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Surface melting away from equilibrium 
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A solid-vapor interface is theoretically studied in the vicinity of the triple point, where the liquid 
phase coexists with the solid and the vapor. We find that surface melting also occurs if the solid- 
vapor interface moves with constant velocity v as a result of slow evaporation of the crystal. In fact, 
the thickness of the liquidlike surface layer is found to increase with increasing u. For materials 
with a low vapor pressure such as Pb, this dynamically induced thickening of the liquidlike surface 
layer is, however, estimated to be very small. This implies that the interfacial structure observed in 
recent experiments should closely resemble the equilibrium structure. 

I. INTRODUCTION 

Melting of a solid phase is a ubiquitous phase transfor- 
mation that occurs for any material at  sufficiently high 
temperature. It is well established that this process 
represents a first-order phase transition at which bulk 
quantities change in an abrupt or discontinuous way.' 
The physical mechanism underlying this transition is still 
not fully understood from a microscopic point of view 
but recent experimental and theoretical work tends to 
confirm the old i d e a 2 4  that the melting process is typi- 
cally initiated at the surface of the crystal. 

On the theoretical side, the idea of surface melting has 
been developed into a consistent framework: surface 
melting is now viewed as an interfacial phase transition 
which has the same characteristic features as wetting in 
fluid systems and surface-induced disorder in binary al- 
1 0 ~ s . ~ ~  This implies that surface melting leads to a 
variety of surface critical phenomena even though the 
bulk crystal undergoes a discontinuous phase transition. 

As far as experiments are concerned, surface melting 
has been clearly demonstrated for the (1 10) surface of Pb 
by ion s ~ a t t e r i n ~ , ~ ? ~ ~  by L E E D , ~ ~ ~ ~ ~  by x-ray reflectivity,13 
and by spin-polarized LEED.'~ Likewise, experimental 
evidence for surface melting has recently been obtained 
for Ar films (Ref. 15), 0, films on graphite (Ref. 16), 
methane films on MgO (Ref. 171, Ne films (Ref. 18), and 
for the (1 11) surface of Ge (Ref. 19). 

It is now generally accepted that surface melting 
occurs in thermal equilibrium, i.e., when both bulk 
phases and the interfacial region have the same tempera- 
ture. As far as chemical equilibrium is concerned, one 
may distinguish two limiting cases. First, one may con- 
sider partial chemical equilibrium and assume that the ex- 
change of material between the crystal and the vapor 
phase is so slow that it can be ignored on experimentally 
relevant time scales. One is then led to study a semi- 
infinite crystal bounded by a surface.20721 On the other 
hand, one may assume that the transport of particles 
through the vapor-crystal interface is sufficiently fast to 

achieve full chemical equilibrium throughout the whole 
system. In the latter case, surface melting is restricted to 
a thermodynamic path along the solid-vapor coexistence 
c u r ~ e . ~ ~ ' ~ ~ ~  

In this paper, we will consider a more realistic situa- 
tion away from chemical equilibrium. Indeed, scattering 
experiments on surface melting are typically performed 
in ultrahigh vacuum, i.e., at large undersaturation, in or- 
der to reduce the scattering from the vapor phase. In 
these experiments, the crystal slowly evaporates. There- 
fore, we will study theoretical models for surface melting 
in which the crystal-vapor interface moves at constant 
velocity towards the bulk of the crystal. 

The two situations of surface melting with and without 
chemical equilibrium are visualized in Fig. 1 as paths in a 
p-T diagram. The latter case is characterized by a pres- 
sure difference Ap from the pressure of the sublimation 
line. 

Our paper is organized as follows. In Sec. 11, we study 
the interfacial structure within a Landau-type model for 
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FIG. 1. p-T diagram and possible paths for surface melting. 
Idealized situation with chemical equilibrium on the sublima- 
tion line (solid line) and experimental situation without chemi- 
cal equilibrium away from the sublimation line (dashed line). 
The latter case can be characterized by a pressure difference Ap. 

3507 @ 1991 The American Physical Society 



the density. The solution of this model reveals that the 
thickness of the liquidlike layer increases with the veloci- 
ty of the crystal-vapor interface. In Sec. 111, a general- 
ized Landau model with a multicomponent order param- 
eter is considered which leads to very similar conclusions. 
These Landau-type models apply to systems governed by 
short-range forces. The influence of long-range forces 
such as, e.g., van der Waals interactions is discussed in 
Sec. IV. The order of magnitude of the dynamically in- 
duced effects is finally estimated in Sec. V. 

11. LANDAU THEORY 

The simplest approach is to use a single order parame- 
ter M like the particle mean density (eventually combined 
with a crystallinity order parameter). We shall investi- 
gate this case in some detail. The generalization to more 
order parameters is straightforward but tedious and only 
the results will be given, see Sec. 111. 

In our Landau-type models, the interfacial grand- 
canonical free energy F has the generic form6 

where z is the coordinate perpendicular to the planar in- 

terface and g is a constant which can be interpreted as a 
"mass" of a fictitious classical particle (the reason is ex- 
plained later). Furthermore, f (MI  is the grand-canonical 
free energy per unit volume for a system with spatially 
constant order parameter. One can also introduce a "po- 
tential" U(M)  for the fictitious classical particle by 
U(M - f (M). Near the triple point, the functional 
form of f ( M I  exhibits a three peak structure, corre- 
sponding to the vapor, liquid, and solid phase. We as- 
sume a parabolic form for f (MI  given by 

^ { M - M ~ ) ~ / ~ ;  for M < M v L  , 
^ ( M - M ~ ) ~ / ~ ^ + A ~ ~  for MvL < M < M u  , 

~ g ( M - ~ ~ ) ~ / a ~ + ~ p  for M u < M ,  

see Fig. 2. Here Me > Mr > M y  are the densities for the 
solid (metastable) liquid and vapor (without loss of gen- 
erality we choose Mv=O) and ApL, Ap > 0 are the pres- 
sure differences of the (metastable) liquid and solid with 
respect to the vapor phase as indicated in Fig. 2. Furth- 
ermore, the parameters a a  with a= V,L,S are micro- 
scopic length scales, and the densities MvL,MLs are the 
intersection points of the parabolas given by 

where the abbreviation 

b g / a i  for a = V , L , S  (2.5) 

was used. For more explanation of the notation, see Ap- 
pendix A. 

Our form for F [ M ]  takes into account short-ranged 
interparticle forces only; later we will also discuss the 
possible effects of long-ranged tails, see Sec. IV. 

For a situation away from the sublimation line, the 
density profile will also depend on time t, i.e., 
M=M(z , t  1. We are interested in a system in which one 
has a flux of particles away from the solid-vapor inter- 
face. This corresponds to the experimental situation 
where the evaporated particles are pumped away in order 
to sustain ultrahigh vacuum conditions. The correspond- 
ing undersaturation is governed by pressure which is a 
"fast" propagating mode: on the timescales relevant for 
the interfacial motion, the pressure within the vapor 
phase can be taken to be constant. In such a situation, 
the deposition rate of particles from the vapor phase 
should be proportional to this pressure while the eva- 
poration rate should be determined by the binding ener- 
gies of the molecules within the liquid-vapor interfaceYz3 
see also Appendix A. In any case, mass transport 
through the interface will not be limited by diffusion. In 
terms of the particle density, one may then study the re- 
laxational dynamics, defined by 

(2.6) 

The mobility r ( M  sets the microscopic time scale which 
depends strongly on the thermodynamic phase: in the 

order  parameter M 

FIG. 2. Three peak structure of the potential U( M [the neg- 
ative of the grand-canonical free energy per unit volume, f ( M  )I 
as a function of order parameter M. From left to right, the va- 
por peak which is thermodynamically stable and the two meta- 
stable liquid and solid peaks are shown. ApL, Ap are the pres- 
sure differences to the vapor coexistence values for the liquid 
and solid, respectively. 
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solid, the mobility is several orders of magnitude smaller 
than in the liquid. We model the functional dependence 
of I' on Mas  a piecewise constant function given by 

Ty f o r M < M v , ,  

rL for M u r < M < M r s ,  (2.7) 

1c for MLS < M . 
In Appendix A, the various parameters entering the 

Landau theory are estimated. In particular, the mobility 
is expressed in terms of measurable static quantities. 

We are primarily interested in steady-state situations 
where the interface moves with a constant velocity v. 
Therefore we are looking for solutions 

with boundary conditions 

m (x  -P - 00 )=Mv=O and m ( x  -+ oo )=Ms . (2.9) 

As frequently stated by many authors, see, e.g., Refs. 24 
and 25, the partial differential equation as given by (2.6) 
reduces to an ordinary differential equation which then 
describes a fictitious "particle" in order parameter space, 
moving in a' "potential" U(M) with "mass" g and "fric- 
tion" u /r( M 1. The coordinate x plays a role of "time." 

With our assumptions for U(M) and Y(M), the 
steady-state equation for m (x  can easily be solved. For 
each quadratic piece of f  (M)=--  U(M ), we get a linear 
second-order differential equation which can be solved by 
exponentials -exp(z / I Â  ) with a= V,L ,S. The corre- 
sponding decay lengths are v dependent and given by 

For small v, these length scales have the asymptotic be- 
havior 

These experimental solutions are then matched at x =0 
and x =I  where / denotes the thickness of the quasiliquid 
layer. This leads to the two matching conditions 

which determine the thickness / and the velocity v. The 
two length scales Z l  and l2 are defined by 

The parameter H i s  given by 

For v=0, this parameter measures the distance from 
three phase coexistence: H-ApL for small ApL. The 
other coefficients in (2.12) and (2.13) are 

and 

With a little bit of algebra, one may eliminate the vari- 
able 1  from the matching conditions (2.12) and (2.13). As 
a result, one obtains an implicit equation for the velocity 
v alone which can be written as 

with 

By Eqs. (2.10) and (2.11), the variables 1 and v are 
determined as a function of Ap and AnL. In general, this 
functional dependence can be easily found from a numer- 
ical solution of these equations. In order to get some in- 
sight into this solution, it is also useful to retain v as a pa- 
rameter and to introduce an effective interface potential, 
which is obtained by integrating (2.12) with respect to 1: 

The thickness / of the quasiliquid layer in the steady state 
is then given by 

This determines the layer thickness I provided the inter- 
face velocity u is known. In fact, the interface potential 
(2.22) and the condition (2.23) are even useful if v is treat- 
ed as an unknown parameter since they directly show the 
connection to the equilibrium case with u =0. 

Let us first discuss this case of surface melting at full 
chemical equilibrium, i.e., Ap = O  and v =0. Then, the 
coefficient H in (2.22) behaves as H - TT - T, where TT is 
the triple point temperature, and the decay lengths satisfy 
1, =212 = a L .  Moreover 

as the triple point temperature is approached from below. 
In the dynamical situation with Ap#O, the condition 

H =0 defines a characteristic temperature T,, which, in 
general, is different from the triple point temperature TT. 
Furthermore, H - T, - T for small T* - T. Hence, / 
diverges logarithmically as in (2.24) but with TT replaced 
by 7,. The prefactor 1 however, depends on v and will 
be enhanced. For small v, one finds immediately from 
(2.14) and (2.10) that 

This means that nonequilibrium conditions enhance the 
thickness of a wetting layer. 

For T > T* , there is no steady-state solution. In this 



case, the vapor-liquid and the liquid-solid interfaces move 
with different velocities vvL and vrv, respectively, with 
"VL <VLS. 

In summary, nonequilibrium surface melting is similar 
to surface melting at full chemical equilibrium, but takes 
place at a different temperature T*#TT. For short- 
ranged forces, the growth law for the width of the quasili- 
quid layer is still logarithmic but the prefactor depends 
on the interface velocity v. 

111. MULTICOMPONENT ORDER PARAMETER 

Let us now include more order parameters, character- 
ized by a set E=  [ Mo,Ml,M2, .  . . } .  More specifically, 
let Mo be the mean density and Ml ,MD.  . . be crystallin- 
ity order parameters. The latter order parameters can be 
chosen to be the amplitudes of a density oscillation with a 
nonzero reciprocal lattice vector of the solid6726727 which 
then vanish in the liquid and vapor phase. We assume 
that the dynamics is not coupled and given by 

for n =0,1,2,. . . , I'n denoting the mobility correspond- 
ing to Mn and F being the grand-canonical free energy 
functional now generalized to a multicomponent order 
parameter S. In this section, we consider general func- 
t ional~ of the form 

where the "mass tensor"71* is diagonal and depends on 
. In multidimensional order parameter space, f ( 2 )  ex- 
hibits a three peak structure, too. Near the metastable 
liquid peak EL =(MoL ,0,0,. . . I ,  f (2) reads6r" 

We also remark that the quantities An and gn (SL ) can ex- 
plicitly be related to the liquid structure f a~ to r . ' ~ "~  
Clearly, for a concrete choice of the crystallinity order 
parameters, the different parameters A .  , g  , F are not in- 
dependent from one another. 

The discussion of the influence of dynamics is quite 
similar to Sec. I1 and we only quote the results. Let us 
define a correlation length {,Ã for the order parameter Mn 
in the liquid phase by 

Then the width of the quasiliquid layer diverges for a cer- 
tain temperature T* as 

Obviously, for a single order parameter, one recovers the 
results of Sec. 11. 

Another interesting quantity is the residual crystallini- 
ty cn=Mn(-vt , t )=mn(x=O) of the order parameter 
Mn at the quasiliquid-vapor interface. For the equilibri- 
um situation, it is well known697,22~27s28 that cn vanishes as 
a power law in TT - T with nonuniversal exponents 13~,, 
for small TT - T. In the generalization to the nonequili- 
brium situation, the exponents turn out to become v 
dependent. For small T* -Tone finds 

with 

IV. INFLUENCE OF LONG-RANGED 
INTERPARTICLE FORCES 

Finally, let us consider long-ranged algebraic tails 
QLR( r )  in the interparticle potential. If the tails are 
slowly varying compared to the lattice constant of the 
crystal, only the local mean density Mo interacts via 
QLR ( r  ).22'29 More explicitly, the long-ranged term 

has to be added to F in (3.2). Here, w(z)  is the laterally 
integrated long-range tail 

Representing a "memory term," FLR complicates the 
steady-state equations of motion considerably. 

Let us first focus on a single order parameter Mo. 
Later on, we include crystallinity order parameters 
(Ml  , Mi,. . . ), too. To gain first insight into the interplay 
of dynamics and long-ranged forces, we further simplify 
our model (2.11, (2.2), (2.51, and (2.7) and take constant 
mobilities and potential curvatures for the three phases: 

Then, by the technique described in Refs. 30 and 22, the 
steady-state equation can be solved exactly for arbitrary 
w (z  ). For more details, see Appendix B. As a result, one 
obtains the steady-state solution mo(x ) as given by 

with 

for small T* - T with a u dependent prefactor Z l  that is 
given by 
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where 

and iE{ k ) denotes the Fourier transform of w (z ). 
The interface velocity v and the width of the liquid layer 
are determined by the matching conditions 

Combining Eqs. (4.4) and (4.7), one obtains that the wet- 
ting layer thickness I diverges if 

We can now introduce a pressure difference A& with 
respect to this pressure ( ApL i.e., 

For positive A& the thickness I of the quasiliquid layer is 
finite. By Eqs. (4.71, (4.41, and (4.5) the divergence law for 
I as ApL -+0 can be obtained studying the "wings" of the 
interfacial profile m(x 1, i.e., the asymptotic form of 
m(x for large \ x  1. Clearly, these wings depend explicit- 
ly on the long-ranged potential, see (4.5). In the follow- 
ing, we assume a Lennard-Jones long-range tail in the in- 
terparticle potential 

Doing an asymptotic analysis of the integral in (4.5), it 
turns out that the divergence law for the layer thickness I 
as ApL-0 is independent of u. As in the equilibrium 
case2' one finds 

with a u independent Hamaker constant W given by 

As in the case of short-range forces, surface melting 
occurs at a characteristic temperature T,, which is impli- 
citly given by (4.8) and differs in general from the triple 
point temperature TT. The Hamaker constant, on the 
other hand, does not depend on the dynamics, i.e., on the 
interface velocity v. 

If one includes more than one order parameter, the cal- 
culations become more elaborate. However, one again 
finds a temperature T, such that the thickness of the 
disordered layer diverges as 

for small T, -T. Here, A includes the temperature 
dependence of Ap. Accordingly, with the notation of 

(3.41, the residual crystallinity of the order parameter 
M,, ( N  > 1 ) vanishes as a u-dependent stretched exponen- 
tial such as T Ã  is approached from below: 

c,, ~w,,(x=O)=exp[-l /^ ,(u)]  . (4.14) 

V. DISCUSSION 

The dynamically induced corrections to surface melt- 
ing at full chemical equilibrium are of the order of 
vaL / g r L ,  see (2.25). The velocity scale 

can be viewed as the velocity scale by which a density 
perturbation propagates in the liquid. Primarily, the ve- 
locity scale % is governed by the mobility FL which is 
strongly temperature dependent. 

An estimate of 5 can be obtained in two ways. First, 
one can use the estimates in Appendix A where % is ex- 
pressed by static quantities. For lead, this leads to 

= 0( 100 m/s). Second, an upper bound on the time 
scale corresponding to can be found using measure- 
ments of the diffusion constant D of the liquid phase near 
the triple point. This means 

For lead, one obtains3' D/a ,  = 10 m/s so that the order 
of magnitude is consistent in the two estimations. 

Consequently, the resulting velocity scale 3 is much 
larger than the interface velocity u which, for lead, is 
' - 5  A per hour9 where one typically works with a very 
small pressure difference Ap =7X 1 0 '  Pa. This implies 
that the interfacial structure observed in recent scattering 
experiments resembles the structure in full chemical equi- 
librium. Indeed, this was anticipated in the interpreta- 
tion of the data (see, e.g., Ref. 9), but a quantitative esti- 
mate was not available. 

The dynamical influence may be detectable in materials 
with a relatively high vapor pressure, such as, e.g., ice. 
For experimental reasons, since one works with finite-size 
crystals v is limited by 5 : 0 ( 1 0 '  m/s). Therefore, the 
dynamical effect will be small in any case. However, at 
the onset of surface melting, merely a quasiliquid layer is 
present which has a perpendicular mobility between the 
solid and liquid bulk mobilities r \ , rL .  Since 
~ = ~ O - ~ I ' ~ ,  dynamical effects may be detectable and 
more relevant at the onset of surface melting. 

Let us finally make some remarks: First, the pressure 
difference Ap must not be too large. Otherwise, for 
Ap > Ap,, the liquid is no longer metastable and surface 
melting will not take place. In Fig. 2, this corresponds to 
the situation where the liquid peak lies below the vapor 
and the solid peak. A crude estimate for A p  yields 

where ( J ~ V  is the liquid-vapor interfacial tension at the 
triple point and S, is the corresponding interfacial width. 

Second, we comment on limitations of the theory. Do- 
ing a steady-state analysis with one coordinate z, we have 



neglected melting in the metastable bulk solid, yielding 
quasiliquid bubbles. This effect is pronounced if both Ap 
and T are large. Furthermore, we have neglected effects 
of dynamical roughening of the solid-vapor interface. 
Computer simulations should be used to obtain a more 
detailed picture of the interplay between roughness and 
surface melting. 

APPENDIX A: PARAMETERS OF LANDAU THEORY 

In this appendix, we will estimate the various parame- 
ters which enter the Landau model in Sec. 11. We choose 
the "order parameter" M to represent the dimensionless 
mean particle density defined by 

where p v  and pL are the particle densities of the bulk va- 
por and the bulk liquid, respectively. 

Now, consider two phase coexistence between the va- 
por and the liquid phase. Such a situation is described by 
the free energy (2.1) with 

+ g ~ 2 / a ;  for M < MvL , 
(A21 + g ( ~ - ~ L f / a f + A p L  for MvL < M  . 

The parameters a v  and aL are microscopic length scales 
of the order of the molecular size. The parameter g is a 
free energy scale. Indeed for Ap =0, the tension or free 
energy, 2 vL , of the liquid-vapor interface is given by 

Thus, we obtain the estimate 

for small ApL . Expansion of (A61 then leads to 

for small ApL . 
The relation as given by (A81 will now be compared 

with the corresponding relation as obtained from a sim- 
ple model for interfacial growth.23 In this model, the 
deposition rate, JD, i.e., the number of molecules which 
arrive from the vapor phase at the interface per unit area 
and unit time is taken to be 

where p is the vapor pressure, m the mass of the molecule 
(and the temperature T is measured in energy units). The 
sticking coefficient cst is of order 1. The expression (A91 
follows from the kinetic theory of an ideal gas. The eva- 
poration rate, JE, on the other hand, is taken to be 

where AE represents the binding energy within the inter- 

face. 
At two phase coexistence with p=p* ,  one has 

JE=Ji=Jf)=JDÂ Now, off the coexistence with 
p=p*-  ApL, one obtains the effective evaporation rate 

where JE=Jz has been assumed. This implies that the 
interface velocity u is given by 

In deriving the second step of Eq. (A4), we assumed 
av=aL and, since p v  <<pL, ML = 1. Next, consider the 
system with ApL#O. It  then follows from (2.6M2.8) that 
the stationary profile, m (x  ) =m ( z  -vt), satisfies 

Matching at x =0  leads to 

MvL { -U / 2 g r v + [ ( ~ / 2 g r v ) 2 +  l/a^2} 

=(ML -MvL ){v/2grL +[ (v /2grL )2+l/ai]l/2] 

(A61 

am 

which determines v as a function of the pressure Ap. 
This pressure enters (A6) only through MvL with 

[$ m/a;]  f o r m < M v L  , g r v  -- 

within this model. 
Now, consider the simplified case with r = rV = rL . It 

then follows from (A81 and (A12) that 

- u - = .  
ax (A5) 

for m >MvL . 
where the choice (All has been used. 

Finally, consider the velocity scale % =grL /aL which 
determines the relative size of the correction term in 
(2.25). From (A41 and (A13), one now obtains the esti- 
mate 

For Pb near the triple point, one has m =3 X l o 2 '  g, 
~ = ~ ~ = 8 ~ 1 0 - ~ ~ e r g , ~ ~ = 2 ~ 1 0 ~ ~  ~ m - ~ ,  a L s 3 ~ 1 0 - 8  
cm, and SvL 3300  erg/cm2. This leads to 6 =0( 100 
m/s). 
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APPENDIX B 

For  the model of Sec. IV, including the long-ranged forces, the steady-state equation reads explicitly 

where Q{x) denotes the step function. Note that we have transferred the nonlinearity of df /dmo in mo(x  ) to  a merely 
x-dependent inhomogeneity. As a consequence, we have to  require the matching conditions (4.7). Equation (Bl)  can 
straightforwardly be solved by Fourier transformation. Introducing the Fourier transform inO(k by 

one arrives a t  the following result: 

k ML [^"dx'exp( ikx' ) + ( M, -M^ f 'dx 'exp(ikx ' ) 
wio(k)=- 1 1 - .- .-. - T -. " - 

& g k 2 + i k v / l ' ~ + ^ / 2 ^ ^ [ ~ ( k ) - l a ( 0 ) ]  

Doing the Fourier backtransform, one obtains directly (4.4). 
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