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Abstract. The shape fluctuations and the stability of polymerized vesicles are investigated
within the framework of shell theory. The intrinsic curvature of the vesicle leads to an enhanced

coupling betwecn bending and stretching modes which acts to suppress the shape fluctuations
on

large scales. This effect is explicitly calculated for a cylindrical shape of the vesicle. For a cylinder
with radius To, the shape fluctuations exhibit the crossover scale L° ce

(r(~/Y)~'~, where
~

and Y

are
the bending rigidity and the (2-dimensional) Young modulus of the polymerized membrane.

For L « L°, the fluctuations are fluid-like but are strongly suppressed for L » L*. In addition,
the stability of the cylinder with respect to an external pressure is studied, and

a sequence of

critical pressure values is determined at which the cylinder becomes unstable.

1. Introduction.

Recently, the propertics of polymerized mcmbranes have attracted
a

lot of attention in con-

nection both with the statistical mechanics of random surfaces and with the biophysics of

membranes [1, ~]. In these membranes, the molecules form a 2-dimensional network of fixed

connectivity. In biomembranes, these networks often consist of semi-flexible polymers and

then have a relatively large mesh size. One example is the network of spectrirt molecules whidi

is attached to the plasma membrane of erythrocytes; the latter ilatwork has a mesh size of

100-200 nm [3]. A polymerized mete<ork with a
much smallcr mesii size is contained in the

cell wall of bacterial cells. Thcse networks are composed of peptid< jlycart molecules and
are

capable of resisting great stress since bacteria exhibit an internal excess pressure (the so-called

turgor pressure) [4]. Artificial polymerized membranes
can

be also synthesized from bilayers
of polymerizable lipids by irradiating the membranes with ultraviolet light [5]. This technique
typically produces network patflies whose latcral extension is of the order of 10-20 rim.

Lipid bilayers form closed membranes
or

vesicles. These vesicles are of current interest
as

models for cells and orgaiielles wliicli cxhibit
a

large variety of shapes. If the bilayers arc

fluid, these shapes can bc transformed by cliangiiig, e-g-, the osmotic conditions, the temper-
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ature or
the composition of the lipids [6]. Similar shape transformations have been found for

biomembranes.

So far, the theoretical work on polymerized membranes has focused on membranes which are

flat in their undeformed state. It has been found that., in spite of their 2-dimensional character,
these membranes exhibit

a
low temperature phase which is rough but not crumpled [7]. The

energy of an undulation mode with wave vector q is expected to scale as q~~~ with (q > 0). The

existence of such an uncrumpled phase has been confirmed by many computer simulations for

open polymerized membranes [8-11]. The value of q is still a matter of some controversy [12-
l4]. Likewise, Monte Carlo simulations of polymerized vesicles showed that flaccid vesicles

exhibit uncrumpled configurations and the mean-squared radius of gyration is proportional to

the number of monomers in the membrane [16].
In the present paper, we investigate the shape fluctuations of polymerized vesicles (or shells)

which
are

curved in the undeformed state. For such a
shell, the stretching deformation which

accompanies the bending deformation is a first-order effect while it is only
a

second-order

effect for
a

flat plate. Thus, for
a

displacement along the normal direction, the strain tensor

is proportional to I and l~ for shells and plates, respectively. Therefore, one expects that the

shape fluctuations of polymerized vesicles will be effectively suppressed.
For mathematical simplicity, we investigate this coupling between bending and stretching

modes primarily for the case of cylindrical vesicles. However, one should keep in mind that

this coupling is present for arbitrarily curved membranes. We also consider the deformation of

polymerized vesicles caused by
a

uniform osmotic pressure difference between the outside and

the inside of the vesicle. For cylindrical vesicles,
we

obtain a sequence of critical pressures at

which the vesicle becomes unstable with respect to infinitesimally small changes in its shape.
It has recently been argued that

a
polymerized or solid-like membrane with

a relatively small

shear modulus
or a relatively large bending rigidity should exhibit a pronounced crossover

between fluid-like behavior on small scales to solid-like behavior
on

large scales [12]. For

membranes which are flat in their undeformed state, this crossover is again a consequence of

the nonlinear terms in the strain-tensor. In this paper, we will show that, for curved shells,
such a crossover behavior arises already within the linearized theory.

The outline of this article is as follows. First a few formulas from differential geometry

are
provided in order to define

our
notation. By regarding the polymerized membrane

as an

elastic shell, its elastic deformation energy is derived in accordance with classical shell the-

ory [16-18]. In section 3, cylindrical vesicles are considered as the simplest nontrivial examples
which exhibit the intrinsic curvature effect. Even in this case, the statistical mechanics of the

three-component displacement field is somewhat complicated, see (4A), but becomes much

simpler after the partial trace over the lateral (phonon-like) components of this field have

been performed, see (4.9). In this way, the roughness arising from the shapd fluctuations of

a polymerized cylinder is determined both in the absence of anjr constraint and for the cases

of constant volume
or constant area. This calculation reveals

a new crossover length for the

shape fluctuations, see (4.15) below. Finally, the instabilities induced by an external pressure

are discussed in the last section.

2. Polymerized membrane as an elastic sheet.

First, we will collect some formulas from differential geometry which is the most appropriate
formalism for the classical theory of elastic shells [18].

One can, in general, parametrize a 2-dimensional membrane in 3-dimensional space by two

real inner coordinates s =
(sl,s~). The shape of the membrane is then described by a 3-

dimensional vector r =
r(s). At each point on

the membrane, there are two tangent vectors



N°8 FLUCTUATIONS AND STABILITY OF POLYMERIZED VESICLES 1565

r, =
0r/0s' with I

=
1, 2. The outward unit normal vector fi is perpendicular to these tangent

vectors, I.e., fi
=

(ri x r2 II (ri x r2(.
All properties related to the intrinsic geometry of the membrane are expressed in terms of

the metric tensor defined by

gi; = ri r;. (2.I)

Two important quantities
are

the determinant and the inverse of the metric which will be

denoted by

9 "
d~t(9SJ) ~'~ld 9'~

" (9SJ)~~ (2'2)

In addition, one has to consider the (extrinsic) curvature tensor given by

h;;
=

fi 0;r;
=

-fi; r;, (2.3)

with 0;r;
=

0~r/0s'0si.
At zero temperature, the membrane is supposed to be in the (undeformed) reference state

described by r =
R. Here and below, we shall use capital letters in order to distinguish

quantities in the reference state from the corresponding quantities in the deformed state. Thus,
I~., N, G;;, H;; represent the tangent and normal vectors, the metric and the curvature tensors

in the reference state, respectively.
If the membrane is stretched, the distance between two neighboring points in the membrane

is changed. This change can be expressed by the strain tensor vi; defined by

1J:> + ig,> G,>1. (2.4)

The mixed strain tensor is obtained by raising one of the indices according to

u,'
=

uikg~' (2.5)

Here and below, we use Einstein's summation convention and sum over all indices which appear
twice. Likewise, the mixed bending tensor

hi "
+ hi " Hi " (2.6)

is taken
as a measure for the bending deformation. (Note that this choice is not unique;

alternative definitions of the mixed bending tensor are possible starting, e.g., from I;; e h;;
Hi;.)

According to the elasticity theory of thin elastic sheets conventionally known as shell theory,
the deformation energy of

an isotropic sheet is given by

7i
=

f d~s@ )A
(vi ~)~ + Fuji u;' + )K (hi ~)~ + 7 det (hi')1. (2.7)

The parameters and p are two Lamd coefficients, and K and 7 are two bending moduli (~).
(By using the relation det (b; J

=
(1/2)[bi ~b; J b;16; ~], one can rewrite the last two terms in

(2.7) in the form al (hi ~)~ + a2b;16;

(~ Since b, J has been defined by the difference between two curvature tensom, it has to satisfy certain mm-

1~atibility conditions in order to be itself a curvature tensor (in such case n
and ~f are

called bending rigidity
and Gaussian curvature modulus, respectively). Hence, in general, the Gauss-Bonnet theorem win not apply
to (2.7). For

a
planar reference state, however, one

has b, J
=

h, J and the Gauss-Bonnet theorem applies, see

(3.12) below.
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As mentioned, the vector R is taken to describe the reference state. Any deformed state of

the membrane can then be parametrized by

r =
R + u~R~ + lN. (2.8)

The variables u~ represent two lateral (in-plane) displacement fields and I represents the trans-

verse
(out-of-plane) displacement field. Both strain tensor and bending tensor can be expressed

in terms of the components of these displacement fields. Up to first order in the displacement

r
R, the mixed strain tensor turns out to be

u;I
m

(lflu; + D;ui] lH;I, (2.9)

where the covariant derivative D; is defined by

D;ui
+

d;ui + r(~u~, (2.10)

with the Christoflel symbols

~~k
~~~

[°"~kl + dkGil dlGik] (~. ll)

and d; %
d/ds'. In a

similar manner, the linear approximation for b;I leads to

b;I
m

D;lfll + lH; ~Hk~ + (D;u~)Hk~ (Dkui)H; ~ + u~(DkH;I). (2.12)

As mentioned, we have defined the bending tensor in terms of the difference between the mixed

components of the curvature tensors in the deformed and the initial state. If we had selected,
for instance, the difference of the covariant components, the result would be different. The

formalism described in this section is completely general and can be applied to an arbitrary
reference state. In the following, we will focus on the case for which the reference state has the

shape of a
cylinder. This is the simplest example which exhibits the intrinsic curvature effect

described in introduction.

3. Polymerized cylinder.

Now, consider a polymerized cylinder of radius ro and length L with internal coordinates

(s~,s~)
=

(#,z) where # and
z are

the azimuthal angle and coordinate along the axis of

rotational symmetry, respectively. As a local basis of 3-dimensional space, we
employ the

corresponding unit vectors, kr
=

(cos #, sin #, 0), kj
=

(- sin #, cos #, 0) and kz
=

(0, 0,1). The

reference state is described by
R

=
rokr + zk~, (3.I)

and a slightly deformed cylinder is represented by

r =
R + u~Ri + u~R2 + lN

=
(ro + I)kr + u~rokj + (z + u~)k~. (3.2)

Within the linear approximation, the components ofthe mixed strain tensor are
given by (2.9).

A simple calculation then leads to

vi * + j> (3.3)
o ~~~
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'~2~ *
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Likewise, it follows from the expression (2.12) for the mixed bending tensor that

bi~
m

(°~(+ >
(3.7)

o

~

o

fi21 ifi~2
~~

~
~ d#dz ~

ro d# '
~~'~~

~~ ~

( ~~z o ~'
~~'~~

fi21
~2~ * Q' (~.1°)

For the polymerized cylinder, the last term in the elastic free energy (2.7) can be written as

d~t (b; I)
=

det (h; ~) +
~$'

~~ ~~~

If the cylinder satisfies periodic boundary conditions along the z-direction, I-e-, for r(#, z)
=

r(#, z+L), the second term in (3. II) drops out after the integration over the membrane surface.

Then the Gauss-Bonnet theorem tells us that the integral

/ d~s4det (h; I)
m

/ d~s/jdet (h; ~)
,

(3.12)

always leads to a constant that does not depend on the size of the membrane but only on its

topology or, more precisely,
on its Euler characteristic, x. For an open cylinders

as considered

here, the Euler characteristic x "
0 and the integral in (3.12) vanishes. Hence the remaining

contribution which arises from the curvature tensor is only the third term in the deformation

energy (2.7),
~

(~i')~ ~
(( ($

~
)

~ $~ (3.l~)
o

which depends only on but not on
u~ and u~. Consequently, the effective llamiltonian of the

polymerized cylinder takes the form

7l (u~, u~,1)
= /~~ d# /~ dz ro

(A
(u; ') ~

+ ~tu;
iv

j + K (b; ~)

j
(3.14)

o o
2

In the following sections,
we investigate the shape fluctuations governed by this effective

llamiltonian under the constraint of constant volume
or constant area and the effect of an

external pressure. For these purposes, it is necessary to express the volume V and the area

A of a deformed cylinder in terms of the displacement fields. As shown in Appendix A, the

volume is given by
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up to second order in the displacement fields with Vo "
xr(L, whereas the area is found to be

A
=

/d~s/j

with Ao
"

2xroL.

4. Thermally-excited shape fluctuations.

4,I WITHOUT CONSTRAINT. In order to decompose the displacements in terms of ap-

propriate eigenmodes, we use the following convention for the Fourier transformation of any
field f(#, z) defined on the cylinder:

f(#, z)
=

~j fmn exp Ii m# + n

~~~

,

(4.1)

~ n

L

fmn
=

& ~~
d< £~ dz f(<> z) exP -i

m<
+ n (~i~)I (4.2)

As usual, one has f(~
=

f-m,-n in order to ensure that the displacement fields are real (the
asterisk denotes the complex conjugate value).

It is convenient to introduce the parameter

q + ~)° (4.3)

which represents the aspect ratio ofthe cylinder or, more precisely, of the rectangular membrane

surface which is obtained by cutting the cylinder parallel to its rotation axis.

If the elastic free energy as given by (3.14) is expressed in terms of the displacement modes

u[~, u$~ and lmn,
one

obtains

7i (u~, u~,1)
=

~~~ ~j ~
(m~r( (u$~(~ + n~q~(u$~

(~ + (lmn(~
~°

m,n

~

+2mnqrout~u$~ + 2iml$~rou$~ + 2inql$~u$~]

~
~~~ iL (~~2 ~ ~2 ~2)~2 j~l j2 ~ (~2 ~ ~~2 q2)j~2 j2 ~ ~ji j2

~ ~ 0 mn mn mn

°

~
+2mnqrout~u$~ + 4iml$~ rou$~)

+ ~)~ ~ )(m~ + n~q~ 0~limnl~. (4.4)
°

m,n
0

In this expression, the displacement modes z~(o and u(o which correspond to a
rigid rotation

around the z-axis and to a rigid translation parallel to the z-axis do not enter since the

corresponding energy is identically zero
(in field-theoretic language, these modes are called

"zero modes" ). This implies that the loo-mode is completely decoupled from all other modes.
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The effective llamiltonian
as given by (4.4) is quadratic in the phonon-like fields u'. Perform-

jjjtj~~~j~jssian
functional integrations over all (m, n)-modes of u~ and u~ with (m, n) # (0, 0),

y~ ~l y~ ~2 ~-7i(U~,U~,I)/T-~~'i~ff(I)/T ~~~~
/

'

where the new effective configuration energy 7l~~r now depends only on the transverse mode 1:

~~~ ~~~
~) )(l + 2p) (loo (2

+
$j y n2q2 2

~"

~ '°~ + n~~~
+ i~~~ + n~q~

)2j
ii~nn12

,

~~~~

where the prime indicates that the loo-term is not included in the summation. The parameter

y
4p(A + p)

l + 2~ '

(4.7)

is the 2-dimensional Young modulus. This modulus describes the elastic response of the 2-

dimensional sheet when subjected to an uniaxial tension. It is interesting to note that the

same
modulus is also relevant if one considers a flat reference state and includes the leading

non-linear term in the strain tensor [7].

4.2 CONSTANT voLuME oR CONSTANT AREA. We can easily incorporate the constraint

of constant volume using the expression (3.15) for the volume. It then follows from V Vo "
0

that

2xLroloo
"

~~~ £ j (r((u$~(~ + (lmn(~ + 2iml$~rou$~ + 2inql$~u$~] (4.8)
ro

'

m,n

The constant volume constraint leads to the elimination of the loo-terms in the effective llamil-

tonian (4.6). Since all terms in (4.6)
are quadratic in the modes, elimination of the loo-mode

via (4.8) generates third and fourth order contributions which can be ignored for the quadratic
approximation considered here. Hence the only change in (4.6) is that

~~~ ~~~
~~ ~ ~' ~~~~2q2 ~

~
i

~'~'~ ~ ~~~~ ~~~ ~~~" ~~' ~~'~~

which governs all modes with (m,n) # (0,0). The properties of the loo are then determined,
via (4.8), in terms of these modes.

The constraint of constant area can be imposed in
a

similar
manner. Using the relation

(3.16), it follows from A Ao
"

0 that

,

~ ~ ~ ~2q2)ji~~ (~

2~L ~ i
[~( j~[~ + (m2KL10°

r0
m,n

~

+2iml$~rou$~ + 2inql[~z~$~] (4.10)

We see again that all other modes remain unaffected at the harmonic level, namely, up to

second order in the displacements. Hence the effective llamiltonian is again identical to (4.9).
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4.3 ROUGHNESS OF FLICKERING MEMBRANE. The cases in section 4.I and in section 4.2

are identical as far as the behavior of the lmn-modes with (m,n) # (0,0)
are concerned.

In addition, we do not include the ho-term since it corresponds to a
simple translation of the

cylinder perpendicular to its rotation axis requiring no energy. With the use of the equipartition
theorem (or the explicit Gaussian integrations), the mean-squared mode amplitude for both

cases is

~

~~~~'" ~~~
~~L

~' m2~~2q2
~ ~'~'~ ~ ~~~~

~~

'

~~'~~~

with the dimensionless parameter
Y e

Yr( It. (4.12)

The case of zero shear modulus
or

V
=

0 corresponds to fluid membranes as studied pre-

viously [19] provided the spontaneous curvature Co
"

I/ro. It follows from (4.ll) that the

presence of a finite shear modulus or
V

> 0 reduces the amplitude of all shape fluctuations

as expected. This reduction is most effective for m « nq, I-e-, for "anisotropic" modes which

exhibit many humps along the cylinder (parallel to the z-axis) but only a few humps in the

azimuthal direction. In this case, one has

llfmn l~) £ Y+ (nq)~l~~ (4.13)

and these modes are dominated by V for wavenumbers

n2x/L $ p] + (Y/Kr()~'~ (4.14)

Thus, one has the crossover length

L* + C(riK/Y)~/~ (4.15)

where
c

is a dimensionless coefficient of order one.

Such
a crossover is also present for "isotropic" modes with

m = nq. In the latter case, one

obtains from (4.ll) the behavior

(fmn (~) ~- (( V +
m~j

(4.16)

which implies that modes with wavenumber
n

2x/L
=

m/ro £ )(Y/Kr()~H
are dominated by

V. Thus, apart from
a prefactor of order one, one again obtains the crossover length L* as

given by (4. IS).
As shown in reference [12], the crossover length for plates arising from the nonlinear terms

of the strain tensor depends on temperature. If the critical exponent q =
I as concluded

from the Monte Carlo simulations in reference [12], the latter crossover length is given by
L* m

K/(TY)~/~. In contrast, the crossover length for shells as given by (4. IS) is independent
of temperature but depends explicitly

on
the curvature radius ro.

On the other hand, the modes with
n =

0 are not suppressed at all by the presence of

the shear modulus (within the harmonic approximation used here). These modes have
no

deformations in the z-direction and, thus, are effectively one-dimensional. In general, all

"anisotropic" modes with m » nq are
essentially unaffected by the polymer12ation since one

then has

llfmn l~i ~-

V(nq/m)~ + m~l~~
~-

m~~ (4.17)

as for fluid membranes.
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4.4 EXAMPLES FOR POLYMERIZED MEMBRANES. First, consider
a

polymerized membrane

consisting of
a

thin solid-like sheet. In this case, the elastic moduli of the membrane can
be

estimated starting from the elastic properties of the bulk material. For an isotropic material

in three dimensions, one has two Lam4 coefficients 13 and ~t3. For a membrane of thickness a,

one finds that the Lamb coefficients I
= a 2A3 p3/(A3 + 2p3) and ~t = ap3 and that its bending

rigidity
K

is given by K =
4p3[(13 + p3)/(A3 + 2p3)]a~/12

=
(1+ 2p)a~/12. This implies that

K/Y c~
a~ and thus

Pm (rota)~ and L*
c~

(roa)~/~ (4.18)

These estimates should apply, for example, to the cell wall of bacteria. If the radius of the

cylinder is ro t I pm and the thickness of the membrane is
a ci 5 nm, one has (roa)~/~ m 70 nm

which sets the scale for the crossover length L*.

Next, consider the tethered membranes which have recently been studied in many computer
simulations. For example, the networks studied in reference [8] are character12ed by the values

Ya~ IT
ci 20 and KIT

ci I, where a is the mesh size of the network, which implies Y/K m 201a~
and thus

V
ci

20(rota)~ and L* ci (roa)~/~ (4.19)
2

Thus, for the accessible sizes of networks with ro ci 3a 6a, the crossover scale L* is of the

order of a, and all fluctuations will be suppressed by the polymerization.

Finally, it is instructive to consider the plasma membrane of red blood cells. The elastic

moduli of this membrane are estimated to be K ci 3 x
10~~° J and Y ci 2 x

10~~ Jm~~ [20-
22]. This leads to Y/~c ci 0.7 x 10~/pm~. Using an

effective radius ro =
I pm, one obtains

Pm 7 x
10~ and the crossover length L* ci 0.2 pm. The latter length scale is comparable to

the mesh s12e of the spectrin network, and somewhat smaller than the crossover length arising
from the nonlinear terms of the strain tensor as estimated in reference [12].

Very recently, Sackmann and coworkers have made a detailed comparison between experi-

ment and theory for the flickering of red blood cells which have the shape of discocytes [23,
24]. Somewhat surprisingly, they conclude that the experimentally observed flickering shows

no effect of the small but finite shear modulus c~ Y arising from the spectrin network. This is

difficult to understand especially because the discocyte shape itself should be determined by
this network.

5. Pressure-induced instabilities.

In this section, we investigate the case where the polymerized vesicle is subjected to the (os-
motic) pressure difference P

P % Pex Pi~, (5.1)

measured between the outside and the inside of the vesicle. This leads to a stretching (or
compression) of the membrane and, thus, to a

lateral tension. For
a

polymerized membrane,
this tension is, in general, anisotropic. Since the length L of the cylinder parallel to the z-axis

is not allowed to change here, the tension, 22> in the z-direction must vanish. Therefore, the

pressure is balanced by the tension El which acts in the "hoop" or <-direction.

In thermal equilibrium, the probability for the realization of a certain configuration of the

vesicle is now governed by the Boltzmanu weight e~'~"~ with

7i'(z~~, z~~,1) =
7i (u~, u~, I) + ZIA + P( (5.2)
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where 7l is given by (3.14). According to the expressions (3.15) and (3.16) for the volume V

and for the area A, the sum of the last two terms h

ZIA + PV
=

ZiAo + Pi + 2xL(Zi + Pro)loo

+~)~ L I(zi + Pro) lrliuLni~ + 2imGnrouLn + 2inqiznuSn)
°

m,n

+ El (m~ + n~q~) + Pro (lmn (~] (5.3)

When the cylinder represents an equilibrium shape, the first variation of the configurational

energy should vanish for any infinitesimal displacement; in other words, the forces should be

balanced within the membrane. Therefore, the term proportional to loo in (5.3) leads to the

equilibrium condition

El + Pro
"

0. (5A)

This equation has to be distinguished from the well-known Laplace equation for fluid droplets
because of the anisotropy of the tension. In the geometry considered here, El

"
-Pro while

22
=

0 as
mentioned. In contrast, if one introduces two membrane caps at z =

0 and z =
L

which close the cylinder, the pressure onto these caps leads to 22
=

-)Pro [17]
By eliminating El via (5.4),

one can further simplify (5.3) and then obtains

ZIA + PV
=

ZiAo + P%
~~~ £ ~~°

(m~ + n~q~ I)(lmn(~, (5.5)
ro

~ ~

2

which does not depend
on

u~
or

u~. Hence by adding (5.5) to (4.6), we end up with the effective

llamiltonian

~i jij
~~~

(l + 2p + Pro)(loo
(~ +

$j Y ~~~~ ~

eff
ro 2

m,n

~ ~"~ ~ ~~~~

+
j (m2 + n2q2 1)2 Pro(m2 + n~q~ i)j

imn'~)
~~.~~

ro

For constant volume, inserting (4.8) into

7i(~r (1) + 7i~~r (1) + ZIA, (5.7)

and using the relation El
=

-Pro as in (5.4), one finds that 7i"~~r is identical to (5.6) for all

modes with (m, n) # (0, 0). For constant area, on the other hand, by using (4.10) in
a

similar

way one finds that

~i() lo + ~ietr Ill + PK (5.8)

to be again identical to (5.6) for all modes with (m, n) # (0,0).
In view of these results, (5.6) provides the basis for analyzing the stability of polymerized

cylinders subject to an external pressure. For the modes with (m, n) # (0, 0), the coefficients

of (lmn (~
will become negative as soon as P exceeds the critical value

"~'~'~~
m2 +

~2q2
1

m2~~2q2 ~
~ i~'~'~ ~ ~~~~ ~~' ~~'~~

For P
=

Pc(m,n), the (m,n)-mode becomes unstable under an infinitesimal perturbation of

the shape.
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In the case of rotational symmetry, I-e-, for m =
0, the effective llamiltonian (5.6) simplifies

and becomes

7i'~~ (1)
=

~~~ £ )
((n~q~)~ (P + 2)n~q~ + P + f + I] (ion (~, (5.10)

~o ro

with
P

%
Pr(/~c. (5.ll)

The necessary condition for unstable (0, n)-modes is the relation

(P + 2)~ 4(fl + I + 1) 2 0. (5.12)

If this relation is satisfied, all modes within the n-band
as given by

(fl/2) +1 W § n~q~ § (fl/2) +1 + W (5.13)

with

~

W + + l) (P + f + 1) (5.14)

are unstable. The least stable mode within this band is given by

n =

fitV§q (S.15)

More precisely, n is that integer which is closest to
@l1vsq. On the other hand, the

(0, n~)-mode which exhibits the smallest critical pressure, Pc, is characterized by the condition

that W as given by (5.14) vanishes. This implies that n~ is given by

n~ =

[fi+ I]Q~/q (5.16)

and that the corresponding critical pressure is flc
=

2W
or

Pc
=

2@/r( (5.17)
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Appendix A.

Volume of deformed cylinder.

In this Appendix, we derive the expression for the volume of
a deformed cylinder up to second

order in the displacement fields. It is convenient to reparametrize the cylindrical shape in

terms of the radial distance from the z-axis, I-e-, r =
p(#, z) with which the total volume is

represented
as

2x L

V
=

d# dz -p~(#, z). (Al)
2
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The next step is to obtain the relation between p and the displacement fields u~,u~, and I.

Suppose some particular point on the membrane undergoes a certain deformation and moves

to another point parametr12ed by (#,z)
=

(b + b, d + u~). The radial distance of this point
after the deformation is

p(b + b, d + u~) m ro + I(b, d) + jro (u~ (b, d))
~ (A2)

Using the definitions be A# and u~
% Az, (A2) can

be rewritten
as

p(#, z) m ro + I(# A#,
z

Az) + ro [u~(# A#, z Az)]~ (A3)
2

In addition to the obvious relation Az
=

u~(#, z),
we

need A# up to first order in the displace-
ment fields;

~~
~~~~~i~~~~

l~~)~o
~~~

m
u~ (#, z). (A4)

Substituting these results into (A3),
one finally obtains

Insertion of (AS) into (Al) leads to (3.15).
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