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Abstract. - The unbinding and adhesion of bunches of fluid membranes, interacting via 
attractive intermolecular forces, are considered. On the basis of scaling arguments it is argued 
that the nature of the unbinding transition should depend on both the number of membranes 
involved and the ratios of their rigidities. The results of extensive Monte Carlo simulations of 
three fluid membranes are presented. The data show that the unbinding of three membranes 
proceeds differently from the previously studied case of two membranes. At the transition the 
various length scales are found to diverge as power laws with exponents depending on the ratio 
of rigidities of the membranes. The conclusions drawn from the simulations are in qualitative 
agreement with the scaling picture. 

Flexible membranes which interact via attractive intermolecular forces can undergo a 
transition between bound and unbound states as the temperature is increased. Such an 
unbinding (or adhesion) transition was first found from renormalization group (RG) 
calculations [I] and subsequently confirmed by Monte Carlo (MC) simulations [2]. I t  has also 
been observed experimentally for sugar-lipid membranes by optical microscopy [3,41. 

There is, however, one important difference between the theoretical and experimental 
results: all theoretical work done so far on the unbinding transition has been concerned with 
two membranes (or with a membrane attracted to another surface), while six to eight 
membranes were studied in the experiments. Therefore, before one can compare theory with 
experiment in a quantitative way, one has to address the question of whether the critical 
behaviour at the unbinding transition depends on the number of interacting 
membranes. 

In this letter, we study the unbinding of three fluid membranes. First, we use the analogy 
between fluid membranes in d = 2 + 1 dimensions and domain walls in d = 1 + 1 to argue that 
the critical behaviour of three membranes should indeed be different from that of two 
membranes. This analogy is based on scaling arguments and does not allow one to determine 
the critical exponents. We then present the results of extensive Monte Carlo simulations 
which confirm the scaling arguments and give an estimate for these exponents. 

It has been shown [5] that the renormalisation group flow equation for two fluid 
membranes in three dimensions is identical to that obtained for two domain walls interacting 
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via the same potential in two dimensions. Hence, one can infer the properties of the 
unbinding of two membranes by solving the simpler domain wall problem. It is not clear 
whether this analogy between p membranes in three dimensions and p domain walls or walks 
in two dimensions will be valid for arbitrary p. Already for p = 3, the domain wall problem 
itself becomes difficult and has not been solved exactly. 

However, one may study a simplified model, the so-called necklace model, for three walls 
interacting via a contact potential [6,7]. Recently, it has been found [S] that this necklace 
model for three walks leads to the same scenario for the unbinding transition as occurs if one 
considers two domain walls interacting via a short-range attractive potential plus an extra 
repulsion falling off as the inverse domain wall separation to the second power, i.e. - l/12. 
Thus, the thermal fluctuations of the central domain wall produce a repulsive force - 1/13 on 
the two outer domain walls, as expected from simple scaling arguments. As one decreases 
the ratio of the surface tensions of the inner and outer domain walls, the thermal fluctuations 
of the central domain wall increase, so leading to an increased repulsive force on the outer 
walls. 

In d = 1 + 1, the critical behaviour of two domain walls with stiffness K and repulsive 
interactions == w/12 has been determined exactly and is found to depend on the dimensionless 
parameter w = 2KW/T2 [9]. There is a whole line of unbinding transitions with w-dependent 
critical exponents. For w > 0, this line consists of two subregimes: i) in subregime (B) with 
0 < w < w** = 314, the unbinding transitions are continuous and the critical behaviour is 
governed by a single length scale; ii) in subregime (C) with w > w**, the transitions are 
discontinuous but exhibit unusual scaling properties since the probability distribution for the 
domain wall separation 1 develops a power law tail at  the transition [9,5]. Such a 
nonuniversal behaviour is also found for the necklace model of three domain walls leading to 
exponents which depend on the surface tensions of the walls [S]. 

Now consider a stack of three fluid membranes with bending rigidities K I , K ~ ,  and ~g = 
= KI (I). The analogy between membranes and domain walls now suggests that the central 
membrane leads to an effective repulsion V 1̂3) (1) = c(q) T /K^ 12, where q = K^/Q and c(q) is 
a dimensionless coefficient (2). The size of c(q), which cannot be obtained from the above 
scaling arguments, should depend on the nature of the attractive forces and is expected to 
determine the nature of the unbinding transition: there is a characteristic value, c = c**, such 
that the transition belongs to subregime (B) and (C) for 0 < c < c** and c > c**, respect- 
ively. In addition, the critical exponents are expected to depend on c and thus on q. 

Similarly, if one has p > 3 membranes, one also expects an effective repulsive potential 
- I l l 2  to be felt by the outermost membranes. The strength of this potential should increase 
with p, there being a characteristic value, p = p**, such that for p < p** one is in subregime 
(B) and for p > p** one is in subregime (C). In addition, the above scaling arguments can be 
directly extended to polymerized (or other types of)  membrane^(^). In all cases, these two 
different subregimes should be present depending on the elastic moduli and on the 
interaction parameters. 

Let us now define the problem more precisely. The Hamiltonian for three fluid 

(I) The 3-membrane bunch considered here is invariant under the exchange of the two outer mem- 
branes. This symmetry ensures that all three membranes unbind simultaneously. In the absence of this 
symmetry, a 3-membrane bunch could also undergo a sequence of two unbinding transitions. 

(2) A flexible membrane between two rigid walls a t  fixed separation 1 has been previously consid- 
ered by Helfrich [lo]. Starting from such a geometry, the general conclusion V(l3)(Z) - 1/12 can also be 
reached, see [Ill. 

(3) For a recent view, see [12]. For membranes with roughness exponent C, the effective interaction 
V(13)(l) - l/lr with T = 2/C. 
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membranes with coordinates la (x) and bending rigidities K~ (a = 1,2,3), interacting via a 
potential V can be written as 

where T is the temperature. A microscopic cut-off a, of the order of the membrane thickness, 
is implicitly assumed in this continuum model. To ensure that all three membranes unbind 
simultaneously, we shall only consider the case KI = q ~ ,  = K~ = K. We shall also limit 
ourselves to interactions of a square-well form: 

for l,,< I. 

The problem can be simplified by making an orthogonal transformation to extract a 
centre-of-mass coordinate, which diffuses freely, see [8]. One is then left with the effective 
Hamiltonian 

To be able to perform a MC simulation of this problem, the spatial coordinate x is discretised 
as a square lattice of size N  x N ,  with sites {xi} and lattice constant a, as was done in [2]. The 
configuration of the three membranes is then represented by the set {yli, yZi} and the 
Hamiltonian takes the form 

where we have used the dimensionless variables zai = ym /a and (7(21i, 22i) = a2 e(azli, 
so that 

for z < 0 

- u  for O < z < z o  (6)  
for z0 < z . 

V$ is the discrete Laplacian and z0 = lo /a. (Apart from q and K, this problem depends only on 
the dimensionless parameter ( K / T ) ~ / ~  z,,.) 

We have carried out MC simulations of the effective Hamiltonian (5) with the Metropolis 
algorithm using a Cray X-MP 416. Square lattices of size N  = 20, 41 and 80 were used and 
the runs were typically of the order of lo6 MC steps per site. The mean membrane 
separations, (l), were measured by calculating (hi) = f i ( z l )  a and (h2) = (m. 
(z2)  - q(zi)) a/=, where (...) represents an ensemble average. The behaviour of the 
perpendicular correlation length <, was determined by evaluating 
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Fig. 1. - a) Log-log plot of the parallel and perpendicular correlation lengths, tll (0) and & (0) against 
the mean membrane separation, (L), for q 1 and K/T = 1.367-lo3. The solid lines have unit slope. 
b) Log-log plot of the three lengths (o), Â£, (0) and (1) ( A )  against the deviation of the potential well 
depth from its transition value, u * = 2.48, for q = 1 and K/T = 1.367 - l o 3 .  The solid lines show the fits 
obtained and are log (ell /a) = 0.13 - 0.65 log (u - 2.48), log (<  ̂/a) = 0.74 - 0.69 log (u - 2.46), and 
log (@)/a) = 0.63 - 0.80 log (u - 2.48). 

Assuming one is in a regime in which the fluctuations may be regarded as Gaussian, one can 
show that the parallel correlation length & - & = aexp [2z~( (Vl~)~) /T] ,  see [2]. So, we also 
determined ((VZ&)2) and ((V&)2) to examine the behaviour of &. Notice that if one happens to 
be in subregime (C), in which scaling is not governed by a single length scale, this method of 
assessing Â£, may fail. To observe the unbinding transition, we fixed the values of K, q and the 
potential well width, zO = 1, and varied the depth of the potential well u, decreasing it 
towards the critical value u * . 

In subregime (B) our scaling arguments imply that all the lengths scale in the same way, 
diverging as 

with 112 sS I,V = vl  = vll < 1. In subregime (C) these quantities should no longer scale in the 
same way. and (1) may have discontinuities at the transition, and if not, one finds that 
i / /  < vl  < 112. The parallel correlation length always diverges as a power law at  the transition 
with an exponent vn = 112 in this regime. 

The first set of MC simulations were carried out taking all three membranes to have equal 
rigidities, i.e. q = 1. The data for rigidity modulus KIT 7 1.367;103 are shown in fig. 1. 
Figure la) shows the behaviour of the correlation lengths ^\\ and f,̂  us. the mean membrane 
separation (1). One observes that on the log-log plot the data tend towards a line with slope 1 
as one approaches the transition, indicating that the three lengths scale in the same way as 
appropriate to subregime (B) (4). To attempt to determine the exponents vn and v,. , the data 

(4) We have also studied higher moments, (I"} and found that (I?") - (I)" as appropriate for sub- 
regime (B). This is not to be expected from the analogy with the necklace model for three identical do- 
main walls. Indeed, the latter model corresponds to w = - 3514, see [13], which belongs to subregime 
(C) and leads to discontinuous behaviour of (1) and and to moments (1") which do not scale with a sin- 
gle length scale. 
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were fitted to the forms 

with A, B, u*,  vll and vl  as fit parameters, using the Levenberg-Marquardt method for a 
three-parameter fit [14]. To examine the effects of the finite size of the system, many data 
points were checked using different system sizes. Also, to try to determine the onset of 
sealing we used consecutive slope methods to test for curvature in the data. Fits thus 
obtained are shown together with the data in fig. lb).  We estimate that vll = 0.65 Â 0.03 and 
vl  = 0.69 Â 0.12. Assuming the transition to occur at the value u *  obtained from fitting the 
two correlation lengths we then fitted our data for (1) to the form (I}/a = C(u - u * ) ' " .  In 
this way we find that y = 0.8 Â 0.1. The data and a fit for the mean membrane separation are 
also shown in fig. lb). The fact that the mean membrane separation appears to scale with a 
larger exponent than the two correlation lengths may be due to the presence of crossover 
effects in our data for (1). One would need to approach the transition much more closely to be 
sure of eliminating this problem. Even though our estimate for the critical exponents has 
relatively large errors, we can definitely conclude that these exponents are smaller than 
the values vn = V, = y = 1 which apply to the unbinding transition of two mem- 
branes [I, 2,5]. 

Simulations carried out at a different value of K/T (to be presented elsewhere) give results 
in complete agreement with those above, within our error bars. For K/T = 3.4175-lo3 we 
find vil = 0.67 Â 0.03, v, = 0.66 Â 0.08 and y = 0.8 Â 0.1. This is consistent with there being 
no dependence of the exponents on KIT for a given q. 

If the rigidity of the central membranes is decreased relative to one of the outer 
membranes, i.e. q > 1, one expects that the fluctuation-induced repulsion between the inner 
and outer membranes will be increased in magnitude. Any deviations from the 
two-membrane case should then be amplified. (Notice that q = 0 corresponds to the case of 
two membranes, as then the central membrane acts as a solid wall.) We therefore also 
studied the case q = 4. The data for KIT = 5.468- l o 3  are shown in fig. 2. A log-log plot of Â£,\ 
and tJ. against (1) is given in fig. 2a). The data were fitted as described above to give us the 
estimates that vll = 0.61 Â 0.04, v l  = 0.58 Â 0.07 and y = 0.73 Â 0.10. We repeated the 

Fig. 2. - a) Log-log plot of the parallel and perpendicular correlation lengths, (0) and ti (a) against 
the mean membrane separation, ( l ) ,  for q = 4 and KIT = 5.468-lo3. The solid lines have unit slope. 
b) Log-log plot of the three lengths (f,, (o), j, (e) and (I) ( A )  against the deviation of the potential well 
depth from its transition value, u* = 2.25, for q = 4 and KIT = 5.468 - l o 3 .  The solid lines show the fits 
obtained and are log (& /a) = - 0.04 - 0.61 log (u - 2.25), log (c, /a)  = 0.52 - 0.58 log (u - 2.26), and 
log ((l)/a) = 0.40 - 0.73 log (u - 2.25). 
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simulations at a smaller value of K/T = 1.367- lo3.  For these data it was not clear, from 
plotting the correlation lengths against the mean membrane separation, whether all lengths 
scaled in the same way and we obtained lower estimates for the exponents: vl, = 0.4 Â 0.1 and 
v, = 0.4 2 0.1. 

From our data it is difficult to determine whether the case q = 4 is consistent with still 
being in subregime (B), with vl, = v, = ty less than their q = 1 value, or is consistent with 
having moved into subregime (C), where the various lengths scale in different ways, or does 
not agree at all with the scenario derived from scaling. An accurate determination of the 
exponents in subregime (C) may prove to be a hard task, due to the presence of many critical 
points (at which, in turn, higher cumulants of the membrane separation become 
discontinuous at  the transition) and associated crossover behaviour. Although the quality of 
our data does not allow us to draw quantitative conclusions, the qualitative picture is clear: 
when the ratio of outer to inner membrane rigidities, q, is increased the exponents at  the 
unbinding transition decrease. 

To summarize, one can conclude from our simulations that the unbinding of three fluid 
membranes does proceed in a different manner from that of two membranes. Our results are 
qualitatively in agreement with the scenario obtained from using scaling ideas and the 
analogy between membranes and domain walls, in that: i) the exponents for all cases 
investigated do not coincide with the values vll = v, = y = 1 as appropriate for the unbinding 
of two membranes; ii) for three membranes of equal rigidities (q = I), all lengths appear to 
scale in the same way, with an exponent between 1/2 and 1, consistent with subregime (B) 
and the exponents obtained are independent of the rigidity KIT; iii) for q = 4, the exponents 
are further reduced from their values for the q = 1 case, consistent with nonuniversal 
exponents, decreasing as the ratio q increases. 

* * *  
JC  thanks the Royal Society, London for financial support. 
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