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Abstract. We discuss theoretical predictions for the adhesion of vesicles to a wall 
which can be a substrate, another membrane or an interface. In a simple model with 
a contact potential, the interplay between bending and adhesion energy leads to a 
variety of bound states and to a curvature driven adhesion transition which can be 
continuous or discontinuous. In a potential with finite range, this transition separates 
the bound state with finite contact area from a state in which the vesicle assumes its 
free shape but is pinned by the potential minimum. Thermally excited fluctuations 
are shown to promote two different unbinding transitions: Small vesicles unbind by 
thermal activation while larger vesicles unbind via shape fluctuations. We also discuss 
the valididy of the Young-Dupr6 equation, lateral tension as well as topological changes 
induced by adhesion such as fusion and rupture. 

1. Introduction 

Adhesion plays a central role in many biological and biophysical processes: Mutual 
adhesion of cells leads to the formation of tissue. Various transport processes involve 
the adhesion of vesicles to cell surfaces. Drug delivery by liposomes is an example 
for a biotechnological application. These systems typically involve objects with many 
components and represent states far from equilibrium. 

Adhesion, however, also occurs for simple configurations such as mutual adhesion 
of artificial vesicles which can be studied with micropipet aspiration techniques [I]. 
Accidental adhesion in dilute systems can be investigated by light microscopy [2]. 

In general, adhesion of closed vesicles leads to a change in their shape which costs 
bending energy, and will, thus, only occur if this loss (and the loss in translational 



entropy) is compensated by a gain in adhesion energy. We discuss the consequences of 
a theoretical model [3-61 which focuses on this aspect. 

2. The model 

Since a typical membrane has a thickness in the nm-range and lateral extension 
in the pm-range, it can be regarded as a two-dimensional surface embedded in three- 
dimensional space. Fluid membranes have no internal connectivity and therefore no 
elastic energy associated with displacements within the surface. The relevant energy 
arises solely from the bending of the membrane which is governed by the curvature of 
the embedded shape [7-91. 

A vesicle near a wall experiences various kind of forces, such as van der Waals and 
hydration forces. The typical range of these forces is in the nm-range and may, in a 
first step, be replaced by a contact potential with strength W. The curvature and the 
adhesion term then lead to the energy [3] 

C1C2dA - WA*. 

Here, H = (Cl + C2)/2 is the mean curvature and ClC2 is the Gaussian curvature in 
terms of the inverse radii of curvature C1 and C2. The two bending rigidities K and KG 

have the dimension of energy. The last term accounts for the adhesion energy which 
is proportional to the contact area A*. 

As for free vesicles, the energy F has to be minimized subject to constraints for 
the total area A, the enclosed volume V and the total mean curvature M = f dA H. 
The latter constraint is physically equivalent to fixing the area difference between 
the two monolayers [lo]. Such a constraint applies to real bilayers provided one can 
ignore the exchange of lipid molecules (flip-flop) between the two monolayers. If the 
constraints are added to (1) by Lagrangian multipliers, the minimization leads to 
shape equations and boundary conditions. The adhesion term -WA* enters only the 
boundary conditions: 

(i) The contact angle is TT since any sharp bent would imply an infinite curvature 
energy. (ii) The contact curvature Cr is determined by [3] 

while Cf = 0. This universal condition holds irrespective of the size of the vesicle or 
the constraints imposed. Thus, a measurement of Cf would lead to a value for the 
contact potential once the bending rigidity K is known. 

3. Adhesion transition and phase diagrams 

Solving the shape equations for axisymmetric shapes with the boundary condition 
(2) leads to a variety of bound shapes. It is convenient to discuss the results for 
different number of constraints imposed subsequently. 



First, consider the case where only the area A E 4 7 1 - ~ ~  is fixed [3]. Physically, this 
corresponds to experiments on long time scales where the volume may equilibrate by 
the exchange of water. With decreasing W, the area of contact A* also decreases and 
vanishes for W = Wa, with 

Wa = 2tc/R2. (3) 

At this value, the bound shape assumes the free shape corresponding to the same 
constraint which is a sphere. For W < Wa, an attractive potential does not lead to a 
bound shape with finite area of contact. Thus, a continuous adhesion transition occurs 
at W = Wa. 

This transition implies that, for fixed W, in an ensemble of vesicles only those 
vesicles with R > Ra = ( 2 t c / ~ ) l / ~  are bound. 

Second, consider the area-volume ensemble in which both area A and the volume 
V are prescribed. For free vesicles, the phase diagram depends only on the reduced 
volume 

v = ~ / ( 4 7 r ~ ~ / 3 ) .  (4) 

In this case, three different regimes are separated by discontinuous transitions [ll]:  
The shapes of minimal energy are: (i) the cup-shaped stomatocytes for 0 < v 20.59, 

< -< (ii) the biconcave discocytes (which evolve from the convex oblates) for 0.59- v - 0.65 - - 
and (iii) the dumbbells and prelates for 0.65:~ - < 1. 

In the presence of a wall, the phase diagram [4,5] and several bound shapes are 
shown in Fig.1. The phase diagram becomes two-dimensional and depends on v and 
the reduced potential strength w = WR2/tc. 

The stomatocytes undergo a continuous transition C c O  at W = Wa = wa(v)tc/R2. 
For the discocytes, the adhesion transition is discontinous, i.e., we find coexistence of a 
bound shape with finite area of contact and a free shape along D e .  As a consequence, 
for v 2 0.52, the continuous adhesion transition for the stomatocytes is preempted by a 
discontinuous transition DzO.  Moreover, there is a discontinuous transition D between 
bound discocytes and bound stomatocytes. 

The dumbbells and prolates undergo a discontinuous transition D:rO to bound 
oblates if one ignores non-axisymmetric bound shapes. An investigation of this pos- 
sibility would require the solution of the non-axisymmetric shape equation (a fourth 
order non-linear partial differential equation) with moving boundaries. However, some 
insight into the relevance of non-axisymmetric bound shapes can be obtained as follows. 

The critical value Wa for the continuous adhesion transition for the stomatocytes 
and the oblates (not appearing in the phase diagram) obeys the condition that for 
A* Ã‘ 0, the contact mean curvature of the bound shape, H* = (CT + Cz)/2 = C u 2 ,  
becomes identical to the mean curvature Hf of the corresponding free shape at this 
point of contact. Using (2) this condition locates the continuous adhesion transition 
at 

wa = ~ K H J .  (5) 

For a sphere, one has Hf = 1/R which leads to (3). 



Fig.1: Schematic phase diagram with free and bound shapes in the A, V-ensemble. 
The heavy lines show the adhesion transition at W = W a  which can be discontinuous 
(Dzro, D : ~  and DgO) or continuous (CcO). In the dashed region, non-axisymmetric 
bound shapes are relevant. The dashed straight lines across the shapes denote axes of 
symmetry. 

If we assume that the condition (5) is also valid for a (hypothetical) continuous 
transition of the prelates and dumbbells (with their axis of symmetry parallel to the 
wall), we can compare the energy at this transition with the energy of a bound oblate 
at the same v and w investigated so far. Such a comparison shows that in a small 
region around v = 0.90 the non-axisymmetric bound shapes have indeed lower energy. 
It remains to be seen whether the adhesion transition to these states is continuous at 
Wa = 2 e  (where Hf is the mean curvature at the equator of the prolate) or dis- 
continuous at Wa < 2 q  and how far this region of non-axisymmetric bound shapes 
extends. With increasing W, these non-axisymmetric states should then undergo a 
transitions to axisymmetric bound shapes. 

Finally, consider the case where all three constraints on A,V and M are im- 
posed which defines the bilayer coupling model for adhesion. The phase diagram for 
the free vesicles is now two-dimensional and includes pear-shaped vesicles and non- 
axisymmetric shapes (which are ellipsoidal with three different axis for v 3) [11,12]. 
The three-dimensional adhesion diagram has not yet been fully explored.In analogy 



to the free case, one expects that the additional constraint on M favours continuous 
adhesion transitions which would occur at Wa = 2 q  with the corresponding H f .  

4. Strong adhesion: Young-Dupr6 limit and tension 

The adhesion transition takes place for R = Ra = ( w ~ K / w ) ~ / ~ ,  where wa is a 
numerical coefficient of O(1) which depends on the constraints. For large vesicles with 
R >> Ra , i.e. for strong adhesion, the shape of the bound vesicle approaches a simple 
limit shape. If only the area is constrained, this limit shape is a pancake with an 
energy [51 

F w - 2 7 r ~ ~ '  + 2 7 r g ( 2 ~ w ) ' I 2 ~ ,  PI 
where g e 2.8. If in addition the volume is constrained, the vesicle becomes a spherical 
cap for strong adhesion. In both cases, an effective contact angle Q e f  can be defined 
which obeys a Young-Dupr6 equation [3] 

W = S(1 + COS Q e f f ) .  

For the pancake, one has Q e  = 0. 
The quantity S in (7) is the (numerical) value of the Lagrange multiplier for the 

area constraint. It also obeys the relation S = 9F/QA at constant V. Although it is 
tempting to identify S with a lateral tension, this is not justified a priori since we are 
dealing so far with an incompressible membrane of fixed area. 

Real membranes have a finite compressibility which leads to an additional elastic 
term 

Fk = (k/2)(A - A O ) ~ / A O  (8) 

in the energy (1) where k is the area compressibility modulus of the order of 
1 0 1 3  JIpm2 [13]. Such an extended model leads to the same shape equations as 
the model defined by (1). Even the boundary condition (2) remains unchanged. The 
phase diagram, however, changes due to the additional energy. 

In general, adhesion induces stretching. A crude estimate of this effect can be 
obtained as follows: Suppose that a certain bound shape with area Ao, contact area 
A; and energy Fo minimizes the energy (1) for an incompressible membrane. As 
a variational solution for finite compressibility, we consider the same bound shape 
scaled with a linear factor (1 + A)lI2. Such a shape has an energy F(A) = Fo - 
WA; A + (k/2)AoA2. Minimization with respect to A leads to the adhesion induced 
stretching kin = WA!,/(kAo). The elastic lateral tension Eel follows from Eel = 
QFk/OAIA=xmin = WA^/Ao. Since it is independent of k ,  it holds also in the limit of 
an incompressible membrane. Thus, the Lagrange multiplier S and the elastic tension 
Eel  are proportional for strong adhesion and one may indeed use S as a (crude) measure 
of the tension in the membrane. For a pancake , we have A^/Ao = 112, it then follows 
from (7) that Eel = S since Q e f  = 0 in this case. 

In general, the solution of the model defined by (1) with (8) would show that the 
lateral tension does not coincide with the value of the Lagrange multiplier S used to 
enforce the area A. in the model (1) without (8). 



5. Topological changes induced by adhesion: Fusion and Rupture 

So far, an isolated vesicle at a wall has been considered. If more and more bound 
vesicles cover the wall, these come into contact and may fuse. For free vesicles, fusion 
of two vesicles with equal area A = 4rR2 (but no constraint on the volume) leads 
to a gain in energy AFfu = STK + 4TVKG. If two bound vesicles fuse, the gain in 
energy is always larger and satisfies AFbu > @TK + 4TKG with 3 .̂ 8.3. For large R, 
this energy gain behaves as AFbV K; 47rg(& - ~ ) ( K w ) ~ / ~ R ,  where (6) has been used. 
Thus, adhesion favours fusion [5]. 

The larger the fused vesicles become, the more their shape approaches the pancake. 
If the elastic tension exceeds the threshold for lysis, the pancake ruptures and becomes 
an open bound disc. Such a conformation has an energy [5] 

where Se is the edge tension along the circumference of the bound disk. A comparison 
of the energy (9) with the energy (6) of a pancake shows that for R >> Rbd = S e / W  the 
bound disc always has lower energy (irrespective of the value of the other parameters). 
For phospholipid bilayers, we find with the typical value Ee = 5 x J /pm the 
length scale Rbd = 50pm assuming moderate adhesion with W = 1 0 1 8  J /pm2.  

A recent experiment has shown that a lamellar structure can form at the air- 
water interface of a vesicle suspension [14]. The energetic considerations discussed 
above immediately lead to a scenario where vesicles adhere to the wall, fuse at the wall 
and rupture. Finally, the open discs will also fuse, thus forming a bilayer parallel to 
the wall. The same experiment has also revealed that the activation barriers involved 
in these processes depend sensitively on temperature. 

6. Adhesion in a potential with finite range 

The contact potential discussed so far is an approximation to realistic interactions 
between the vesicle and the wall. In general, one has a potential V(Z), where Z is the 
coordinate perpendicular to the wall. In this section, we discuss adhesion in such a 
potential [15] which will also be required for an investigation of the effect of fluctuations 
on the adhesion transition. 

The adhesion energy in such a potential reads 

which replaces the contact potential term -WA* in (1). For simplicity, we focus on 
smooth two-parameter potentials V(Z) which have a repulsive core, a single minimum 
with depth VO, a typical length-scale or range Zo and which vanish faster than - Z 2  
for large Z, such as, e.g., 



with n > 2. The parametrization in (11) implies that the potential minimum is at 
Z = Zo and that V(Zo) = -VO. 

Vesicle shapes of minimal energy in such a potential have been studied in some 
detail for two-dimensional vesicles [16]. Here, we extend the essential results to the 
three dimensional case. 

Depending on the range Zo and on the size of the vesicle R, two limiting cases 
can be distinguished theoretically. 

(1) For R<ZO, which defines the long-ranged case, the whole bound vesicle is 
exposed to the adhesion potential Fv. The deviations from the free shape (with the 
same constraints) are significant, if the variation of the potential along the vesicles 
contour becomes comparable to the energy F - K .  This happens at the potential 
strength VO = Vj, which scales as 

as can be estimated by expanding the potential around its minimum. 
Thus, for Vo << V5, the bound vesicle has more or less its free shape and gains 

an energy 
A F  - -vOR~, (13) 

while for Vo 2 V5 the adhesion potential deforms the free shape. 
(2) For short-ranged potentials with Zo << R, only the adjacent part of the vesicle 

is exposed to the potential and one should recover the results for the contact potential 
case. In fact, the limiting behaviour for small Zo /R depends on the potential strength: 

(i) If VO is larger than the critical value, Wa, for the adhesion transition in the 
contact potential, the vesicle in the smooth potential V(Z) approaches in the limit of 
small Zo/R the same shape obtained for adhesion in a contact potential with W = 
VO. In particular, the boundary condition (2) also evolves in this limit without being 
imposed. 

(ii) For VO < Wa, on the other hand, the vesicle approaches in the same limit 
the free shape (satisfying the same constraints). It remains, however, pinned in the 
(narrow) potential minimum up to the limit Zo = 0 where it is pinned in one point (in 
the absence of thermal fluctuations). Indeed, the area which is actually exposed to the 
potential well vanishes as ZoR, which leads to the energy gain 

for small Zo/R in the pinned state. 
Thus, if the adhesion transition found in a contact potential has been discontinu- 

ous, the finite range Zo leads to a transition between the bound and the pinned state 
at 

VO = V,(Zo, R), with V,(O, R) = Wa. (15) 

With increasing Zo (or decreasing R)  this discontinuous transition terminates in a 
critical point. If the adhesion transition in the contact potential has been continuous, 
the finite range Zo now leads to a smooth crossover between the bound and the pinned 
state. 



7. Influence of thermal fluctuations 

So far, the shape of minimal energy has been considered. Vesicle membranes are 
rather soft and undergo thermally excited fluctuations around these minimal states. 
Here, we focus on the influence of these fluctuations on bound shapes and, in particular, 
on the adhesion transition. We discuss this for adhesion in a potential with finite range. 
Two different regimes must be distinguished. 

( 1 )  I f  the energy difference A F  between the free and the bound state is large 
compared to the thermal energy T ,  i.e. for AFI >> T ,  the bound state will exhibit 
shape fluctuations but remain bound for exponentially long time scales. A typical 
amplitude a for such a shape fluctuations is then given by equipartition as < a2 >- T / K  
up to some numerical factor depending on the particular mode. 

(2) The more interesting case arises for IAFI <T where thermal activation leads 
to unbinding. As a definition for a characteristic depth V O  = VÂ or a characteristic 
temperature T,, , we take the criterion IAF(V;)I E T or lAF(VO)l 2 T,, . With (13) 
and (14) ,  we find in the long-ranged and the pinned case 

T/R2   for^:^^ 
T/(RZo)  for Zo << R 2~~ = ( t / T ) Z o .  

The length scale Rc arises from the consistency requirement that V O  < V: ĉ  Wai 
which was assumed when using the estimate (14) for A F .  The breakdown of this 
relation for R > Re indicates that large vesicles will not enter the pinned regime 
because the energy gain A F  of such a pinned state would be smaller than the thermal 
energy T .  Therefore, these large vesicles unbind at values of the potential depth V O  
for which the analysis at T = 0 predicts bound vesicles with a finite contact area. This 
regime R > Rc can also be attacked from a different point of view as follows. 

Consider an open membrane bound to a wall by a potential which decays faster 
than - Z 2 .  Since the wall restricts the fluctuations, the bound membrane has lower 
entropy than a free membrane. This loss leads to an entropic repulsion and, thus, to 
a fluctuation induced unbinding at a finite potential depth V:,open [6,l7]. For a two- 
parameter potential with range Zo and depth V O  the critical amplitude V J O p n  scales 
like [18] 

Bound closed vesicles also experience an entropic loss in the contact zone. One 
might therefore expect that V:,opeÃ also gives the critical amplitude for the unbinding 
in this case provided the vesicle is indeed bound with a finite fraction of its area to 
the wall for T = 0. This latter condition restricts the whole argument to vesicles with 
such a size that V a R )  < V:,open. This relation is fulfilled for R > Re with the same 
crossover radius Re appearing already in (16). 
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Fig.2: Schematic phase diagram for adhesion in a potential with finite range at 
finite temperature T. Depending on the three length scales Zo , R and Rc, three dif- 
ferent regimes must be distinguished for the unbinding: (1) In a long-ranged potential 
(R; ZO), decreasing the potential depth VO first leads to a smooth crossover at VO 2 V; 
where the bound shape changes its shape from the deformed to a nearly free shape. 
Finally, the vesicle unbinds via thermal activation at VO e V:. (2) In a short-ranged 
potential (Zo << R), small vesicles with R < Re first undergo the curvature driven 
transition from a bound state with finite contact area to the pinned state with the 
nearly free shape for VO e V:. These small vesicles then unbind via thermal activa- 
tion at Vo EJ v:. (3) Large vesicles with R > Rc, cannot enter the regime of pinned 
states since they unbind via shape fluctuations in the contact zone at VO 2 V:,open. 

For this crossover length Re, we find Re = O.lpm with the typical values Zo = 4nm 
and KIT = 25. Although there is uncertainty about the numerical prefactor, this 
crossover seems to be below the optical resolution. It might, however, be shifted to 
larger values using multi-lamellar vesicles because K is proportional to the number of 
bilayers. 

A possible objection against the use of (17) as the characteristic strength for 
the unbinding of closed vesicles concerns the effect of constraints, in particular of the 
area constraint. Such a constraint will typically create a lateral tension which acts to 
suppress the shape fluctuations and, thus, to reduce the entropic loss in the contact 
zone. In the presence of such a tension one has V:,open = 0 provided the interaction 
potential V(Z) decays as a power law for large Z [4]. 

The estimates given in this section for the adhesion transition of vesicles lead to 
three different regimes as shown and described in Fig.2. 

8. Conclusion 

All phenomena discussed here show a characteristic dependence on the size, R, of 
the vesicle which arises from the interplay of the bending energy - K and the adhesion 



energy W R2. 
For 'strong' adhesion, with R >> (/t/w)'l2, the contact potential is well suited 

(i) to describe bound shapes, (ii) to clarify the notion of an effective contact angle 
and (iii) to discuss topological changes of bound states. For 'weak' adhesion, with 
R (tc/w)ll2, we find an adhesion transition. Although this phenomenon occurs 
already for a contact potential, one has to study a finite range potential in order to 
determine the critical behaviour at this transition. 

How vesicles unbind, depends on their size. Small vesicles undergo a curvature 
driven transition from a bound to a pinned state from which they unbind by thermal 
activation; large vesicles unbind via shape fluctuations. 

The theoretical predictions described here should be accessible to experiments. 
For a verification of the condition (2) for the contact curvature, reflection interference 
microscopy seems to be a promising technique [19]. Transitions between different 
bound shapes as well as the adhesion transition could be induced and analysed by 
changing the temperature or the osmotic conditions, compare Refill and 12 where 
such an approach has been applied for free vesicles. 
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