surface, and s labels the se- 
quence of monomers. In the continuum limit, the chain 
is then governed by the effective Hamiltonian 

As before, U ( z )  is the potential energy of one monomer 
at  distance z from the surface. The statistical properties 
which follow from the Boltzmann factor exp( - B / T )  
can be obtained exactly for this case since the x and z 
coordinate decouple. Thus the x coordinate describes an 
ideal and free chain in d - 1 dimensions while the behav- 
ior of the z coordinate can be determined via transfer- 
matrix methods. One must then solve a Schrodinger-type 
equation of the form 

The scaling properties of the adsorbed chain follow from 
the ground state 4 d z )  and its energy En. This problem 
is, in fact, identical with the unbinding of a one- 
dimensional interface for wetting in d =2.  In the latter 
case, a complete classification of the critical behavior has 
been ~ b t a i n e d . ~  This classification can now be applied to 
the adsorption transition of ideal chains in any dimension 
d 2 2. One then finds that the three scaling regimes are 
correctly given by (5) and (6). Furthermore, one finds the 
following critical behavior: (i) in the WFL regime, the 
exact critical behavior is identical with the behavior ob- 
tained from the superposition ansatz (4). As an example, 
consider the potential U ( z ) =  Gz for z > 0 (arising, e.g., 
from gravity). Then, the average thickness / o f  the ad- 
sorbed polymer scales as i / a  - ( T / ~ G ) ~  with $=+. The 
chain may also undergo a first-order transition where 1 
jumps from a finite value to infinity (for an infinite chain 
with N = ec if U ( z )  contains an attractive short-ranged 
part and a repulsive long-ranged part; (ii) in the IFL  re- 
gime with U(z)s= - W / Z ,  one has three different subre- 
gimes (A), (B),  and (0. In subregime (A), the chain un- 
dergoes an adsorption transition of infinite order, and the 
average thickness behaves as 

In subregime (B) with - + 5 2 W/a *T 5 4, one has 
- 
1 - ( T * - T )  * with ^ l Â ¥ = ( l - ? ~ / a ' - ~ ) ~ ~ '  . (11)  

Finally, for 2 w / a  *T < - +, one enters subregime (C). 
Then, the transition becomes first order in the sense that 
the first derivative of the free energy is discontinuous but 
the density profile P ( z )  is scale invariant since P ( 2 )  - z ^  
for large z with p = ( 1 - 8 W / a 2 ~ ) 1 i 2 - 1 ;  and (iii) in the 
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SFL regime, there are no first-order transitions since the 
polymer "tunnels" through any potential barrier but only 
second-order transitions with the universal critical ex- 
ponent i / '= 1 as follows from ( 1 1 ) for W =0. 

IV. ADSORPTION OF SELF-AVOIDING (SA) CHAINS 

For self-avoiding (SA) chains, the exponent v depends 
on d: v =  v(d) .  For linear chains, one has v(2 ) = -  and 
v(3 )=+ as obtained from a Flory argument;  for 
branched chains, v (2 )  e 0 . 6 1  and vi3)  4.' In general, 
the independent blob picture should give the correct be- 
havior in the WFL regime as defined in (5). Consider, 
e.g., the potential, U ( z )  = Gz. Then, minimization of (4) 
leads to 

- 
l /a - (T/u&'  with * / ( l + v ) .  (1 2) 

It then follows that i / a  - 1 /g ' / '  with g - a G / T  for 
linear SA chains in d = 2  since v=;. 

As shown in Fig. 1, this relation is well confirmed by 
Monte Carlo (MC) simulations. These MC data have 
been obtained for chains which consist of a linear se- 
auence of N disks. These disks have diameter c and their 
centers are connected by linear bonds of length a >c .  
The SA constraint is embodied by the requirement that 
disks are not allowed to overlap. For comparison, Fig. 1 
also shows M C  data for ideal chains (with c  = 0 ) ;  in this 
case, one has //a - 1 /g ' I3  as mentioned. Finite-size 
effects set in once //a -R<,/a -AT'.  For I^ R ~ ,  the 
chains behave as a single particle in an external potential. 
This implies //a - 1 /gN for the example considered here 
which is visible in Fig. 1 for small values of g and SA 
chains with A' =40 or 80. (The corresponding data for 
ideal chains have been omitted.) 

The SFL regime contains all potentials with 
1 U ( z ) \  << 1 /z ' Iv,  see (7). Therefore a potential of finite 
range with U ( z ) = 0  for z > zO belongs to this regime. For 

sition of the semi-infinite n-vector model in the limit 
n -0.' One then finds /-( T* - ~ ) b i t h  i/i=v/<p 
where a> is the crossover exponent at  the special transi- 
tion. Using the known results for v and a>, one ob- 
tains L!J= 1 for d Z4 ,  i<i= 1 + (4 -d ) /4  for small 4-d, and 
!/'= + for d = 2; linear interpolation then gives $ = $ for 
d = 3. For branched SA chains in d =3, recent MC simu- 
lations gave the crossover exponent <p ~ 0 . 7  1. " This 
leads to l - (T*-T) -*wi th  i / '=v/p=0.5/0.71=0.70.  

The general classification scheme presented here im- 
plies that these values for $ apply to the whole SFL re- 
gime for linear or branched SA chains. In particular, 
they apply to SA chains in d = 3  in the presence of a real- 
istic van der Waals potential with U ( z ) =  - W / Z  for 
large z. 

V. ADSORPTION OF CRUMPLED MEMBRANES 

Membranes are two-dimensional (2D) sheets which 
form spontaneously in solutions of amphiphilic mole- 
cules. Examples are monolayers of surfactant and bi- 
layers of lipid molecules. Such a monolayer or bilayer 
often has a finite persistence length Â £ , Ã  Then, the mem- 
brane will exhibit orientational order(i.e., its normal vec- 
tors will be correlated) on length scales <<cn but will be 
orientationally disordered and crumpled on length scales 
> c P .  Since we will focus on crumpled states, the mem- 
branes considered here are taken to consist of segments 
(or monomers) with area a * - 6;. 

Now, consider a crumpled membrane which is ad- 
sorbed onto a ( d  - 1 )-dimensional surface (with d ?  3 )  
and forms a layer of thickness I .  In close analogy with 
the case of polymers, we will take the adsorbed layer to 
consist of independent blobs which have a linear exten- 
sion -1. Each blob will now contain N segments (or 
monomers) with I / a  - N f ,  and its elastic free energy will 
again be - T.  Then, a membrane with a total number of 
-V2 segments contains ( N / N ,  )2 blobs and, thus, has an 
elastic free energy Fe, = T ( N / N ,  12- N ~ T ( ~  1 1 ) ~ " .  The 
substrate potential, on the other hand, leads to the free- 
energy contribution F ,  = N ^ (  U ( z )  ) - N ~ U  ( 1 ) .  There- 
fore the free energy per membrane segment can be es- 
timated by 

such a potential, the adsorption transition of linear SA 
chains has been identified with the so-called special tran- 

FIG. 1 .  Average thickness /of adsorbed polymer in an exter- 
nal potential U ( z ) = G z  as a function of g = a G / T .  The white 
and black data points correspond to self-avoiding and ideal 
chains, respectively. 

Now, the classification as given by (5)-(71, which has 
been obtained for polymers, carries over to crumpled 
membranes provided (i) we replace v with v/2, and (ii) we 
use the v value appropriate for membranes. In this way, 
we can also determine the behavior in the WFL regime of 
crumpled membranes. For example, U ( z )  = Gz leads to - 
l - i ~ / a ~ ) * f o r  large T o r  small G with i / f=v/(2+v) .  

For an ideal tethered membrane which can intersect it- 
self, one has a marginal case with v = 0  and R; -a21n(N). 
In the presence of a substrate potential, U(z ) ,  the mem- 
brane configurations are governed by the effective Hamil- 
tonian 
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for the coordinate r =( x(s, t ),z (s, t ) )  of the crumpled 
membrane, and V = ( a /&,  a /&) .  In this case, the x and z 
coordinate decouple again, and the z-dependent part be- 
comes equivalent to the unbinding of a two-dimensional 
interface for wetting in d =3. Now, fluctuations of the z 
coordinate are found to be irrelevant for all potentials 
U ( z )  which decay as a power of 1/z for large z. On the 
other hand, for U ( z )  -exp( -z /zO ) and sufficiently small 
zO, linear renormalization schemes give a finite value of 
T *  a n d / - l / ( T * - T ) .  

For a SA tethered membrane, a Flory-type argument 
gives the value v=vk t= : l  in d =3,  whereas recent com- 
puter simulations indicate v =  1. I t  then follows from 
(13) that the overall loss of entropy per membrane seg- 
ment scales as - 1 /12'" with 2/v = or 2 /v= 2. This im- 
plies that a realistic van der Waals potential, U ( z )  - 1 /z 3,  

again belongs to the SFL regime for which we expect a 
second-order adsorption transition with universal critical 
exponent ip. 

A strong-fluctuation regime has also been identified for 
the unbinding of interfaces and of oriented membranes, 
i.e., for wetting and adhesion  transition^.'^ In this case, 
the fluctuations lead to an elastic free energy which scales 
as - 1 /lT with the mean separation 1 of the interfaces or  
membranes. Furthermore, a functional renormalization 
group predicts that, in the SFL regime, ip is a unique 
function of T. Therefore the unbinding of I D  interfaces 
and of 2D fluid membranes should be characterized by 
the same value $= 1 since r = 2  holds in both cases. We 
speculate that such a property also applies to the unbind- 
ing of crumpled objects considered here. For polymers 
with ~ = : l / v = ( d + 2 ) / 3  for d 5 4 ,  one has $=2-d/4  
^:(lo-3r)/4. 

For an ideal o r  a SA fluid membrane, the value of v is 
not known at  present. It seems plausible that ideal fluid 

membranes also have v = 0  since fluid membranes are 
more flexible than tethered ones. Self-avoidance in d = 3  
implies the bound v >  1. One interesting possibility is 
that fluid membranes also become uncrumpled as a result 
of self-avoidance. 

VI. SUMMARY AND OUTLOOK 

In summary, a simple picture of independent blobs 
leads to the identification of several scaling regimes for 
the adsorption of polymers and crumpled membranes.I3 
The WFL regime contains all substrate potentials U ( z )  
which are sufficiently long ranged and satisfy \U(z ) \  
>> 1 /zdll'"' with d , ,  = 1 and 2 for polymers and mem- 
branes, respectively. In this regime, the scaling proper- 
ties are governed by the large blobs, and the simple super- 
position ansatz (4) or  (13) gives the correct critical behav- 
ior. In  the IFL  regime with 1 U ( z ) \  - 1 /zdllv and in the 
SFL regime with \U(z ) \  << 1 /zdl1'", the behavior of the 
large blobs is strongly renormalized by the behavior of 
smaller blobs: one has a problem with many length 
scales, and the critical behavior at the adsorption transi- 
tion cannot be obtained from the superposition ansatz (4) 
or (13). 

For ideal chains with v = $  the critical behavior has 
been obtained exactly for all regimes: it is found to be 
universal within the SFL regime but to be highly 
nonuniversal within the IFL regime. We predict that this 
distinction holds in general even though the critical ex- 
ponent ip for the adsorbate thickness / is not known in 
many cases. In particular, no precise estimate of ifr is 
presently available for the IFL and the SFL regimes of 
crumpled membranes. This remains a challenge for the 
future. 
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