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I. INTRODUCTION AND OUTLINE
Low-dimensional objects or manifolds such as interfaces, vortices or flux lines,

membranes, and polymers are usually soft and flexible and, thus, undergo shape fluctuations

which lead to a variety of critical phenomena. First of all, a fluctuating manifold represents

a scale-invariant state which can be characterized by critical exponents. /1/ Depending on

the strength of the fluctuations, this state may be smooth, rough or crumpled. In some

systems, the manifold can undergo a transition between these different states; e.g., interfaces

can undergo roughening transitions from smooth to rough states /2/ while (model)

membranes can undergo crumpling transitions from rough to crumpled states /3/.

Many physical phenomena such as, e.g., wetting, adhesion and adsorption are governed

by the mutual interaction of these low-dimensional manifolds. /4/ Quite generally, the

shape fluctuations of these objects renormalize their direct interaction arising from

intermolecular forces. This renormalization acts to increase the repulsive part of the

interaction. In fact, sufficiently strong fluctuations overcome the attractive part of the direct

interaction and lead to phase transitions from bound to unbound states of the manifolds. For

interfaces, membranes, and polymers, these unbinding transitions represent wetting,

adhesion, and adsorption transitions, respectively.

This paper is organized as follows. First, Sec. II contains a brief introduction to the

physics of shape fluctuations. In Sec. III, the scale-invariance of rough and crumpled states,

and the critical behavior at roughening and crumpling transitions is reviewed. In Sec. IV, a

nontrivial example is described in some detail: the roughening of interfaces in quasiperiodic

systems. Finally, the interplay of direct and fluctuation-induced interactions and the

associated unbinding transitions are discussed in Sec. V.

II. SHAPE FLUCTUATIONS.
A. Fluctuations of interfaces and flux lines governed by tension.

An interface or domain wall represents the contact region between two bulk phases of

matter. /5/ Its macroscopic shape is governed by the interfacial free energy or tension, ,
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which is the work (per unit area) required to create new interfacial area. If the two phases,

say and , are both fluid, is isotropic, and a macroscopic chunk of phase surrounded

by phase has a spherical shape (in the absence of gravity). On the other hand, if one of the

two phases is crystalline, the tension is anisotropic and leads to the possibility of facets.

On mesoscopic scales, i.e., on scales which are larger than the molecular size but smaller

than the size of the and domains, the interface does not have a fixed shape but undulates

and thus undergoes shape fluctuations which lead to a certain interfacial roughness. These

fluctuations do not conserve the total (intrinsic) area of the manifold and, thus, are governed

by the tension . For a liquid-vapor interface, these excitations represent capillary waves.
For a crystal surface, i.e., for a crystal-vapor interface, the shape fluctuations are built up

from microscopic steps or ledges which separate atomically flat terraces on the surface.

The interfaces described so far have been 2-dim surfaces separating 3-dim bulk domains.

Condensed matter physics also provides a variety of 2-dim bulk systems containing 1-dim

interfaces. /6/ Examples are domain boundaries (i) in monolayers of small molecules

adsorbed onto a crystal surface, or (ii) in monolayers or bilayers of amphiphilic molecules

adsorbed onto the air-water interface. Sometimes, these 1-dim domain boundaries form a

superlattice such as the striped phase near a commensurate-incommensurate transition.

A vortex or flux line within a type-II superconductor represents a thin rod or thread of

normal conducting material which contains one or several magnetic flux quanta. /7/ These

flux lines start to penetrate the superconductor at a lower critical value of the external

magnetic field. Close to this critical field, the lines are well separated and form a more or

less ordered array. The undulations of these flux lines are controlled by their line tension.
Two different excitation mechanism for the fluctuations of interfaces and flux lines must

be distinguished: (i) At finite temperatures, , these manifolds fluctuate in order to

increase their configurational entropy; and (ii) In the presence of quenched impurities (or

frozen randomness), they adapt their shape to the randomness in order to minimize their

energy. The latter mechanism acts even at

B. Fluctuations of membranes and polymers governed by bending elasticity.
Membranes are ultrathin sheets or plates of molecules. Particularly important examples

are monolayers and bilayers which form spontaneously in solutions of amphiphilic molecules.

/8/ Monolayers arise, e.g., in microemulsions, i.e. in mixtures of water, oil, and surfactant

where they separate water from oil domains. Bilayers are typically formed when lipid

molecules are dissolved in water. /9/ These latter membranes represent the universal

building block of all biomembranes and, thus, provide the spatial organization of biological

systems.

Isolated bilayers in water form closed surfaces or vesicles which often have a linear size ~

. The shape of these vesicles has been studied in many experiments. These studies

support the theoretical concept that the average shape of membranes is controlled by
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bending rigidity. /10/ Likewise, typical shape fluctuations of membranes represent

thermally-excited bending modes.
The bending rigidity is mainly determined by the internal structure of the membrane.

Lipid bilayers, e.g., typically exhibit a crystalline phase at low and a fluid

phase at high . In a crystalline membrane, the lipid molecules form a fixed network

while they diffuse freely within a fluid membrane. Therefore, crystalline membranes are

more rigid than fluid ones. The rigidity can also be increased by polymerization of the lipid

molecules which leads to a tethered membrane.

For sufficiently rigid membranes, the bending modes give rise to a certain roughness and,

thus, play a role which is completely analogous to the capillary modes of interfaces. In

principle, very soft membranes could become highly convoluted or crumpled. Indeed, such a

behavior is expected from the standard model for fluid membranes /10/ which leads to a

finite persistence length, , for their normal vectors /11/. However, real membranes do not

self-intersect and this acts against crumpling. In fact, recent computer simulations indicate

that tethered membranes do not crumple at finite because of their self-avoidance. /12/

Crumpled states are, of course, well established for polymers, i.e., for long rodlike

molecules. /13/ Such macromolecules are formed by chemical reactions in which a huge

number of monomers is linked together. Both artificial polymers and biopolymers often

consist of > 10
5
 monomers. On small scales, they should behave like elastic rods and, thus,

should also exhibit thermally-excited bending modes. However, with the possible exception

of polyelectrolytes, all polymers are expected to have a finite persistence length, , for their

tangent vectors. This length is often microscopic, and the polymer then forms a random coil,

when viewed on the scale of . In this crumpled state, the polymer behaves like a chain of

mass points which are connected by harmonic springs with an entropically generated spring

constant

III. SCALE INVARIANCE OF LOW - DIMENSIONAL MANIFOLDS

A. Rough manifolds.

Now, let us consider a single manifold such as an interface, flux line, membrane or

polymer embedded in a dim system. The system is taken to be in thermal equilibrium at

temperature . Furthermore, let us first assume that the system does not contain any type

of frozen randomness. Then, the manifold will attain a completely smooth (or flat) state at

zero temperature, , in order to minimize its energy. At finite , on the other

hand, the manifold will usually develop bumps or wiggles and thus will acquire a certain

roughness in order to increase its configurational entropy. Alternatively, one can introduce

some frozen randomness into the system which roughens the manifold even at

To proceed, let us choose a parametrization for the fluctuations of the manifold from its

completely smooth state. First, the space dimensionality, , is decomposed according to

.
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(3.1)

where is the intrinsic dimensionality of the manifold. Its fluctuations are then described

by a displacement field with and . The completely

smooth state at corresponds to = const. Since all components of are taken to be

single-valued functions of , manifold fluctuations with overhangs are not included. This

means that gradients of the fluctuations, with , are implicitly

assumed to be small.
The shape fluctuations of the manifold can now be characterized by the behavior of the

difference correlation function,

(3.2)

In some systems, the function remains bounded from above for arbitrarily large .

This behavior defines a smooth state of the manifold. On the other hand, the difference

correlation function , may grow without bounds for large corresponding to a rough
state of the manifold. Such a situation is typically characterized by /14/

for large (3.3)

where is the socalled roughness exponent. Such a behavior of implies that

for where is an arbitrary rescaling factor and the small-scale

cutoff. Therefore, the shape fluctuations of a rough manifold are (asymptotically)

scale-invariant under the rescaling transformation

(3.4)

In order to visualize this scale invariance, choose a manifold segment of linear size, , and

intrinsic area, . Then, the linear size, , of the projected area, , and the typical

amplitude, , of the manifold fluctuations, see Fig. 1(a) below, scale as

(3.5)

For thermally-excited fluctuations, a single manifold with roughness exponent can be

described by the effective Hamiltonian

(3.6)

with

(3.7)
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where represents an effective tension or bending rigidity.

For the model as given by (3.6), the difference correlation function defined in (3.2) is

(3.8)

where a high-momentum cutoff is implicitly contained. For , the difference

correlation function as given by (3.8) is bounded for large and the manifold is smooth. For

, one has a marginally rough manifold with for large . Finally, for

, (3.8) leads to a rough manifold characterized by

with (3.9)

for large where the coefficient depends on but is independent of the cutoff, .

For an interface with , the roughness exponent depends on (or ) and on

the nature of the two phases separated by the interface. /1/ If both phases are fluid, the

interfacial fluctuations are governed by the effective Hamiltonian (3.6) with (and

1) which leads to in and , see (3.9).

The same value of applies to an interface which feels a periodic lattice potential

provided exceeds the roughening temperature, , see Sec. III.C below. Quasiperiodic
lattice potentials, on the other hand, can lower the value of /15,16/ as will be explained in

Sec. IV. If the two phases separated by the interface contain quenched impurities, the

roughness exponent is typically increased : a random field system is believed to exhibit

/17,18/ for while a random bond system (with short-range

correlated randomness) is characterized by /19,20/

A flux line in subjected to thermally-excited fluctuations, is governed by the

effective Hamiltonian (3.6) with and which implies according to (3.9).

/21/ In the presence of quenched impurities (with short-range correlations), the flux line in

should exhibit . /22/

The roughness of membranes in depends on their internal structure. Fluid
membranes with vanishing shear modulus are governed by bending elasticity alone which

corresponds to an effective Hamiltonian as in (3.6) with and . /10/ It then

follows from (3.9) that . /23,24/ Tethered membranes, on the other hand, are more

rigid and have /25,26/ : for zero and finite bending rigidity, numerical simulations in

gave the estimates /12/ and /27/ , respectively. Finally,

polymers in , when treated as stiff rods governed by bending elasticity, are

described by the effective Hamiltonian (3.6) with and which implies

according to (3.9).

As mentioned, the parametrization in terms of displacement fields, , assumes that

the gradients of are small. The overall gradient of a hump as shown in Fig.1(a) is
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where measures the intrinsic size of the manifold segment. Thus, for

1, the overall gradient decreases on large scales and the parametrization in terms of should

be adequate. On the other hand, for , the overall gradient grows for large . In the

latter case, overhangs of the manifold fluctuations are essential and the parametrization

is no longer appropriate on large scales.

Fig.1: (a) Typical hump of a rough manifold, and (b) typical blob of a crumpled

manifold with intrinsic size . These states are characterized by the roughness

exponent and the crumple exponent respectively, see (3.5) and (3.17).

B. Scale invariance of crumpled manifolds.
For roughness exponent , the manifold develops many overhangs on sufficiently large

scales and, thus, becomes highly convoluted or crumpled, see Fig.1(b). If the topology of the

dim manifold is not changed by the fluctuations, such a crumpled state can be

parametrized by with an internal coordinate

For a (linear) polymer chain with , one has where the coordinate

is taken to be the arclength. The thermally-excited bending modes can now be

characterized by the more general difference correlation function

(3.10)

where is the unit tangent vector. This function contains a characteristic

persistence length, , and is expected to exhibit the scaling form

(3.11)

For large , the polymer is crumpled and the shape function behaves as
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(3.12)

which defines the crumple exponent (or Flory exponent or radius of gyration exponent) If

the persistence length is large compared to microscopic scales, one has a crossover to a

rough state of the polymer characterized by

(3.13)

As a simple example consider a self-intersecting polymer in parametrized by

. The thermally-excited bending modes are then governed by

(3.14)

where is the local curvature of the polymer and represents an effective bending

rigidity. For this simple model, the difference correlation function as given by (3.10) can be

calculated explicitly. One then finds the persistence length and the scaling form

(3.11) with

(3.15)

For , this leads to and, thus, to the crumple exponent . For , on

the other hand, one recovers (3.13) with

The value applies, in fact, to linear polymers in general provided one allows for

self-intersections. For self-avoiding polymers, depends on and one has and

in and , respectively, as obtained from the Flory argument. /13/

The behavior for large implies that the shape fluctuations of a crumpled

polymer are (asymptotically) scale-invariant under the rescaling transformation

(3.16)

Thus, a polymer segment of intrinsic length has an extrinsic size with

(3.17)

see Fig. 1(b). The scale is conveniently measured by the radius of gyration. The

relation (3.17) is, in fact, quite general. It also applies to branched polymers provided

is taken to be the number of momomers within a connected piece of the branched structure.

Crumpled states are also expected for membranes. First, consider a tethered membrane,

i.e., a fixed network of molecules connected by tethers or springs. /28,3/ The fluctuations of

such a membrane are quasi-isometric, i.e., the intrinsic distance between two molecules in

the membrane is roughly independent of the membrane configuration. For an ideal (or
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phantom) membrane with self-intersections, a segment with intrinsic area has the size

. /28/ However, self-avoidance represents a very

strong constraint. This can be understood if one considers strictly isometric deformations of

a plane, which are obtained by folding the membrane in one direction only. The

corresponding bending energy is proportional to the bending energy of a self-avoiding

polymer in which implies that a membrane segment with intrinsic area has

and . This leads to the estimate since . As

mentioned, recent computer simulations indicate, in fact, that self-avoiding tethered

membranes have and are not crumpled. /12/

For a fluid membrane, the molecules can diffuse freely. The shape of these membranes is

believed to be governed by curvature energies alone. The standard model of Helfrich /10/

leads to a finite persistence length where is the bending rigidity, /11/

The state of a fluid membrane for is not well understood. It is possible that the

membrane develops many fingers in order to increase its entropy and becomes a branched

polymer. The typical diameter of these fingers should be set by the persistence length,

Then, a membrane segment of intrinsic area can form fingers with an overall length

. A self-avoiding branched polymer with monomers has a radius of gyration,

with /29/ in . This implies that the radius of gyration of a crumpled

fluid membrane scales as with if the membrane indeed behaves as a

branched polymer on large scales.

C. Roughening and Crumpling Transitions.

In the last two sections, we encountered smooth, rough, and crumpled states of fluctuating

manifolds. These different states can be distinguished by their long-range order (LRO)

within the dim (embedding) space.
For a manifold with , orientational LRO means that its tangent vectors have a

preferred direction. Likewise, a manifold with is orientationally ordered if its normal

vectors point, on average, into a certain direction. One can then choose a straight line (

1) or a planar hypersurface ( ), as a reference state which has the same orientation as

the fluctuating manifold. Translational order or disorder is now defined in terms of the

displacements of the manifold from this reference state. A manifold exhibits translational

LRO if these displacements are bounded from above on arbitrarily large scales.

By definition, a smooth state exhibits both translational and orientational LRO within the

dim system. A rough manifold, on the other hand, is translationally disordered since its

displacements from the smooth reference state become arbitrarily large. For roughness

exponent , a rough manifold still exhibits orientational LRO. For , on the other
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hand, the manifold becomes orientationally disordered as soon as the linear scales exceed the

persistence length, . In the latter case, the manifold is crumpled.
In some systems, the low-dim manifolds undergo a roughening transition from a smooth

state at low to a rough state at high . At the roughening temperature, , the

manifold is rough with a roughness exponent which, in general, can differ from for

. As is approached from below, the large-scale configurations of the manifold can be

viewed as an ensemble of humps. The largest humps are statistically independent and

characterized by a lateral extension, , and a transverse extension, , see Fig. 2(a). For

scales , the manifold already exhibits the scale-invariance governed by and

. Therefore, a large hump, which has an intrinsic size , is characterized by

and , compare Fig.1(a) and 2(a). For a continuous roughening transition, this

implies that the critical exponents and defined by

(3.18)

satisfy the scaling relation

(3.19)

If the manifold is only marginally rough with at , one has

(3.20)

Fig.2: (a) Smooth manifold close to a roughening transition as an ensemble of humps,

and (b) Rough manifold close to a crumpling transition as an ensemble of blobs.

The length scales, , and diverge at the transitions, see (3.18) and (3.21)
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A roughening transition occurs for an interface in in a periodic lattice potential.

/2/ In this case, the interface is marginally rough with for

However, which implies with via (3.20).

More recently, roughening transitions have been found for interfaces in arising

from quasiperiodic lattice potentials. /15,30,31/ In these systems, the roughness exponent

at satisfies and, typically, differs from for . Thus, one has the

power-law behavior given by (3.18) and (3.19) as will be explained in Sec. IV below.

Now, consider a manifold which undergoes a crumpling transition from a rough state at

low to a crumpled state at high . At the crumpling temperature, , the manifold

is crumpled with a crumple exponent which, in general, will differ from the crumple

exponent for . As is approached from below, the manifold configurations can

be viewed as an ensemble of blobs. The largest blobs with intrinsic size, , can be regarded

as statistically independent with extrinsic size within the dim system, see

Fig. 2(b). If the crumpling transition is continuous, one may define critical exponents

and by

(3.21)

in close analogy with (3.18) but now one has the scaling relation

(3.22)

Then, a large manifold segment of intrinsic size has a projected size

. As is approached from below, the prefactor goes to zero as long as

with . Thus, one has

(3.23)

with

(3.24)

Crumpling transitions have been theoretically found for self-intersecting manifolds with

/32/, and for self-intersecting tethered membranes with and finite bending

rigidity /25,33-35/. For the latter case, a mean-field theory gives /34/ and,

therefore, and according to (3.22) and (3.24), while an expansion around

yields /35/ and, thus,

E. Singular free energy arising from thermal fluctuations.
The fluctuations of a rough manifold give a contribution, , to its free energy. Consider

a manifold segment of linear (intrinsic) size, . Its largest humps then have a lateral and
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transverse extension and , respectively, see (3.5) and Fig. 1(a). The

thermal free energy, , of such a hump should be of order as suggested by the

equipartition theorem. Therefore, the thermal free energy per unit area is given by /1/

(3.25)

Now, assume that the manifold is confined in such a way that its largest humps are

characterized by an intrinsic scale, , and two extrinsic scales, and . Such

a behavior occurs, e.g., close to a roughening transition (with ), see Fig. 2(a). Similar

manifold states characterize the unbinding of manifolds as in wetting, adhesion, and

adsorption phenomena as will be explained in Sec. V , see Fig.5(a) below. In these cases, the

manifold can be viewed as an ensemble of essentially uncorrelated humps. Thus, a manifold

of linear size, , consists of independent humps. The

thermal free energy of each hump should again be . This leads to ,

and the thermal free energy per unit area arising from the fluctuations is now given by /4/

for rough states (3.26)

as in (3.25). The first relation, , is the socalled hyperscaling relation. For

example, a power law behavior, , as in (3.18) implies

(3.27)

For crumpled manifolds, the free energy arising from thermal fluctuations exhibits very

similar behavior. Thus, a manifold segment of linear (intrinsic) size, , forms large blobs of

extrinsic size , see (3.17) and Fig. 1(b), which again give rise to a thermal free

energy, . This implies that the thermal free energy per unit (intrinsic) area is given

by

(3.28)

In the presence of some external constraint, the large-scale configurations of a crumpled

manifold can be regarded as an ensemble of statistically independent blobs with

, see Fig. 2(b) above and Fig. 5(b) below. Each blob has a free energy . Then, a

manifold of linear size, , has a free energy since is the

number of blobs. Therefore, the free energy per unit (intrinsic) area arising from the thermal
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fluctuations scales as /36,4/

for crumpled states (3.29)

as in (3.28). The first relation can again be regarded as hyperscaling. Thus, if

, the free energy has a singular part with

IV. INTERFACES IN (IDEAL) QUASIPERIODIC SYSTEMS.
A. Penrose tiling and quasiperiodic interface potentials of entropic origin.

A few years ago, a new class of crystalline materials has been discovered which exhibit

sharp diffraction peaks and five-fold symmetry axes. /37/ Such a symmetry is, however, not

compatible with a periodic structure which is built up from a single unit cell. It is now

generally believed that these materials represent quasicrystals which are built up from two

(or more) unit cells which are arranged in a quasiperiodic manner. The simplest models for

such structures are provided by 2-dim Penrose tilings which are built up from two different

tiles, namely a thin and thick rhombus, see Fig. 3 . /37/ These tilings exhibit orientational

long-range order with a five-fold symmetry axis since all edges point in one out of five

possible directions.

Fig.3: 2-dim Penrose tiling : the shaded rows separate wide ( ) and narrow ( ) lanes.

Next, consider an Ising (or lattice gas) model on such a Penrose-tiling: on each tile, an

Ising spin, , is placed. Each spin interacts with four nearest neighbors on four

adjacent tiles. The coupling constant, , is taken to be ferromagnetic. Then, an interface

separating an up-spin domain from a down-spin domain runs along the edges of the tiling.

At , the interfacial configurations with the lowest energy have normal vectors which

are parallel to one of the five possible edge orientations. /15,16/ In the following, I focus on

one such orientation and choose the x- and the z-axis to be perpendicular and parallel to
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this orientation, see Fig. 3.

The tiling shown in Fig. 3 has been decomposed into (unshaded) lanes and shaded rows.

/15/ The rows contain all tiles with two edges parallel to the z-axis while all other tiles are

contained within the lanes. It turns out that all interfacial configurations, which stay within

a given lane and which connect two vertices within this lane, have the same length and,

thus, the same energy (provided there are no overhangs). Thus, the interfacial groundstate is

degenerate at . For an interface consisting of segments (or edges), this degeneracy

behaves as for large . There are essentially two types of lanes, narrow ( )

and wide ( ) ones, see Fig. 3, which have a ground state entropy per segment and

, respectively. /15,16/ These two types of lanes form a Fibonacci-sequence.

The Fibonacci-sequence of the two elements and can be expressed in terms of the

function with for , for , and

for all real . The Fibonacci sequence of and is then given by the sequence

for integer . Here, is a discrete height variable which counts the number of

lanes between the interface and the x-axis. Likewise, the ground state entropy (per segment)

of the lane with height is given by with for , for

and

At low , the interface makes many steps within a lane before it hops across a row

into a neighboring lane. Furthermore, it prefers to stay in the wide lanes since it can then

increase its configurational entropy. Therefore, the interface feels an effective quasiperiodic

potential, , with

(4.1)

and , which is of entropic origin. For higher temperatures, the precise

form of within the Penrose tiling will be more complicated but it will still be

quasiperiodic.

B. Interfacial behavoir in

Inside the lanes, the interface feels a quasiperiodic potential as in (4.1). When it hops

across a row, it has to increase its length by one edge and, thus, its energy by twice the

nearest-neighbor coupling of the Ising model. Thus, the main effect of the Penrose tiling on

the interface should be captured by the effective Hamiltonian

(4.2)

for the discrete height variable where labels the sites of a 1-dim lattice.
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1. Transfer matrix approach.

Now, assume that the interface has the fixed height at and consider the

total weight or probability, , to find the interface at . For the 1-dim model

as given by (4.2) which contains only nearest-neighbor couplings, depends only

on for the previous step. The associated transfer matrix can be symmetrized

by the change of variable, . Furthermore, it is convenient to

use the restriction . Then, the weight evolves according to /15/

(4.3)

with the Schrödinger-type operator

(4.4)

the potential

(4.5)

and the 'hopping' coefficients

(4.6)

Since the operator is symmetric, its eigenvalues, , are real. Then, the weight

may be expressed in terms of the eigenfunctions according to

(4.7)

as follows from (4.3) in the continuum limit,

2. Interfacial roughness and coherence length

As discussed in Sec.III.A, the fluctuations of an interface can be characterized by the

difference correlation function, , as defined in (3.2). In the present context, one has

. Thus. measures the width of the weight function . For

large , is governed by the eigenfunctions close to the groundstate. Indeed,

inspection of (4.7) shows that, for large , only eigenfunctions with and

(4.8)

contribute to the weight because of the exponential factor

If the eigenstates close to the groundstate, , are localized, the probability will
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attain a stationary distribution for large , and the interface is smooth. A rough interface,

on the other hand, corresponds to the situation where the ground state and the eigenstates

close to it are extended. In the latter case, the width, , of can be estimated by

/15/ 

  (4.8)

(4.9)

where is the coherence length of the eigenstates and with defined by

. For , the two states look indistinguishable (apart from an overall prefactor).

3. Coherence length and integrated density of states.

As approaches , the coherence length must diverge (provided the states are

extended as assumed). It turns out that the singular behavior of is intimately related to

the scaling behavior of the integrated density of states. In order to understand this relation,

consider the Schrödinger-type operator as given by (4.4)-(4.6) but with constant hopping

coefficients . Then, one has to study the eigenvalue problem

(4.10)

The potential is quasiperiodic and satisfies for real where is

an irrational number such as the golden mean.

The spectrum of a quasiperiodic potential as in (4.10) can be determined numerically from

a sequence of rational approximants, with

for large where and are integers, see e.g. Ref. /38/. The approximant,

, has period . One then has a Bloch theorem and the spectrum of

consists of bands where each band has the same number of states,

(4.11)

Furthermore, numerical calculations have shown that the band widths, , shrink

according to /38/

(4.12)

for large where is the lower edge of the band of eigenvalues.

Now, consider a large but fixed value for the longitudinal extension, , of the interface,

which implies a small energy gap as in (4.11). As long as this energy gap

satisfies , the eigenstates and are coherent over the period of

the potential . For , on the other hand, the two states are

separated by many band edges at which the states undergo a phase shift, and thus are
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incoherent over the period . Therefore, one can estimate the coherence length, , by

(4.13)

where the lower band edge of is now the groundstate energy :

It then follows from (4.11) and (4.12) that the total number of states, , in the

lowest band is . This together with (4.13) implies that

the integrated density of states has the asymptotic behavior

in the limit of small as has been numerically found in many studies.

In the same way, one concludes that the coherence length behaves as /15/

(4.14)

for small . Thus, the divergence of is governed by the same exponent as the decay

of the integrated density of states.

4. Roughness exponent .

The various scaling arguments described in the previous subsections can now be

combined in order to obtain a relation between the interfacial roughness, , and the

(projected) length, , of the interface. Indeed, a combination of (4.9), (4.14), and (4.8)

leads to

(4.15)

This means that the roughness exponent, , as defined by (3.3)-(3.5), is given by /15/

(4.16)

where governs the decay of the integrated density of states at the ground state.

As a first example, consider the interface Hamiltonian (4.2) with the restriction

= 0 or 1 as suggested by the Penrose tiling for low . It then follows from (4.1) and (4.5)

that the quasiperiodic potential has the form

(4.17)

In the following, this case will be referred to as the Fibonacci potential. If one includes only

the leading term, , of the hopping coefficients (valid for small ), one has to

calculate the E-spectrum of (4.10) with as given by (4.17). This can be done
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analytically using methods of nonlinear dynamics. As a result, one finds the exponent

for the integrated density of states /39/ and, thus, the roughness exponent /15/

(4.18)

with

(4.19)

This implies for all parameter values and /15,16/

for small (4.20)

The nonlinear dynamics approach can be generalized to handle the case of general hopping

coefficients or as in the model defined by (4.2) and (4.1). The

resulting expression for is slightly more complicated and now explicitly depends

on . /15/ However, the inequality and the low-T behavior (4.20) are still valid.

Thus, for the Fibonacci-potential as given by (4.17), the roughness exponent is found

to be nonuniversal, i.e., to depend on the parameters of the system. This nonuniversality

arises from the fact that the eigenstates close to the groundstate are critical scattering states.

Such states are self-similar and form the singularly continuous part of the spectrum.

Quite generally, the character of the low-lying eigenstates will determine the value of

the roughness exponent as is evident from the preceding discussion. Three cases must be

distinguished: (i) these states are localized corresponding to a smooth interface and, thus,

= 0; (ii) these states are normal scattering states which implies a rough interface with the

universal exponent ; and (iii) the states close to the groundstate are critical
scattering states which leads to nonuniversal values for .

5. Roughening transitions in

For some quasiperiodic systems, the character of the low-lying states close to the

ground state changes as a function of temperature (or any other parameter). Thus, these

states may be localized for some values of the parameters but extended for others. Such a

behavior was found for the 1-dim almost Mathieu (or Harpers) potential. For electrons

moving in such a potential, this implies a metal-insulator transition. /40/ In the present

context, such a behavior leads to a roughening transition from a smooth to rough state of the

interface at some roughening temperature, . /15/

The almost-Mathieu (or Harpers) potential has the form

(4.21)

and . The choice ensures that the global minimum of is at



156 R. Lipowsky

The corresponding eigenvalue problem as given by (4.10) remains unchanged under a duality

transformation with . /40/ If there is a unique transition, it must

then occur at the self-dual point

(4.22)

Now, consider the interface model (4.2) with the restriction or 1 and with

as given by (4.21). One then has to study the Schrödinger-type

equation (4.4)-(4.6) which, in the limit of small , reduces to the form (4.10). It then

follows from (4.22) that the interface undergoes a roughening transition at a roughening

temperature which behaves as /15/

for small (4.23)

For constant hopping coefficients as in (4.10), the roughening exponent can be obtained,

via (4.16), from numerical studies of the density of states /38/. One then finds that /15/

(4.24)

For , the eigenstates are exponentially localized with a localization length

which diverges as is approached from above. /40/ This implies that the interfacial

roughness, , behaves as with as the roughening temperature, ,

is approached from below. It then follows from the general scaling relation (3.19) (and

0) that the parallel correlaction length, , behaves as with

2.38. Likewise, hyperscaling as described in Sec.III.E implies for a rough interface that the

singular part of the interfacial free energy, . Then, the interfacial specific

heat, , has the singular part and behaves as with

. Thus, the interfacial specific heat exhibits a weak cusp-like singularity at

the roughening transition.

This scaling behavior shows that roughening transitions of 1-dim interfaces in

quasiperiodic systems are second-order transitions and, thus, are very different from the

well-known roughening transition in 3-dim periodic systems which are of the

Kosterlitz-Thouless type. Furthermore, the critical behavior of the roughening transitions

considered here will depend on the details of the quasiperiodic potentials (and hopping

coefficients). Similar roughening transitions with somewhat different exponents have been

found (i) for a quasiperiodic potential intermediate between the Fibonacci and the
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almost-Mathieu potential /30/, and (ii) for interface models in which the interface potential

varies quasiperiodically both with and with /31/.

C. Interfacial behavior in
1. Continuum model

In , quasiperiodic structures have been constructed by a variety of methods.

One important example is the (ideal) icosahedral tiling as generated, e.g., by the dual-grid

method. /37/ This tiling is built up from parallelepipeds (or rhombohedra) where each

parallelepiped has three out of six possible edge orientations. Such a tiling can be

decomposed, for each edge orientation, into a stack of sheets and slabs which are, on

average, parallel. /41/ The sheets in play the role of the rows in (see Fig.

3) and contain all tiles with four faces parallel to the chosen edge orientation; the slabs play

the role of the lanes (see Fig. 3) and are composed of all the remaining tiles.

At , an interface will be confined to one of the slabs and, thus, will exhibit a finite

ground-state entropy. Furthermore, this entropy should vary quasiperiodically from slab to

slab. Thus, at , the interface in will again feel an effective quasiperiodic

potential of entropic origin. In this way, one is led to study the 3-dim analogue of the

effective Hamiltonian as given by (4.2) for which the integer height variable, , counts

the number of slabs perpendicular to a certain edge orientation. This discrete height variable

is now replaced by a continuous one which feels a generic quasiperiodic potential such as

(4.25)

with and . In addition, the discrete lattice, , is

replaced by a continuous coordinate . Then, the effective Hamiltonian for the

interfacial shape has the generic form

(4.26)

with as given by (4.25). It will be shown below that such a continuum model leads

to a smooth interface for all and, thus, to a roughening temperature, . /41-43/

This property should also hold for the discrete models and for more realistic models which

include a quasiperiodic variation of with .

The global minimum of the quasiperiodic potential as given by (4.25) depends on

the signs of the amplitudes and . In fact, one could also allow for a phase shift between

the two cosine terms such that is replaced by . Then, the global

minimum of will be at for most choices of the phase . In such a situation,

the interface can only be metastable at finite , and the interfacial roughness in thermal

equilibrium is not a well-defined quantity. Therefore, I chose in (4.25) and take



158 R. Lipowsky

0 and . /41/ This choice ensures that the global minimum is at for any finite

interval. This together with the symmetry implies

2. Functional renormalization and cumulant expansion

The model as defined by (4.26) and (4.25) will now be studied by a functional

renormalization group (RG) method. Such a RG method consists of three basic steps. First,

the fluctuating field, , is divided up into two parts : where

and represent the small-wavenumber (or large-scale) and the large-wavenumber (or

small-scale) fluctuations. Then, the small-scale fluctuations, , are integrated out which

gives rise to

(4.27)

(The factor has been absorbed into for notational convenience.) Finally, the spatial

coordinate, , and the fluctuating field, , are rescaled according to

(4.28)

Obviously, the most difficult step in the RG is the partial trace over the small-scale

fluctuations as in (4.27). In order to perform this step in a perturbative way, let us divide

into and . One then has

(4.29)

When this expression is inserted into (4.27), one obtains

(4.30)

where the expectation value, , is calculated with the harmonic weight,

Now, assume that the interface undergoes a roughening transition at a finite roughening

temperature, . Then, for , the quasiperiodic potential, , must be

irrelevant and must eventually become small unter the RG transformation. Thus, in order to

study the rough phase, one may perform an expansion of (4.30) in powers of or

This leads to the cumulant expansion as given by

(4.31)

where the subscript stands for cumulant. It then follows from (4.30) that, apart from the

rescaling transformation (4.28), the renormalized Hamiltonian is given by
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(4.32)

3. Cumulant expansion up to second order in
The first-order term of the cumulant expansion for the quasiperiodic potential (4.25) is

(4.33)

The expectation values which involve the harmonic weight are easily

calculated. The result is . In addition,

rescaling as in (4.28) yields a factor . Therefore, the renormalized amplitudes are

(4.34)

Since , one has at with

(4.35)

Thus, to leading order in the cumulant expansion, the potential term is relevant

and irrelevant for and , respectively.

Therefore, starting with two components of as in (4.25), one concludes that both

components are irrelevant for . However, this does not represent the roughening

temperature of the system since higher-order terms of the RG generate additional

components of which have smaller wavenumbers and, thus, higher temperatures

according to (4.35). Even though the second-order calculation is straight forward, the

details are somewhat tedious and I will only indicate its main ingredients.

The additional relevant components of the potential arise from the cross term

(4.36)

The main contribution to the integrations comes from . To leading order in a

gradient expansion, one then obtains

(4.37)

with parameter-dependent coefficients . The first term has a larger

wavenumber and, thus, is irrelevant for , However, the second term in (4.37) has
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the wavenumber with which is

smaller than both and . It then follows from (4.35) that this term is relevant up

to

Now, further iterations of the RG transformation generate components with smaller and

smaller wavenumbers. Indeed, it is not difficult to see that the iteration step

generates a term with which is relevant up to

according to (4.35). Therefore, for any finite , the interface feels an effective

quasiperiodic potential on sufficiently large scales. This implies a smooth interface at

and an infinite roughening temperature, . /41-43/ This prediction of the RG has

been confirmed by recent Monte Carlo simulations. /44/

V. INTERACTIONS OF MANIFOLDS AND UNBINDING TRANSITIONS
A. Wetting, Adhesion, and Adsorption Phenomena

A variety of physical phenomena is governed by the mutual interaction of interfaces,

membranes, and polymers. /4/ The geometry of such phenomena is shown in Fig. 4. Wetting

phenomena occur when an interface between two macroscopic bulk phases contains a thin

film or layer of a third phase, see Fig. 4(a). /45/ The intermediate layer is bounded by two

interfaces, and its thickness is determined by the mutual interactions of these interfaces.

Adhesion of an oriented membrane onto an interface is shown in Fig. 4(b). This membrane

could be, e.g., a small segment of a large lipid vesicle which adheres to the interface.

Adsorption of a polymer and of a crumpled membrane is shown in Fig. 4(c) and 4(d).

Fig.4: Bound states of low-dim manifolds : (a) Wetting, surface melting and related

phenomena; (b) Adhesion of an oriented membrane; and (c),(d) Adsorption of a

polymer and a crumpled membrane. ( , , and denote distinct phases)
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The manifolds shown in Fig. 4 form bound states in the sense that their mean separation

has a finite value. These states require the presence of some attractive interaction between

the manifolds. For a given shape of the interfaces, membranes, or polymers, their mutual

interaction directly reflects microscopic intermolecular forces. This direct interaction consists

of several short-ranged and long-ranged contributions such as electrostatic, van der Waals

or structural interactions. There is in fact a huge literature on intermolecular forces and the

resulting direct interactions. However, it has been realized only recently that these

interactions are strongly renormalized by shape fluctuations.
Quite generally, the renormalization arising from shape fluctuations acts to decrease the

attractive part of the direct interaction and to increase its repulsive part. Now, consider the

case of thermally-excited fluctuations. At low , these fluctuations are weak and the

renormalized interaction closely resembles the direct interaction. However, as is increased,

the renormalization becomes more and more effective up to a characteristic unbinding

temperature, . For , the renormalized interaction no longer has an

attractive part, and the two manifolds are completely unbound.

As is approached from below, the system undergoes an unbinding transition : the mean

separation, of the manifolds goes to infinity and typically behaves as The

critical exponent depends, to some extent, on the form of the direct interaction, . In

fact, one must distinguish several scaling regimes or universality classes for . This can be

understood in a rather simple way if the manifolds are again described in terms of humps

and blobs, compare Figs. 1 and 2. In the present context, these scaling pictures lead to

effective fluctuation-induced interactions.

B. Fluctuation-induced Interactions

First, consider a rough manifold bound to a smooth one as in Fig. 4(a) and 4(b). Then,

the manifold can again be viewed as an ensemble of essentially uncorrelated humps, see Fig.

5(a). Each hump with intrinsic size, , has a lateral and transverse extension and

, respectively. Then, the scaling arguments of Sec. III.E.1 lead to a singular

contribution of the free energy per unit area which is given by /14,46,1/

(5.1)

as in (3.27).

Likewise, a crumpled manifold bound to a smooth one can be regarded as an ensemble of

essentially uncorrelated blobs, see Fig. 5(b). Each blob with intrinsic size, , has an

extrinsic size . Now, the scaling arguments of Sec. III.E.2 lead to a free energy

per unit (intrinsic) area which behaves as /36,4/

(5.2)
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compare with (3.31).

The free energies as given by (5.1) and (5.2) represent excess free energies of the

bound manifolds. Therefore, they may be interpreted as effective, fluctuation-induced
interactions. These interactions have two important properties: (i) they are repulsive and,

thus, act to drive the manifolds apart; and (ii) they are long-ranged (for and )

and, thus, may compete even with long-ranged components of the direct interactions.

Fig.5: (a) A rough manifold with , and (b) a crumpled manifold with

, which are bound to a smooth manifold at mean separation

C. Different Scaling Regimes

Now, the fluctuation-induced interaction will be compared with the direct interaction

arising from intermolecular forces. For the geometries as shown in Fig. 4, this direct

interaction, , depends on the coordinate which measures the distance of the fluctuating

manifold from the smooth interface. Then, the interaction free energy (per unit area) of the

bound manifold can be estimated by

(5.3)

Now, consider a certain pair of manifolds characterized by a certain value of and, thus,

by the fluctuation-induced interaction Then, the space of all possible direct

interactions, , consists of four different scaling regimes. These regimes can be identified

by a simple superposition of and . One then finds the following four regimes /1,4/:

(i) The mean-field (MF) regime characterized by

for large (5.4)

where represents the repulsive part of . In this situation, the mean separation, of

the manifolds is not affected by the shape fluctuations; (ii) The weak-fluctuation (WFL)
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regime defined by

for large (5.5)

where represents the attractive part of . The critical behavior within this regime

can be obtained in a rather simple way by minimization of ; (iii) The

intermediate-fluctuation (IFL) regime with

for large (5.6)

In this case, the superposition Ansatz indicates that the critical behavior depends both on

the long-ranged tail and on the short-ranged part of ; and (iv) The

strong-fluctuation (SFL) regime characterized by sufficiently short-ranged interactions with

for large (5.7)

In this regime, the superposition Ansatz predicts a first-order transition while the transition

is, in fact, often continuous and then governed by characteristic critical exponents.

The classification as given by eqs. (5.4) - (5.7) which has been obtained from the

superposition of direct and fluctuation- induced interactions is fully confirmed by more

systematic methods. On the other hand, the superposition Ansatz fails for the critical

behavior within the IFL and the SFL regimes. As explained below, functional

renormalization group (RG) methods reveal that the critical behavior within these regimes

is, in fact, rather unusual.

D. Renormalized Interactions

1. Functional renormalization : nonperturbative methods

To proceed, let us again consider the geometry displayed in Figs. 4(a) and 4(b). As

before, the shape of the fluctuating manifold will be parametrized by where is a

dim coordinate parallel to the smooth interface. The effective Hamiltonian then has the

generic form

(5.8)

with as in (3.7), and an implicit small-distance cutoff, . The first term in

(5.8) describes the elastic energy associated with the shape fluctuations, compare (3.6), while

the second term represents the direct interactions of the manifolds. The statistical properties

which follow from this model can be studied by a variety of theoretical methods. So far, the

most useful approach has been functional renormalization of the direct interaction,

In the context of roughening transitions, functional renormalization of the lattice

potential, , can be based on a cumulant expansion in powers of , see Sec. IV.C.
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For unbinding phenomena, such a perturbative approach is, however, not reliable in general

since the direct interaction, , contains a hard wall at . Indeed, the RG

transformations for , which are discussed below, are nonperturbative.

The first such method which has been used represents an extension /47,46/ of Wilson's

approximate recursion relations /48/. For infinitesimal rescaling factor , this

functional RG leads to the nonlinear flow equation /46/

(5.9)

for the renormalized interactions with scale factors and . The 'initial' interaction

at is given by the direct interaction:

As discussed further below, the RG transformation (5.9) leads to whole lines of RG fixed
points which describe various types of unbinding transitions. /26,49/ More recently, we have

also studied two other functional RG transformations: (i) an exact transformation for

wetting transitions in with which acts in a somewhat enlarged function space

/50/; and (ii) another approximate transformation /51,52/ which is based on a smooth cutoff

procedure. Apart from the regimes where the unbinding transitions are first-order, the

results of these different functional RG methods are in fair agreement.

2. Lines of renormalization group fixed points
Now, let us apply the RG transformation as given by (5.9) within the space of all

interactions which decay to zero for large at least as . This function space

contains both the SFL and the IFL regimes as defined in (5.6) and (5.7). It is convenient to

use the dimensionless variables and . Then, the

flow equation (5.9) becomes /26/

(5.10)

The fixed points, , of this RG transformation satisfy

(5.11)

Therefore, the rescaled fixed points depend only on one parameter, namely . This implies ,

e.g., that the adhesion of fluid membranes in is characterized by the same RG fixed

points as wetting in since in both cases. Likewise, (5.10) implies that both

systems are characterized, apart from a factor , by the same scaling indices and thus by the

same critical exponents.

The fixed point equation (5.11) must be supplemented by appropriate boundary

conditions. For unbinding transitions, one wants to include a hard wall at and a tail

which decays to zero for large . One then finds a line of fixed points, , parametrized
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by a parameter which behave as /26/

(5.12)

for small and as

(5.13)

for large .

For sufficiently small , the function is found to be convex downwards with a

unique minimum at . An example is shown in Fig. 6(a) for . /26,49/ In this

case, the function has two zeros at and (with

) which correspond to short-ranged fixed points with a Gaussian tail, see (5.14). Such a

convex downwards piece of persists to larger values of . However, as is increased,

the function develops more structure. /52/ First, at a certain value , it

exhibits a point of inflection with zero slope at with which bifurcates, for

, into an additional minimum and maximum at and . The new

minimum at moves down with increasing and touches the axis at

. An example for the shape of with is shown in Fig. 6(b). /52/

Fig.6: The amplitude of the power law tail of the fixed points, see (5.13),

for two values of

As is increased even further, another point of inflection with zero slope appears for

which lies at with , i.e., between the minimum and the

maximum of the previous bifurcation. /52/ This inflection point develops into another pair

of extrema of which are located at and . This type of bifurcation

continues infinitely many times as is increased towards : the point of inflection with

zero slope for the bifurcation at occurs between the two extrema generated in the
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bifurcation but it only appears after one of these extrema has touched the axis

with . As a consequence, the function exhibits more and more zeroes located at

and and e tc . /52,53/ These values of are ordered

according to . They determine the overall shape

of the fixed points, , as a function of and , in particular, the number of zeroes of

at finite : for , the fixed points have no extremum and no zero; for

, they have one minimum and one zero; for and

, they have one minimum and one maximum and thus two zeros, etc.

3. Relevant scaling fields and scaling indices

The physical meaning of the various fixed points depends primarily on the number

and on the character of their relevant perturbations or scaling fields. In the following, I will

only consider those perturbations which do not decay more slowly than (or ) for

large (or ), and thus belong to the same subspace of interactions as the fixed points.

For sufficiently large , all fixed points are completely stable : all perturbations are

irrelevant apart from the marginal one which corresponds to a shift of and, thus, to a

translation along the line of fixed points. As is decreased, a relevant perturbation with

eigenvalue first appears at the location, , of the minimum of . This

perturbation is in fact short-ranged and has a Gaussian tail as can be shown from the RG

transformation (5.10) when linearized around the fixed points. /49/ For , no other

relevant perturbation is present (within the IFL and SFL regimes) for any value of .

For , the function has an additional minimum at , and an

additional maximum at , see Fig. 6(b). In the intermediate regime with

, a second relevant perturbation appears with eigenvalue (which again has a

Gaussian tail). As is increased beyond , the function exhibits another maximum

and minimum located at and , as mentioned. Then, one has three relevant

scaling fields for the intermediate range given by , two relevant scaling

fields for and , and one relevant scaling field for

and . Thus, each additional inflection point of and the associated

bifurcation into a maximum and minimum corresponds to the appearance of an additional

relevant scaling field (with a Gaussian tail). /52/

4. Critical behavior at unbinding transitions

Within the IFL and the SFL regimes, all fixed points with have a domain of

attraction with codimension zero, and describe completely unbound states of the manifolds.

On the other hand, all fixed points with have a domain of attraction with a nonzero

codimension which is given by the number of their relevant scaling fields. These latter fixed

points describe unbinding transitions within the IFL and the SFL regimes.

Now, consider a physical system at temperature with reduced stiffness, , and
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reduced direct interaction, . A change of now leads to a temperature-trajectory

within the interaction space which intersects one of the attraction-domains at the unbinding

temperature . The corresponding fixed point and its relevant scaling fields then

govern the critical behavior at . If belongs to the SFL regime defined by (5.7), this

fixed point has a Gaussian tail and with . If belongs to the IFL regime

with , the corresponding fixed point also has such a power law tail

with amplitude

In general, may be a complicated function of and thus may have several minima.

Here, I will focus on the situation where achieves a single minimum at

finite or infinite . In this case, the critical behavior at the unbinding transitions is

governed by the fixed points with

As described above, the function has a unique minimum at for

Furthermore, the amplitude of the Gaussian tail of the fixed points, see (5.13),

satisfies and . Therefore, for should

increase monotonically with , and the fixed points can then be parametrized by

. /49/ This function again has a unique minimum at , and behaves as

for small . Close to this minimum, the RG flow within the

dim interaction space can be reduced to a flow within the 2-dim - subspace,

where it has a parabolic character. /49,4/ Integration of the RG trajectories then leads to

two different subregimes, (A) and (B), for the unbinding transitions.

Subregime (A) is governed by the fixed point at corresponding to . A

temperature trajectory which intersects the attraction-domain of this fixed point exhibits an

unbinding transition of infinite order : the mean separation, e.g., behaves as /49/

(5.14)

Subregime (B) is governed by the line of fixed points with . In this case,

one obtains the power law behavior /49/

(5.15)

as is approached from below. Thus, this regime is characterized by second-order
transitions but with non-universal critical exponents. It contains the case or

which describes second-order transitions in the SFL regime. In the latter case, the RG

considered here leads to a universal value for which depends only on . /54/

VI. OUTLOOK

In summary, the shape fluctuations of low-dim manifolds lead to a variety of critical

phenomena. As explained in Sec. III, a fluctuating manifold is a scale-invariant object which

can be smooth, rough, or crumpled. A rough state consists of humps, a crumpled state of
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blobs, see Fig. 1. Furthermore, the manifolds may undergo roughening, crumpling, or

unbinding transitions, as discussed in Sec. III.C and IV, Sec. III.C, and Sec. V, respectively.

Roughening and crumpling transitions can be characterized by the delocalization of humps

and blobs, see Fig. 2. Such a delocalization also occurs at unbinding transitions where it acts

to drive the manifolds apart, see Fig. 5. From a theoretical point of view, the basic scaling

properties of these transitions are now understood. As far as experiments are concerned, both

roughening /2/ and unbinding transitions /55/ have been observed but more work is highly

desirable. In fact, there are many theoretical and experimental problems which deserve

further study. Here are just a few of them : (i) Roughening of quasicrystals - The results

described in Sec. IV imply that the surfaces of ideal quasicrystals in are always

smooth. However, real quasicrystals may contain a certain amount of disorder. It has been

argued that interfaces (or domain walls) within random quasicrystals are rougher than in

periodic structures. /41/ It remains to be shown that this applies also to the surfaces of

random quasicrystals; (ii) Crumpling of self-avoiding membranes - As mentioned, tethered

(or polymerized or crystalline) membranes with self-avoidance probably do not crumple.

The effect of self-avoidance remains to be understood for more flexible membranes such as

fluid or hexatic /25/ ones. One interesting possibility is that the latter membranes undergo

a crumpling transition; and (iii) Adhesion (or unbinding) of vesicles - Real membranes of

amphiphilic molecules usually form closed surfaces or vesicles which often adhere to

interfaces or other membranes. We recently found theoretically that such vesicles can also

undergo adhesion (or unbinding) transitions. /56/ These transitions should be accessible to

various experimental techniques.
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