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ABSTRACT. 
The critical behavior of interfaces is discussed from a theoretical point of view. Two classes 
of critical phenomena will be considered: (i) Roughening phenomena related to changes in 
the interfacial morphology; and (ii) Wetting phenomena related to changes in the interfacial 
structure. In two dimensions, the critical behavior can be determined exactly for a variety 
of models. As a result, one obtains different universality classes depending on the nature of 
the intermolecular forces. 

1. Introduction 

Critical phenomena at interfaces have been studied, both theoretically and experimentally, 
for many years. Here, we will discuss two classes of critical phenomena related to the reduced 
z m e n s z o n a l ~ ~ y  of the interface.' 

In some cases, the interface can simply be viewed as a planar 2-dimensional system. 
However, it can also 'bulge' into the third dimension and then attain nonplanar morphologies. 
This roughening of the interface can be thermally excited or induced by frozen randomness. 
In addition, the interface has a certain depth profile and thus has itself a third dimension. 
This intrinsic thickness of the interface can become mesoscopic as in wetting phenomena; 
one then has a system which interpolates between two and three dimensions. 

This paper is organized as follows. First, the physics of roughening and wetting is briefly 
reviewed (Sect. 2).  The corresponding critical behavior at roughening and wetting can be 
studied in the framework of effective interface models (Sect. 3). The last section focusses 
on the behavior in two dimensions: a variety of critical effects will be discussed arising from 
the behavior of 1-dimensional interfaces or domain boundaries. These effects should be 
accessible to experiments, for example in the context of Langmuir-Blogdett films. 

2. Roughening and Wetting Phenomena 

2.1 Interfacial morphology and roughening 

An interface or domain wall represents the contact region between two bulk phases of 
matter. Its macroscopic shape is governed by the interfacial free energy or tension, S,  which 
is the work (per unit area) required to create new interfacial area. If the two bulk phases, 
say a and 0, are both isotropic fluids, S is also isotropic, and a macroscopic chunk of 8 
phase surrounded by a phase has a spherical shape (if one can ignore the effects of gravity). 
If one of the two phases is anisotropic, the tension 2 is anisotropic as well and depends on 
the interfacial orientation. For crystalline phases, this anisotropy leads to the possibility of 
flat interfaces or facets. 

From the theoretical point of view, the equilibrium shape of crystals is completely deter- 
mined, up to a scale factor, by the functional dependence of the interfacial (or surface) free 
energy, S,  on the interfacial orientation or normal vector, ft. Now, assume that S = ^(n) 
has a local minimum for a certain symmetry direction, f i  = fto, and consider interfaces with 
a small tilt angle, 0 = cos1 (6  . fi,,). If the orientation with 0 = 0 corresponds to a smooth 
interface or facet, one has 

S(0) ;a So + Ss \0\ for small 9 (2.1) 
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where S g  represents the step free energy (per unit length and unit height). 
As the temperature T is increased, Ss may vanish at a characteristic roughening tem- 

perature, T = T.. On a macroscopic scale, this implies that the facet shrinks and finally 
disappears from the equilibrium crystal shape at T = T,. On a microscopic scale, the rough- 
ening of a facet implies a proliferation of more and more steps or ledges on the facet.3 In 
general, facets corresponding to different symmetry directions have different step free ener- 
gies and, thus, different roughening temperatures. For example, three distinct roughening 
temperatures corresponding to three different facets have been experimentally observed for 
He4 crystals. 

Above the roughening temperature, i.e., for T > T,, the step free energy vanishes, and 
the interface is rough. For a periodic crystal, the interfacial free energy then behaves as 

Somewhat surprisingly, this behavior applies to periodic crystals even in the presence of 
quenched impurities (or frozen randomness). These systems are charcterized by a finite 
interfacial stiffness, 2, which is defined by S z So + E2. On the other hand, for a quasiperi- 
odic crystal, the interfacial free energy can exhibit a more complicated behavior given by 

( 6  So  + i S k  1 6 I k  for small 6 with 1 < k 5 Z , 4  

2.2 Interfacial structure and wetting 

So far, we have tacitly assumed that the interface between the two bulk phases, say a 
and 7, has a microscopic width. Thus, the densities of the system when viewed with a local 
probe vary on a microscopic scale which is set by the size of the molecules. 

Now, let us change a thermodynamic field, e.g. temperature or pressure, in such a way 
that the system approaches a triple point where a third phase, Q can coexist with the 
two phases a and 7. Then, in thermal equilibrium, a layer of the Q phase may appear in 
the @ interface. As one comes closer and closer to the triple point, the thickness of this 
intermediate layer may continuously grow: this is the case of complete wetting. On the other 
hand, no layer may appear in the c@ interface or the thickness of this layer may saturate 
and remain finite as the triple point is attained: this is the case of incomplete wetting. 

The presence of a wetting layer leads to a new length scale, i, which is given by the wetting 
layer thickness, i.e., by the separation of the two interfaces bounding this layer. This scale 
has been measured in many experiments. In the case of complete wetting, it typically varies 
from the molecular scale far from the triple point up to hundreds of nm's sufficiently close 
to the triple point. In principle, the thickness i diverges as the triple point is attained. 

The situation just described corresponds to the case of full chemical equilibrium between 
the Q layer and the two bulk phases: all three phases exchange their molecules and are 
thus characterized by the same values of the chemical potentials. This type of chemical 
equilibrium usually applies to wetting in fluid m i x t ~ r e s . ~  Some wetting systems exhibit only 
partial chemical equilibrium in which the 0 layer chemically equilibrates only with one of 
the two bulk phases on experimentally relevant time scales. The other bulk phase, say 7 ,  
then plays the role of an inert 'spectator' phase. One example is multilayer adsorption of 
small molecules onto a solid.' In the latter case, the solid substrate does not evaporate on 
the time scales of typical experiments. Finally, one may also study the situation where the 
Q layer does not exchange particles with any of the two bulk phases. This case of hindered 
or blocked chemical equilibrium applies to sufficiently fast dynamic processes such as, e.g., 
dry spreading7 

Wetting has to be distinguished from heterogeneous nucleation even though the nucle- 
ation barrier is intimately related to the wetting properties. Indeed, heterogeneous nucleation 



at the interface occurs when the system has passed the triple point and the bulk phases, 
a and 7 ,  (or at least one of them) have become thermodynamically unstable. The energy 
barrier for nucleation of /? droplets is reduced at the interface. For complete wetting, this 
barrier is, in fact, reduced to zero, and the transformation into the stable 8 phase will start 
at the interface or surface. 

3. Theoretical  description 

3.1 Critical  behavior 

3.1.1 Roughness  exponent  ( 

In many cases, interfaces are rough, i.e., they make large transverse excursions from their 
mean or average position. More precisely, an interface is rough if the typical size, L, of its 
transverse excursions grows with its size, tH. This behavior can usually be described by the 
scahng law 

^ - t i  (3.1) 

which defines the roughness exponent (". The universality classes for this exponent are 
primarily determined by the symmetry of the two bulk phases adjacent to the interface. 
This will be explicitly discussed below for the case of periodic and quasi-periodic systems. 

3.1.2 Roughening exponent  v, 

The roughness of the interface can change as a function of temperature or any other 
control parameter. For example, the 2-dimensional interface between a periodic crystal and 
its vapor is smooth at low temperatures, T ,  with & of the order of the lattice parameter, 
a ,  and thus ( = 0, but may become rough at sufficiently large T .  This roughening can be 
understood in terms of the effective potential for the interface arising from the crystal lattice. 

At low temperatures, a sufficiently strong potential will be able to localize the interface 
and thus to suppress its excursions on large scales. As the temperature is increased, the 
interfacial fluctuations become more pronounced and may eventually overcome the confining 
potential. At this point, the interface undergoes a roughening transition. 

As the roughening temperature, T*, is approached from below, the interfacial roughness, 

which defines the roughening exponent v ~ .  
In general, the roughening exponent ul depends on the nature of the effective potential 

confining the interface. This will be shown below for the roughening (or delocalization) 
transitions in the presence of a linear defect (such as a grain boundary). 

3.1.3 Wet t ing  exponent  if) 

Now consider a thin wetting layer bounded by two interfaces. In this case, the interfaces 
experience a mutual interaction potential. Two different cases must be distinguished: (i) At 
(a/?')')-coexistence (compare Sect. 2.2), the bulk free energies of all three phases a, 0, and 
7 are equal and the interaction potential decays to zero for large separations, i, of the two 
interfaces; and (ii) As the triple point is approached along (cry-coexistence, the /? phase 
represents a metastable thermodynamic phase which has a bulk free energy fg  which is 
larger than the bulk free energy fa., of the two other phases. Thus, the excess free energy 
per unit area of the layer contains a term ( fg  - fa$ and the effective interaction between 
the interfaces grows linearly - i for large i. 

In case (i), i.e., along a line triple points, the system can undergo a wetting transition at a 
characteristic wetting temperature, T.. If this transition is continuous, the mean separation 



(I} which gives the layer thickness usually diverges as 

which defines the wetting exponent ip .  In general, this exponent depends on the nature of 
the interaction potential experienced by the two interfaces, see below. 

3.2 Effective interface models 

The simplest 
nearest-neighbor 
nomena, one can 

model with two coexisting phases is the lattice gas or Ising model with 
interactions and appropriate boundary conditions. For roughening phe- 
consider an Ising model where half of the boundary spins points up and 

the other half points down. In this way, an interface is enforced running across the system. 
For wetting phenomena, one would like to consider the coexistence of three phases. This 

can be done in the context of semi-infinite Ising models in which the 'empty space' adjacent 
to the surface plays the role of the third phase. Physically, this corresponds to the case of 
partial chemical equilibrium in which the wetting layer exchanges molecules only with one 
of the two adjacent bulk phases. 

In the continuum limit, the interfacial position can be described by a displacement field 
I = l ( x )  where x is a (d-1)-dimensional coordinate parallel to a reference plane. For rough- 
ening, the field I gives the distance of the interface from this reference plane; for wetting, it 
measures the separation of the two interfaces bounding the wetting layer. 

The effective Hamiltonian for the interfacial displacement field I has the generic form8z9 

where 2 is an appropriate interfacial stiffness and V(I) is an external or interaction potential 
for the interface. In the following, we will focus on the case d = 2. 

For roughening phenomena, the potential V(I) describes the effect of the underlying 
lattice. For a periodic and for a quasi-periodic lattice, this potential will be periodic and 
quasi-periodic, respectively. We will also discuss the influence of a line (or plane) of defects 
which acts to localize the interface. In this latter case, the potential V(I) has local minima 
at the position of the defect and for I = oo. In most cases, the potential for roughening is 
taken to be symmetric, i.e., V(I) = V(-t); one exception is provided by the quasi- periodic 
Fibonacci-potential. 

For wetting phenomena, the potential V(I) describes the interaction of the two interfaces 
at separation I .  It then contains a hard wall I = 0 which ensures that I > 0 since the two 
interfaces cannot interpenetrate one another. As mentioned above, the potential V(I) has 
the generic form 

V(t)  = H I  + Vui(l) for I > 0 (3 .5)  

where H = fg - fq measures the distance from (&) coexistence and Voi(I) describes the 
direct interaction arising from molecular interactions. This direct interaction decays to zero 
for large I. 

4. Critical  Behavior in Two  Dimensions 

Now, consider a 2-dimensional system in which two thermodynamic phases coexist. One 
simple example is the 2-dimensional Ising model in which domains of up-spins can coexist 
with domains of down-spins. As mentioned, the morphology of an interface separating two 
such domains depends on the underlying symmetry of the system. Two cases will be briefly 
discussed: (i) Periodic systems; and (ii) Quasi-periodic systems. 



The motivation for the discussion of these 2-dimensional systems is three-fold: (i) For 
many theoretical models, the critical behavior in two dimensions can be determined exactly. 
In this way, one can check theoretical ideas and concepts which should be valid in general; 
(ii) 2-dimensional systems are easily accessible to computer simulations which provides an 
additional theoretical check; and (iii) These effects can be observed in careful experiments 
which probe the lateral structure within a 2-dimensional interface or surface.1Â 

4.1 Periodic sys tems 

4.1.1 Roughening transit ion f rom a line of defects 

First, consider a periodic lattice in two dimensions. It is well-known that the interface 
running through such a system is rough at any finite temperatures, T > 0. In fact, the 
roughness exponent has the universal value ( = 112. 

Now consider a periodic system which contains a line of defects. In general, this line will 
lead to an effective interface potential which is localized around the defect. We will consider 
the case where this potential has a short-ranged and a long-ranged part. More precisely, the 
short-ranged part is taken to be a simple square well as given by1' 

while the long-ranged part behaves as 

V(t) = - W p  for t > to (4.2) 

Such a model can be studied by transfer matrix methods. This leads to a 1-dimensional 
Schrodinger-type equation for which the interaction V(i) plays the role of a quantum- 
mechanical potential. It is convenient to consider the dimensionless interaction v ( z )  = 22i: 
V(ioz)/T2 where 2 is the stiffness of the interface. This rescaled potential then depends on 
the two dimensionless parameters 

u = ~%!:u/T' and w = ~W/T'  (4.3) 

In terms of these variables, one finds a whole line of roughening transitions as displayed in 
Fig. I." The locus of transitions consists of three different subregimes (A), (B), and (C), 
see Fig. 1. 

It is important to note that a change in temperature T corresponds to a straight line in 
Fig. 1 which approaches the origin with (u, w) = (0,O) for large T.  Thus, for U < 0 and/or 
W <_ 0, i.e., if both parts of the defect potential are attractive, the interface is smooth and 
localized for any finite T and the roughening transition occurs at T, = oo corresponding to 
(u, w) = (0,O). In contrast, if the two amplitudes U and W of the short-ranged and long- 
ranged potential parts have different sign, the T-trajectory intersects the locus of transitions 
at a finite transition temperature, T = T. < oo. 

Subregime (A) is located at negative values of w. For w < -114, there is no roughening 
transition and the interface is always localized by the long-ranged attractive part of the 
potential. As w = -114 is approached from below, the interface undergoes a roughening 
transition of infinite order provided the amplitude u, of the short-ranged potential is larger 



smooth 

Figure 1: Line of roughening transitions which consists of three regimes (A) ,  ( B ) ,  and (C).  
The parameters w and u are defined in (4.3). 

than a critical value, urn= = 0.595 . At this transition, the interfacial roughness /J, behaves 
as 

(4.4) 

The roughening transitions in subregime (B) are located at -114 < w < 314. At these 
transitions, the interfacial roughness diverges as 

with the w-dependent roughening exponent 

The case w = 0 belongs to subregime (B) and corresponds to all potentials which decay 
faster than l/t2 for large 1. This is a rather large class of defect potentials. For such 
potentials, the roughening transition occurs at TÃ = oo or u. = 0. The corresponding 
critical behavior is given by 

- 1/uvÂ - T2^ with v,= 1 (4.7) 

where the universal value of u~ is obtained from (4.6) for w = 0. 
The roughening transitions within subregime (C) are located at w > 314. In this case, 

one finds that the interfacial roughness still diverges as in (4.5), i.e., as a power law but with 

VL = 1 - (114)- for 314 < w < 1514 
= 0 for 1514 < w . (4.8)  



Thus, subregime (C) consists itself of several regimes. The value v^_ = 0 for w > 1514 
corresponds to a discontinuous behavior of $_i_ which jumps at T. from a finite value to 
infinity. However, higher moments of I still diverge in a continuous fashion as explained in 
the next paragraph. 

Indeed, the different character of the roughening transition for w < 314 and w > 314 
can be seen more clearly if one considers the moments, (In), of arbitrarily high order n. In 
subregime (B), one has 

P'") - (Y - qi2 
with 

tIl - l/(T. - T)-11 and i.11 = 2/v/l- (4.10) 

as follows from (4.5) and (4.6) and the scaling relation & - .$ with ( = 112. In subregime 
(C), on the other hand, the moments behave as 

with 
tIl - l/(T. - Tyii and M I  = I 

where q) is the probability that the interfacial separation I is of the order of ((. In the 
limit of large this probability scales as l2 

This behavior has a rather simple interpretation in terms of interfacial humps. As in (3.1), 
interfacial humps with wavelength ( 1 ,  have a transverse extension - (( with ( = 112 for 
all values of w. However, these humps represent typical fluctuations in subregime (B) but 
exceptional fluctuations in subregime (C).12 In the latter case, two (ll-humps are separated 
by a weakly fluctuating segment of linear size - (1. Then the interfacial free energy per unit 
length has a singular contribution fi - TI$. 

4.1.2 Wet t ing  

Wetting in two dimensions can be studied in the framework of a semi-infinite Ising model 
with nearest-neighbor couplings. A wetting transition is obtained if the coupling constants 
between the first two rows of spins are weaker than the coupling constants in the bulk.'' 

For such a system, the effective interaction V(I) between the interface and the boundary 
(or surface) is given by a square-well potential with a hard-wall condition, V(I) = co for 
I < 0. In general, long-ranged couplings between the spins or long-ranged surface fields will 
lead to a long-ranged part of V(I). 

In semi-infinite Ising models, one has only two coexisting phases and the third phase 
is represented by the 'empty' half-space. In addition, one of the two interfaces bounding 
the wetting layer is given by the boundary of the lattice which does not fluctuate and thus 
corresponds to an interface with infinite stiffness. In general, the layer is bounded by two 
interfaces which both have a finite stiffness, and 2;. Then, the interfacial stiffness, Seff,  
which enters in the effective Hamiltonian (3.4) for the interfacial separation, I, is given by ' 

Now, consider interaction potentials V(I) for the two interfaces which have the form 

V(I) = 00 for I < 0 

= U for 0 < I < I. 
= W/12 for I. < I . 



It is again convenient to consider rescaled variables 

u = 2 S e f f e ;  U / T 2  and w = 2 S e f f  WIT' (4.16) 

with S e f f  as in (4.14). In the ( u , w )  plane, one now finds a line of nontrivial wetting 
 transition^.'^ 

This line of transitions consists again of three different subregimes (A),  (B),  and (C) ,  
see Fig. 2. As before, a change in temperature T corresponds to a straight T-trajectory 
which approaches the origin (u, w) = (0,O) for large T.  Inspection of Fig. 2  shows that all 
T-trajectories intersect the transition line at a finite transition temperature, T = TÃ < co. 
This feature is a direct consequence of the fact that the line of wetting transitions does not 
go through the origin (u,  w)  = (0,O). This should be compared with the line of roughening 
transitions in Fig. 1 which contains the origin (u, w) = (0,O). 

bound 

Figure 2: Line of wetting transitions which consists of three regimes (A), (B),  and (C). The 
parameters w and u are defined in (4.16). 

The critical behavior in the three subregimes is very similar to the one described in the 
previous section for roughening. In subregime (A) with w = -114, the mean separation of 
the two interfaces diverges as 

(el - exp [*/l/-i.i-l/4] 
In subregime (B) with -114 < w < 314, one has 

with l4 



Subregime (B) contains the case w = 0 which corresponds to a simple square-well poten- 
tial as in (4 .15)  with W = 0. In this case, one has #J = 1 from (4.19) as was first found for 
the semi-infinite Ising model with a row of weakened surface couplings. In fact, the same 
critical behavior applies to all attractive ~otentials which decay faster than - 1 / t 2  for large 
1. 

Finally, in subregime (C) with w > 314, (t) also diverges as a power law but with the 
wetting exponent - - 

\ 3 -  1 + 4 w ]  for 3 / 4 < w < 2  ^ = - [  V' 
= 0 for 2 < w . 

As in the case of roughening transitions, this latter subregime is characterized by exceptional 
fluctuations and a probability distribution P(w - 4'' as in (4 .13)  

4.1.3 Universal Non-Universality 

Both systems considered in the two preceding sections lead to nonuniversal critical behav- 
ior. In both cases, the line of transitions can be parametrized by a dimensionless parameter, 
w .  

For roughening from a defect line, this parameter is given by w = 2 W 5 / T 2  as in (4 .3);  
for wetting, it is defined by w = 2 ~ 5 , ^ / ( S 1  + & ) T 2  as in (4.16). The critical behavior 
depends continuously on w .  In fact, for the above choices of w ,  the critical singularities are 
identical in both cases even though the transition line differs by a shift parallel to the u-axis, 
as follows by inspection from Fig. 1 and Fig. 2. 

For wetting, an exact functional renormalization group (RG) has been applied which 
reveals a line of RG fixed points corresponding to the line of wetting transitions. 15116  This 
implies that allpotentials which decay as W/e2 for large t exhibit critical singularities which 
are uniquely determined by w irrespective of the detailed form of the short-ranged pdrt of 
the potential. 

It turns out that this 'universal non-universality' also applies to other systems such as the 
so-called necklace model. In the latter model, one considers all configuration of p domain 
boundaries which consist of a 'necklace' of alternating segments, say A and B: In the A 
segments, all p domain boundaries experience a contact potential and, thus, form a bound 
state; in the B segments, on the other hand, they experience only a hard wall repulsion and, 
thus, are essentially free.17J8 

For p = 3 ,  the necklace model can be solved for arbitrary stiffness parameters, S 1 ,  
g 2 ,  and g3  of the three domain boundaries.'' The critical singularities found within this 
model become identical to the singular behavior in the preceding subsection if one makes 
the identification 

= ( ~ T / O ) ~  - 1.14 (4 .21)  

where the angle 6 follows from 

with 0 <: 0 < 7 1 2 .  
The necklace model can also be solved for general p and identical stiffness parameters, - - - - 

El = S 2  = . . . = Sp = S .  In this case, the dimensionless parameter w is given by 'O 

Finally, the same critical behavior is also found for two interacting strings in d = 1 + dl 
dimensions. If these strings experience short-ranged attractive interactions, one has 



4.2 Quasi-periodic sys tems 
4.2.1 Roughness  a n d  Roughening 

Consider the ideal Penrose tiling which consists of thick and thin rhombi. The edges 
of these tiles can assume five different directions. For each direction, the tiling can be 
decomposed into a stack of lanes and rows. The rows consist of all tiles which have two 
edges parallel to the chosen direction; these rows run, on average, parallel to each other. 
Two nearest-neighbor rows are separated by one lane. There are two different types of lanes 
which have a narrow (N) and a wide (W) width, respectively. 

It has been realized some time ago that an interface within such a tiling runs, on average, 
parallel to such a stack of lanes and r o ~ s . ' ~ J ~  At zero temperature, it is confined to one of the 
lanes in which it can assume, however, many degenerate states. This degeneracy is different 
in the (N) and in the (W) lanes. At finite temperatures, this difference leads to an effective 
quasi-periodic potential which is approximately given by a Fibonacci potential of the form 

vQp(t)  = kBT(Sw - SN) for (N) lane 
= 0 for (W) lane 

where SN ĉ  0.45 and Sw cz 0.54 denote the interfacial ground state entropy per step within 
a (N) and (W) lane of the Penrose tiling, respectively.21 If the interface hops across a row, 
it has to increase its length by one edge and, thus, its energy by twice the nearest-neighbor 
coupling of the Ising model. 

The roughness exponent for this problem has been determined by scaling arguments, 
real-space renormalization. and numerical studies of the transfer matrix. As a result, one 
finds that the interface is always rough but that the roughness exponent { is non-universal 
and depends on the parameters of the model. 

The dependence of ( on T / J  is displayed in Fig. 3 where J / 2  > 0 is the nearest-neighbor 
coupling in the underlying Ising model.23 As shown in Fig. 3, one has { < 112 which implies 
that the quasi-periodic potential leads to a reduction of the roughness. For small T ,  one 
finds 

( m 2 ln (u )T / J  with u = (1 + & ) / 2  (4.26) 

The Fibonacci-potential is piece-wise constant. Now, consider another type of quasi- 
periodic potential given by 

vQp(e) = -V C O S ( ~ X ~ / U )  (4.27) 

which defines the almost-Mathieu or Harper's potential. In this case, the interface undergoes 
a roughening transition from a smooth state at low T to a rough state at large T.'l The 
latter state is characterized by a free interface with ( = 112. At the roughening transition, 
on the other hand, the roughness exponent is { = 0.42 and thus smaller than 112. As the 
roughening temperature, T = T,, is approached from below, one has 

- I/ I T. - T with VJ. = 1 , (4.28) 

In the framework of the renormalization group (RG), the non-universal values for the 
roughness exponent ( should correspond to a line of RG fixed points. Then, the roughening 
transition within the Harper's potential is governed by one of these fixed points corresponding 
to ( = 0.42. At this roughening transition, there is a relevant perturbation, the flow of which 
determines the roughening exponent i / ~  = 1. In general, one expects that other quasi- 
periodic potentials will also lead to roughening transitions governed by different fixed points 
of the Fibonacci-type. 
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Figure 3: Roughness exponent ( for the Fibonacci-potential (4.25) as a function of T / J .  

4.2.2 Wetting 

Finally, let us briefly discuss the wetting behavior in a quasi-periodic system.23 In this 
case, the interfacial displacement field I  experiences (i) a quasi-periodic potential, and (ii) 
an interaction potential as in (4.15). If all forces are short-ranged, this potential has the 
form 

for i < 0 

with U < 0. 
In the case where VQp(t) represents a Fibonacci-potential, the critical behavior has been 

studied by numerical transfer-matrix methods. It is most convenient to probe the wetting 
transition by changing the depth U of the square-well for fixed Fibonacci-potential. In 
this case, the system undergoes a wetting transition at a critical depth, U = U, < 0. The 
corresponding critical behavior for the parallel correlation length, ^\\ - ( I ) ' / (  - &I(, is 
shown in Fig. 4. The straight lines represent the result of a three-parameter rms fitting 
procedure. In this way, one obtains vll 1.64, 1.25, and 1.14 for (" = 0.439, 0.266, and 0.167, 
respectively.23 The scaling relation if /  = (vIl then implies that if /  0.72, 0.33, and 0.19 for 
these three values of (". 

For the range of (" values which is accessible to the transfer matrix calculations, the critical 
exponents q and ifi decrease monotonicaJly with decreasing (. In fact, these exponents 
approach the asymptotic values vll = 1 and ifi = 0 in the limit of small (. This can be 
understood as follows. 

Small ( corresponds to low temperatures for which the interface is smooth (or flat). At 
T = 0, the wetting behavior follows directly from the potential energy (4.29): for U < 0, 



Figure 4: Wetting transitions for the Fibonacci-potential; critical behavior of the parallel 
correlation length as a function of 1 U - U, 1 for three different values of ( corresponding 
to three different T/J. 

the interface sits inside the square-well potential; for U > 0 it sits in one of the minima of 
the Fibonacci-potential (which are all degenerate). Thus, the interface undergoes a discon- 
tinuous transition at U = 0, and the interfacial (free) energy f, per unit length behaves as 
f, - 1  U I for small U. In general, one has a singular contribution f, - 1  U - U, IT* and a 
regular contribution - 1  U - U, 1 .  Therefore, the transition becomes first-order or discontin- 
uous for rifi = I.24 In the present case, one has r = I / (  which implies $14 ss 1 or ifi ss ( in 
the limit of low T or small (,. In addition, the scaling relation ifi = C,vu implies 1/11 ss 1 in the 
same limit. 

The critical exponents obtained from the transfer matrix calculation can be reproduced, 
to within a few percent, by a ,generalized necklace model. In this model, one obtains the 
values 

ifi = ( / ( I  - 0 and 1/11 = l/(l - <) (4.30) 

which behave as qb Ã ( + (' and 1/11 ss 1 + ( for small (. These expressions agree quite 
well with the numerically obtained values even though the deviations seem to extend the 
numerical errors.23 

Finally, it is interesting to point out that the critical behavior of interfaces in Penrose 
tilings could be studied experimentally in monolayers adsorbed on the facets of decagonal 
quasi-crystals. For example, one could investigate the behavior of a monolayer of small 
adatoms. These layers should exhibit 2-dimensional solid, liquid, and vapor phases. As one 



approaches the triple point along the coexistence curve of the  solid and the  vapor phase, one 
may observe edge melting, i.e., wetting of the domain boundaries between solid and vapor 
domains by the liquid phase. If the monolayer sits on top of a decagonal quasi-crystal, the 
thickening of the wetting layers will reflect the underlying quasi- periodicity. 
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