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Abstract. -A model for wetting in a 2d ideal Penrose tiling is presented. The exponents and the na- 
ture of the wetting transition for long-ranged potentials are determined by an approximate renor- 
malization group approach and confirmed numerically. The wetting shows unusual features due to 
the self-similarity of the quasi-periodic lattice. For short-ranged potentials a new universality 
class of transitions is established and the critical behaviour is determined. 

Interfaces in ideal quasi-crystals exhibit very unusual fluctuations. They are genuinely less 
rough than their crystalline counterparts. In the case of two dimensions, where interfaces in 
crystals are rough for all finite temperatures T with a universal roughness exponent c = 1/2, 
interfaces in quasi-crystals can exhibit a roughening transition at  finite T or, in an alternative 
model, a roughness exponent c < 1/2 that depends continuously on T [1-4]. This critical be- 
haviour could possibly be observed in the edge melting of domains of an adsorbed monolayer on 
the facets of decagonal (T-phase) quasi-crystals, as the edge of the monolayer should feel the 
quasi-periodic modulation of the underlaying substrate. 

New critical phenomena arise when the interface is bound to a second surface. Consider, 
e.g., the experimental situation where a quasi-crystalline layer is grown from the melt on a flat 
crystalline substrate (I). The thickening of the layer depends primarily on the wetting proper- 
ties of the system, which can be understood in terms of the effective interaction between the 
two interfaces bounding the layer. The different character of the interfacial fluctuations in 

($1 Current address: Institut fiir Festkorperforschung, Forschungszentrum Jiilich, D-5170 Jiilich, 
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( I )  In our model we consider the interface between two domains within afized quasi-crystalline lat- 
tice. This describes, e.g., the boundary between magnetic domains. By analogy to the periodic crystal it 
is plausible to assume that the same model applies to the surface of a quasi-crystal in contact with a fluid 
phase. Thus, we do not address the subtleties of the aggregation mechanism at the surface of 
quasi-crystals. 
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quasi-crystals is expected to alter the critical behaviour at wetting transitions. This is indeed 
what we find for the two-dimensional model we consider. 

Using an approximate renormalization (RG) group we determine the exponents and the na- 
ture of the wetting transition analytically for long-ranged potentials. The wetting proceeds by 
an almost discontinuous addition of layers whose thickness increases exponentially. For short- 
ranged potentials, numerical solution of the transfer matrix equation reveals that the critical 
exponent vII goes to 1 for large r = l/[ in contrast to  the behaviour of Gaussian models. The de- 
pendence of the exponents on r is found to be approximately given by a generalized necklace 
model. 

To be more specific consider a free interface in a lattice gas model on an ideal 2d Penrose 
tiling. It was shown previously that this model can be represented, at  least for low T,  by an ef- 
fective interface model on a 2d square grid with Hamiltonian 

where x and x, are integers (i.e. the lattice spacing is taken to be unity) [l, 21. The variable x, 
measures the distance of the interface to a line of reference and Vu is an (entropic) Fibonacci 
potential 

for 0 < x + zo < 1 (modo), 
for 1 < x + zo G o (modo). (2) 

The parameter xo is a free phase which depends on the choice of the x-origin in the tiling, o = 
= (1 + 6 ) / 2  is the golden mean, J the coupling between neighbouring spins in the original tiling 
and AS the difference in entropy per projected length between the wide and the narrow tracks 
of the Penrose tiling. For low T the equilibrium properties are given by the ground-state sol- 
utions of the discrete Schrodinger equation 

(3) 

i" AS VUM = 

Eyl(2) = U(x> yl(x> - t (z  - 1,x) y(x - 1) - t (x , z  + 1) yl(z + 1) 

with 

U(z) = 1 - exp [ - V, (211 and t (z,  x '> = exp [ - J / T  - (Vu (2 )  + Vu ( x  ' ) ) /2 ]  . 
The roughness exponent [ has been deduced from the scaling of the integrated density of 

states [l] which is known from an exact RG treatment of the Schrodinger equation (3) [5]. The 
result is exact and valid for all temperatures but cannot easily be extended to incorporate an 
additional binding potential. Alternatively one can use an approximative RG [Z] which gives a 
very intuitive picture of the scaling of the wave function and the spectrum [6]. We shall extend 
the second approach and incorporate an external potential. 

The RG consists of a successive elimination of sites with locally higher energy. In each RG 
step, the weaker hopping terms are ignored, the ground state is calculated and the weak cou- 
plings are then reintroduced perturbatively. The first step reduces the general Schrodinger 
equation to a pure hopping model with hopping constants ,Lo) and 6'). They form a Fibonacci se- 
quence and their ratio is given by 

with U, = 1 - e m [ -  AS]. 
The lowest-lying states of the n-th RG step, corresponding to the strongly coupled pairs of 

sites, shall be called .molecules of n-th order.. The energy E(n) of such a state can be calculat- 
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ed exactly by summing up the contributions from all RG steps (including the energy shifts). In 
this way, we arrive at  

9"+ '  
1 + 29 
1 - 9  

EO (n) = EO + G(n) with G(n) = exp [ - J/T] - (5)  

with the ground-state energy 

Eo = - exp [ - J/T](l + 2q)(l - q + q2)/(1 - q) .  (6)  

In each RG step the lattice is rescaled by a factor 2. Hence the size tL of the molecule of 
n-th order scales as a2? The lateral coherence length tll of a state superimposed from eigenfunc- 
tions with energies between E and Eo is of the order 1/(E - Eo),  which is l/G(n) for the n-th or- 
der molecule. Comparison with the scaling relation tL - <i leads to the roughness expo- 
nent 

( =  21na/(- lnq), (7) 

where [ depends continuously on T according to (4). 
We have determined Eo numerically for several values of J/T i) by diagonalizing the trans- 

fer matrix in a finite range of x and subsequent finite-size scaling and ii) by direct iteration of 
the transfer matrix. The numerical values for Eo compare favourably with the predictions of 
eq. (6),  which can thus be used in the exact expression for [ (eqs. (10) and (11) of ref. PI), where 
Eo enters as a parameter. In this way one obtains an excellent fit to the values as determined 
numerically for all J/T. The approximate expression (7), on the other hand, represents the be- 
haviour for small T fairly accurately, with an error of less than two percent for J /TB4 or 
t = 1/5B3. 

Consider now a semi-infmite geometry where the fluctuating interface is excluded from the 
half-space with x < 0 and an interaction potential V(z) is added to the effective Hamiltonian (1). 
This models the presence of a second interface or surface interacting with the fluctuating one. 
The interface can now undergo a wetting or unbinding transition from a bound state, for which 
it is confined to small values of x ,  to an unbound state where it makes arbitrarily large excur- 
sions in x .  

The critical behaviour depends strongly on the behaviour of the binding potential V(x) for 
large x .  The inhibition of fluctuations over the boundary at  x = 0 induces an effective repulsion 
Vfl(x) of the surface which decays as x -'for large x with t = dll /C = l/[ [7-91. For the potentials 
that decay more slowly than Vfl the interface is expected to be found for arbitrarily small ampli- 
tude of the potential. Its mean position may be estimated from the minimum of the effective in- 
teraction V + Vfl . For power law potentials V(x) = - W(x -8  + l)/s for large x ,  with s c t, this 
yields 

(2) - W - w  with y = 1/(t - s). (8) 

Note that the expression is valid for all s < t, i.e. for s negative. This includes the cases s = - 1 
and s > 0, conventionally termed complete and critical wetting, respectively. 

The approximate RG confirms this result and gives a more detailed account of the unbinding 
transition. As the strength of the potential for large x will limit the spread of the probability 
distribution we expect it to be localized on the <<molecule>), say of order n, which is closest to the 
wall at x = 0. The contribution to the free energy from the quasi-periodic potential, Eo (n), is 
smaller for large n, while the contribution from the potential energy increases, because the 
mean distance Z(n) of the first molecule of n-th order from the wall grows with n. We estimate 
the potential energy by V(Z(n)) and observe that 3%) scales like the size of the molecule, name- 
ly Z(n) - a2". Minimization of the total free energy F(n) = Eo(n) + V(E(n)) with respect to n 
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Fig. 1. - Scheme of the renormalization group. Only the sites of lowest energy are retained. The double 
valleys of the Fibonacci potential couple over the intermediate sites, thus forming strongly coupled 
(<molecules>> (double lines) and weakly coupled <<atoms>> (single lines). They couple again to .molecules. 
of successively higher order. 

gives n = - In W/[2(t - s) In cr] for small W where (5) and (7) have been used. Insertion into 
x(n) - crZn yields eq. (8). In addition, tl1 - 1/G(n) leads to - 

511 - W-"" with = Z/(Z - 8). (9) 

The transition from n-th order molecule to the (n + 1)-st order molecule can i) be smooth, if the 
two molecules overlap, or ii) abrupt, if they do not, because the two molecules are then separ- 
ated by a region of higher average potential (see fig. 1). Thus, on a double logarithmic scale, tl1 
vs. W will exhibit rounded or sharp steps whose average height is In Z(n + 1) - In Z(n) = 2 In cr. 

The unbinding has been studied by numerical diagonalization of the Schrodinger equation 
(3) for a variety of algebraic potentials and several values oft .  The results for w are shown in 
fig. 2. The divergence of the exponents as s approaches t from below can be seen clearly. The 
agreement between measured and predicted exponents lies within five percent. An equally 
good agreement is observed for vll. 

Figure 3 shows the details of the unbinding process for s = - 1. The distribution depicted in 
fig. 3b) is indeed localized on the molecules of successively higher order, as is apparent from its 
self-similar structure in comparison with fig. 1. Figure 3a) shows clearly the predicted steps in 
( z )  and ti and cusps of tl at the transition points, thus resembling a layering transition. We 
emphasize again that the thickness of the added layers increases exponentially with diminish- 
ing W. This unusual behaviour is a direct consequence of the self-similarity of the potential V, 
and a similar effect should be observed in wetting transitions in other self-similar structures. 

If the direct interaction V(z) decays faster than Vfl for large x ,  the simple scaling picture 
breaks down. The Schrodinger equation has been diagonalized numerically for several values 
of z and a wide variety of short-range potentials V. The results are consistent with the expecta- 
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Fig. 2. - Critical exponent r/l for long-ranged potentials. The dashed lines indicate the limit s = 7. 

s = 2.28, 0 7 = 3.75, o 7 = 5.97. 
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Fig. 3. - Details of the wetting transition for long-ranged potential for the case V(z) = Wz, zo = 0. a) (2 )  

(0) and ll (0) grow in a stepwise manner as W diminishes. 6) Normalized probability distributions for 
the W-values indicated by arrows in a). They are localized on the sites of the <<molecules. of the Fi- 
bonacci potential and show their self-similar structure. 

tion that the critical exponents of the unbinding depend only on z but not on the detailed shape 
of the potential. Very accurate scaling (2) - (W - W,,)-y is observed, with W,, k i t e .  The re- 
sults for a square-well potential at the wall are shown in fig. 4. Both vII and ty decrease with in- 
creasing z. Apparently ty approaches 0 and vII approaches 1 for large z = l/[ or small T, see (7). 
This is plausible, as the interface is flat at T = 0 and the transition is therefore of fist order. 

The critical exponents can be reproduced quite accurately by a generalized necklace model: 
in ref. [lo] it was shown that vII = 1/(1 - 7) if the probability of return of the freely fluctuating 
interface to the wall scales as x -)'. Now, let P, (2) be the probability distribution for the position 
of the interface at  x. If ( z2  (x)) - x2c holds for large x and if the shape of the distribution does not 
change with increasing number of steps x, then one has P, (2) - x - c ~ ( z / x C )  with some normal- 
ized shape function x and the probability of return to the origin after x steps, P, (O), scales as 
x- l  [ll,S]. Hence 

t y = l / ( z - l ) ,  ~ i i = ~ / ( ~ - l ) ,  with ~ = l / ( .  (10) 

This gives the correct limit for large z. The values agree quite well with the numerical values as 
shown in fig. 4 although the deviations exceed the numerical error. The discrepancy might be 
due to the fact that the shape of P,  as observed numerically is only approximately independent 
of 2. 

It should be noticed that the standard effective Gaussian model for an interface with (contin- 
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Fig. 4. - Critical wetting exponents for short-ranged potential. The numerical results (0 vII, 0 w )  are 
compared with the predictions of the necklace model (NM) (-) and of the functional renormalization 
group treatment of an effective Gaussian model (FRG) (---I. 
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uous) Hamiltonian 191 

behaves rather differently. Since ( = (2 - d,, - q>/2, the free interface in this model shows for 
d,, = 1 and q = 1 - 2( exactly the same scaling as the free interface in the lattice model with a 
Fibonacci potential, namely the same c. However, when the effect of the potential Vis studied 
by functional renormalization (FRG), the critical exponent vII is found to increase with increas- 
ing and to diverge for large z [7,12,13]. The values obtained numerically from a FRG with in- 
finitesimal resealing factor are shown for comparison in fig. 4 [12]. However, the general fix- 
point structure of the FRG, with ty depending only on z, is 

The difference between the quasi-periodic lattice model and the effective Gaussian model 
can be understood if the kinetic term in (11) is written as an interaction term in real space. For 
dll = 1 and q 2 0, one then has X { z }  = Jdx dy z(x) W( I x - y I)  z(y>, where W(r) - r - (2  + '). For 
a > 1 the exponents q = 0 and ( = 1/2 are universal, while for 1 > D > 0 one has q = 1 - a and 
( = a/2. The borderline case = 1 separates short-ranged interactions from long-ranged 
ones [14]. For the values of ( which apply to the quasi-periodic system, 0 c 5 c 1/2, the Gaus- 
sian model is thus in the regime of long-ranged lateral interactions. This has to be confronted 
with the lattice model itself, which includes only nearest-neighbour interactions. The necklace 
model, on the other hand, is based on the concept of a random walk with x as the time and is 
hence a Markov process with no long-ranged interaction in x-direction. This explains why it is 
more appropriate for the model at hand than the effective Gaussian model. 

(2) In recent work on FRG additional fixpoints have been postulated for large values of t [12,13]. We 
have not found evidence for these fixpoints in simulations with appropriately shaped potentials. How- 
ever, an analytical solution in the periodic case indicates that strong crossover effects hide the postulated 
transitions for system sizes that are numerically manageable. 
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