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XVIII.l. Introduction and Outline 

Consider a uniaxial antiferromagnet on a simple cubic lattice in an external 
magnetic field. The  lattice can be divided into two sublattices such tha t ,  a t  low 
temperature T ,  all spins within one sublattice point in the same direction. In 
fact, there are two distinct ordered states, a t  a given T ,  which can be transformed 
into one another by interchanging the two sublattices. With increasing T, the 
magnet becomes less ordered up to a transition temperature T = T. a t  which 
it undergoes a phase transition to  a disordered state.  I will be concerned here 
with the  case where this transition is first order. Thus ,  if we look into the bulk 
of such an antiferromagnet, we will see discontinuous change from the ordered 
to  the disordered state.  

Now, assume that  we look instead a t  the surface of such a magnet.  Naively, 
one would expect to  see again a discontinuous change in the order. However, 
theoretical models typically lead to a rather different behavior since they pre- 
dict a continuous decrease of the surface order for a wide range of microscopic 
coupling parameters. In these cases, any surface order parameter, Mi, is found 
to behave as 

Mi - (T. - T)'" with /3, > 0. ( X V l I I . 1 )  

The basic physical mechanism for the continuous surface behavior is as 
follows. Let us decompose the semi-infinite system into a 2-dimensional surface 
region and a 3-dimensional bulk domain. If there were no coupling between 
those two systems, the surface would become disordered a t  its own transition 
temperature, T = T!". If the couplings within the surface are comparable 
to those within the bulk, mean field theory leads to  the rough estimate T' Z 

2T.13. Thus for the temperature interval T!" < T < T , ,  the surface would 
be disordered while the bulk is ordered. Of course, this picture is too crude 
since the surface i s  coupled to  the bulk. On the one hand, this coupling leads 
to  the residual order within the surface region as given by (XVIII.l)  as long as 
T < T*. On the other hand, it implies tha t  the disordering, which is initiated 
a t  the surface, spreads into the interior of the crystal. As a result, a whole 
layer or film of the (nearly) disordered phase intrudes between the surface and 
the ordered bulk. This process has been termed surface-induced disorder (SID) 
[XVIII.l] . 
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I t  is obvious from the picture just described tha t  SID is n o t  restricted 
to first-order transitions in antiferromagnets. In fact, such a behavior was 
first found theoretically for the (100) surface of the Potts  model on a simple 
cubic lattice [XVIII.2,XVIII.3]. In this case one has q > 3 ordered states which 
undergo a first-order transition to the disordered phase. More generally, SID can 
occur for any first-order phase transition with spontaneously broken symmetry. 

One example for SID which has been experimentally studied in some detail 
is the (100) surface of Cu3Au. This binary alloy undergoes an  order-disorder 
transition a t  T, = 663 K which is strongly first-order in the bulk. In contrast, 
some LEED data  indicated that  the surface order vanishes in a continuous fash- 
ion [XVIII.4], which led us to suggest that  this system provides an  example 
for SID [XVIII.5]. During the last five years, more experimental da ta  have been 
obtained by LEED [XVIII.6], spin-polarized LEED [XVIII.7], and X-ray diffrac- 
tion under total external reflection [XVIII.8], which are all consistent with this 
view. 

So far, I have discussed phase transformations within a crystal which do 
not affect the translational order of the crystal lattice. Now, let us consider 
the most drastic change in the translational order of the crystal, i.e., melting. 
The idea that  melting often starts a t  the crystal surface has a long history 
[XVIII.9]. However, it has been realized only recently tha t  the process of surface 
melting can lead to surface critical behavior as in (XVIII.1) [XVIII.l]. Much of 
the recent experimental work on surface melting has focused on Pb ,  for which 
it was observed by ion scattering [XVIII.lO,XVIII.ll] and LEED [XVIII.12]. 
In addition, surface melting has been recently studied for Ar [XVIII.13], O2 
[XVIII.14], methane [XVIII.15], Ne [XVIII.16] and Ge [XVIII.17]. 

In the remainder of this paper, I will give a brief review on surface-induced 
disorder and surface melting, which emphasizes the basic theoretical concepts. 
First, the free energy of the disordered surface layer is discussed in Sec. 2. 
This free energy contains the direct interaction of the two interfaces bounding 
the layer. The  form of this interaction depends on the intermolecular forces 
(Sec. 3).  As a consequence, the critical exponents which govern the surface 
order parameters as in (XVIII.l) are, in general, non-universal and depend on 
microscopic parameters (Sec. 4). Finally, I will give a brief outlook on open 
questions (Sec. 5). 

XVIII.2. Free Energy of the Disordered Surface Layer 

Consider a disordered surface layer of thickness e, and let us estimate its free 
energy per unit area, V ( t ) .  First of all, one must note tha t  the interface be- 
tween the crystal and the vapor (or 'vacuum ') surrounding it now consists of 
two interfaces: (i) the (vd) interface between the disordered surface phase and 
the vapor, and (ii) the (do) interface between the disordered surface layer and 
the ordered bulk state  of the crystal. Thus, the free energy V ( l )  may also be 
regarded as the effective interaction between two interfaces. 



The leading term of V(C.) for large f- arises from the fact tha t  the disordered 
phase is metastable rather than stable for T < T,. Close to  T,, the bulk free 
energy per unit volume, f",, , of the ordered crystalline phase, (which coexists 
with the vapor) behaves as fÃ£ w fb - 5';" (T -T+ ). Likewise, the bulk free energy, 
fj, of the metastable disordered phase is given by /,, w f' - S; (T - T.). Then 
the difference in the bulk free energies f",, and /, leads to  V ( t )  w AS(T - T.) 
with A S  = 5; - 5'; for a layer of thickness C.. 

At T = T., the disordered phase coexists with the ordered phase (and with 
the vapor), and the leading term of V(f-) is given by the sum, Xu,, + St,;,, of 
the interfacial tensions of the two interfaces. The  next-to-leading terms, which 
reflect the nature of the underlying intermolecular forces, will be referred to as 
the direct in teract ion,  VD, (4, between the (vd) and the (do) interfaces. Thus, 
the free energy per unit area of the disordered surface layer has the generic form 

( X V  111.2) 

for large C. with VDI (f -  = m) = 0. 
In mean-field theory, the equilibrium value of f- follows from [XVIII.l] 

a V / B  = 0 or 

Two cases must be distinguished depending on the sign of VoI ( f - )  for large f-. 
First, assume tha t  V D 4  and,  thus,  -avo; /a t  is positive for large t .  In this 
case, (XVIII.3) implies tha t  the layer becomes thicker and thicker as T. is ap- 
proached from below [XVIII.18], and the disordered surface layer becomes more 
and more similar to  the disordered bulk phase. This is the process of complete 
surface-induced disorder (or surface melting) with EÃ£, = E,,,, + E,,,, a t  T = T,. 
On the other hand, one may have VDI ( C )  < 0 and thus -9VD, /9C < 0 for large C.. 
In the latter case, either no disordered layer appers in the surface region or the 
thickness of this layer remains finite as T. is attained [XVIII.18]. This is the case 
of incomplete surfaceinduced disorder (or surface melting) with E,,* < E,,., +E,,* 
a t  T = T. . 

In a fluid context, the two relations E,, , = E,, , + E D ,  and E", < Eg a +E,, , 
for the interfacial tensions of three coexisting phases a ,  ,f3 and 7 are well-known 
and correspond to  complete and incomplete wetting, respectively [XVIII.19]. 
Thus, surface-induced disorder (or surface melting) and wetting belong to the 
same class of interfacial phase transitions [XVIII.20,XVIII.21,XVIII.22]. How- 
ever, in contrast to fluid systems, the interfacial tensions E.,, , Xu<, , and E,." for 
the systems considered here depend on the orientation of the crystal surface. 
Therefore, the  relation EÃ£ = Xu,, + Sh may hold for some surface orientations, 
but not for others, and a macroscopic crystal can exhibit both ordered and 
disordered facets (or rounded portions of its surface) a t  the same time. This 



anisotropy of the surface behavior has been observed for the surface melting of 
P b  [XVIII . l l ] .  

XVIII.3. Direct Interaction of Interfaces Bounding the Surface Layer 

As mentioned above, the term VDI (i) in (XVIII.2) represents the direct interac- 
tion between the two interfaces bounding the surface layer, and arises from the 
microscopic forces between atoms and molecules. First, let us assume that  the 
short-range part of these forces is strong, and let us ignore possible contribu- 
tions to VDI (i) from their long-range part.  Then,  VDI (e)  decays exponentially 
for large i .  The  corresponding decay length can arise from an order parameter 
(OP) density or from a non-ordering (NO) density. 

In general, a macroscopic system can be described by several O P  and NO 
densities. By definition, all O P  densities vanish and all NO densities have a 
finite value when the system is in disordered high-T state. For example, the 
Potts model on a simple cubic lattice with q = 3 , 4 , .  . . states is described by 
(q - 1) O P  densities. Likewise, an antiferromagnet on a simple cubic lattice is 
characterized by one O P  and one NO density which are given by the difference 
and the sum of the sublattice magnetizations, respectively. 

For a system governed by short-range forces, all densities decay exponen- 
tially - exp(-z/a) with the distance z from an interface but the size of the 
decay length, a ,  depends on the density considered. Let & denote the largest 
decay length of all O P  densities in the disordered phase, and let K^ be the 
largest decay length of all NO densities [XVIII.23]. Then,  two cases must be 
distinguished. For (,(/2 > K,, , the O P  density governed by & dominates and 
the direct interaction decays as [XVIII.l,XVIII.24] 

for large i where c1 - O(1) is a numerical coefficient. 
It  is interesting to note that  the decay length for VDI (i) is ^ / 2  rather 

than E d .  This property is a consequence of the fact that  the systems considered 
here have several ordered phases for T < T, (which are related by a discrete 
symmetry) and,  thus, have a vanishing field conjugate to the O P  densities. 

On the other hand, for K~ > & 12, the NO density governed by IC^ dominates 
and the direct interaction has the asymptotic behavior [XVIII.25] 

for large f.. Usually, the numerical coefficient ?, is again - O(1) but ,  in some 
cases, Ci is exceptionally small. Then, one must include the next-order term 
which is given by e ~ p [ - 2 i / ~ , , ] ,  exp[-2l /L] or exp[-i/K'] where K; is the second 
largest decay length of the NO densities. 



Next, let us consider the contribution to VDI (e) which arises from the long- 
range part of the intermolecular forces. These contributions lead to  a direct 
interaction, 

VDI ([) w -Wit' for large e, ( X V I I I . 6 )  

which decays as a power law. Indeed, all atoms or molecules interact via long- 
range van der Waals forces. These forces give a direct interaction VDl ([) - 1/er  
for large (. with r = 2 and r = 3 for nonretarded and retarded forces respectively 
in 3-dimensional systems [XVIII.26]. 

XVIII.4. Non-Universal Behavior of Surface Order Parameters 

In a semi-infinite system bounded by a planar surface, the O P  densities depend 
on the distance z from the surface z = 0. Now, let m ( ~ 1  (z) with J" = 1 , 2 , .  . . 
denote the different OP profiles. In order to simplify the discussion, I will 
assume in the following that  these profiles decay exponentially with z :  m(-'  (z)  - 
e3:p(-z/(i"') where the decay lengths are ordered according to their size, 

i.e. elJ1 > 6' l '  with = &.  
Within mean-field theory, the equilibrium value of the layer thickness, e, 

follows from (T, - T) - -QV^ 1% as in (XVIII.3). Then, the mean-field 
behavior of the surface OPs,  m ( l l  ( z  = 0), is given by 

= rn'" (z = 0) - e ~ ~ [ - f ? / e 1 / ~ ] .  ( X V  I I I . 7 )  

For systems governed by short-range forces, the direct interaction VDI has 
the form as given by (XVIII.4) or (XVIII.5). First assume that  & / 2  > K , ,  

i.e. that  the dominant length scale belongs to an O P  density. Then (XVIII.4), 
(XVIII.3), and (XVIII.7) imply the mean-field critical behavior 

and 

M ( J I  
, - (T. - 5")'"- with /3, = / 2 c J 1 .  ( X V I I I . 9 )  

as T. is approached from below. Thus, the dominant O P  density vanishes as 
M'" - (T. - TIo1 with the universal critical exponent = 1.2 [XVIII.3]. 

Next, consider the case for short-range forces with K,, > & / 2  where K,, is 
again the decay length of the dominant NO density. Then, VD, (e) is given by 
(XVIII.5) which leads to 

e w q, ln[Tsc /(T. - T)] (XVII I . lO)  

and 



~ 0 )  - (T. - T)" with PI = K., /to' (XVII I .11 )  

for small (T. - T ) .  Thus,  the dominant O P  density vanishes a t  the surface as 

M: - (T. - T)" with the parameter-dependent critical exponent /3, = K^ /&, 
[XVIII.25]. 

In general, the form of the direct interaction VDi (e) depends on the sur- 
face orientation. Therefore, the critical exponent as given by (XVIII . l l )  or 
(XVIII.13) will also depend on this orientation. This has been shown explicitly 
for a spin (or lattice gas) model which describes a binary alloy on a fcc lattice. 
In this case, the system is described by one O P  density and one NO density 
which are given by the Bragg-Williams O P  and the composition, respectively 
[XVIII.27,XVIII.25]. Within mean-field theory, the O P  is governed by = 112 
for the (111) and the (110) surfaces of the fcc lattice, and by S 2.2 - 2.8 
for the (100) surface where, in the latter case, the precise value depends on the 
coupling parameters [XVIII.25]. 

The  critical behavior as given by (XVIII . l l )  has also been obtained within 
a phenomenological model for surface melting [XVII1.28]. Quite generally, the 
atomic density of a semi-infinite crystal can be parametrized by the reciprocal 
lattice vectors, Q", of the 2-dimensional lattice parallel to  the surface. Within 
the model of Ref. XVIII.28, M(Q" = 0, z )  is treated as a NO density while all 
M(Q",z) with \Q" > 0 are treated as O P  densities [XVIII.29]. One then finds 
that  the surface OPs vanish as in (XVIII . l l )  with 

Thus, the O P  components with larger \Q" 1 are predicted to vanish faster as T. 
is approached. This is in qualitative agreement with recent LEED experiments 
on P b  [XVIII.12], and is expected to hold in more detailed models of surface 
melting. 

Finally, consider the case of long-range forces and VDi (f . )  - 1/er  as in 
(XVIII.6). Such an interaction with r = 2 (arising from non-retarded van 
der Waals forces) should apply to surface melting as soon as the disordered 
layer gets sufficiently thick [XVIII.21,XVIII.l6,XVIII.30]. Then, the disordered 
surface layer thickens as [XVIII.31] 

t - l/(T. - T)^ with $J = -A = 1/ (1  + r ) ,  ( X V I I I . 1 3 )  

and the surface OPs vanish as [XVIII.31-33,XVIII.28] 

( X V  I I I .14)  

provided the O P  profiles decay exponentially as assumed. 



XVIII.5. Summary and Outlook 

In summary, the surface of a crystal may initiate the disordering process near 
a first-order phase transition well below the transition temperature T = T,. 
Then, the surface exhibits critical behavior and the surface OPs  vanish as in 
(XVIII.l) with characteristic critical exponents /3, . In general, these exponents 
are non-universal and reflect the relative size of microscopic length scales [see 
(XVIII.g), (XVIII . l l ) ,  and (XVIII.12)]. 

In some systems, the surface favors the ordered s tate  rather than the disor- 
dered one. Such surface-induced order [XVIII.l] or surface freezing has been ob- 
served experimentally a t  first-order phase transitions between crystalline phases 
[XVIII.34]. In these cases, the surface OPs  do not vanish, and the thickening 
of the ordered surface layer is governed by the direct interactions (XVIII.5) or 
(XVIII.6) which leads to  the growth laws (XVIII.lO) or (XVIII.13). 

There are several theoretical issues which require further study. T h e  most 
interesting points seem to  be: (i) More detailed models for the surface melt- 
ing. In particular, one would like to include the decay of translational order 
perpendicular to  the surface which has been ignored in Ref. (XVIII.28). This 
problem can be addressed by density functional theory [XVIII.33,XVIII.35]. (ii) 
The  influence of long-range oscillatory interactions in metals and alloys. (iii) 
The  influence of interfacial fluctuations which I have not addressed in this pa- 
per. For the direct interaction as given by (XVIII.6) or (XVIII.7) , interfacial 
fluctuations are expected to lead to  a non-trivial renormalization of the critical 
behavior [XVIII.24,XVIII.21,XVIII.36]. It  is not clear, however, if these fluctu- 
ation effects will be visible in experiments, since computer simulations of lattice 
models have not produced, so far,  any evidence for them [XVIII.37,XVIII.38]. 

Needles to  say tha t  more experimental work is highly desirable. A very 
promising tool is X-ray diffraction under total external reflection [XVIII.39] 
which has already been applied to Cu3 Au [XVI11.8]. In particular, it would 
be interesting to  look for surfaceinduced disorder in magnetic materials with 
first-order phase transitions. 

I thank H. Bonzel, U .  Breuer, and K. Prince for stimulating collaboration, 
and Dan Kroll, Hartmut Lowen, and Herbert Wagner for helpful discussions. 
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