On the other hand, the DF approach in Ref. 2 leads to length scales $\tilde{a}_L(Q^4)$ which do not satisfy (4) for small values of Q^4 even though they seem to approach this relation for large Q^4. Furthermore, the scales for small Q^4 are found to depend on the microscopic interparticle potential. In general, such a dependence, which cannot be obtained from phenomenological models as in (2), is indeed to be expected.

The length scales $\tilde{a}_L(Q^4)$ determine the critical behavior of the surface OP's, $M(Q^4,z=0)$. As pointed out in Ref. 1, all surface OP's vanish simultaneously at the melting temperature, $T=T_*$, but with different rates. For systems governed by short-range forces, the critical behavior is given by (Ref. 1)

$$M(Q^4,z=0) = - (T_* - T)^{\beta_1} \tilde{a}_L(0) \frac{b_{\tilde{a}_L}(Q^4)}{\tilde{a}_L(Q^4)}$$

(5)

For the models considered in Ref. 1, the scales $\tilde{a}_L(Q^4)$ satisfy the relation (4), $\tilde{a}_L(0) = a_{L,0}$, and $b = 1$ or $b = \frac{1}{2}$. These models have, however, one important limitation since the density $M(Q^4=0,z)$ which has the largest decay length is, in fact, not treated as an OP density (which would vanish at $T=T_*$) but rather as a nonordering density which stays finite at $T=T_*$. This limitation is not present if one considers the densities $M(Q^4,Q^4,z)$ with decay lengths $\tilde{a}_L(Q^4,Q^4)$. Indeed, the largest decay length $\tilde{a}_L(Q^4)$ can now belong to the nonordering density $M(0,0,z)$ or to one of the OP densities $M(0, Q^4,z)$ with $Q^4 \neq 0$. The power-law behavior as in (5) still applies but three cases must be distinguished depending on the relative size of the two length scales $\kappa = \tilde{a}_L(Q^4=0,Q^4=0)$ and $\xi_0 = \max_{Q^4} \{ \tilde{a}_L(Q^4=0,Q^4) \}$, where the maximum is taken over all $Q^4 \neq 0$. In terms of these scales, the coefficient b in (5) is given by $b=1$, $b=k/\xi_0$, and $b = \frac{1}{2}$ for $\tilde{a}_L(0) = \kappa > \xi_0$, $\tilde{a}_L(0) = \xi_0 > \kappa > \xi_0/2$, and $\tilde{a}_L(0) = \xi_0/2 > \kappa$, respectively.

Reinhard Lipowsky
Sektion Physik der Universität München
Theresienstrasse 37
8000 München 2, West Germany

U. Breuer, K. C. Prince, and H. P. Bonzel
Institut für Grenzflächenforschung und Vakuumphysik
Kernforschungsanlage Jülich
5170 Jülich, West Germany

Received 21 August 1989

PACS numbers: 68.35.Rh, 64.70.Dv

3One should note, however, that the densities $\tilde{M}(Q^4,Q^4,z)$ are not uniquely defined by (1).

2105