
V O L U M E  71 ,  NUMBER 3 P H Y S I C A L  R E V I E W  L E T T E R S  19 JULY 1993 

Conformal Degeneracy and Conformal Diffusion of Vesicles 

Frank Jiilicher, Udo Seifert, and Reinhard Lipowsky 
Instztut fur Festkorperforschung, Forschungszentrum Jiilich, 52425 Julich, Germany 

(Received 19 April 1993) 

The shape of vesicles with genus g = 2, i.e., with two holes or two handles, is studied in the 
framework of curvature models. These vesicles exhibit a new phase which also persists for higher 
genus g > 2. In this phase, the ground state of the vesicle is conformally degenerate even when the 
volume, the area, and the total mean curvature of the vesicle are kept constant. It is predicted that 
such vesicles undergo a new type of diffusive motion, termed conformal diffusion, which should be 
observable in experiments as pronounced shape fluctuations. 

PACS numbers: 82.70.-y, 02.40.-k 

One intriguing aspect of lipid vesicles is the need to use 
concepts of differential geometry in order to  explain their 
behavior as observed under the microscope. It  is now 
generally believed that lipid bilayers, in their liquid state, 
acquire a shape which minimizes their bending energy 
and, thus, their curvature energy. In fact, for the case 
of spherical topology the large variety of observed shapes 
as well as their transformations can be well understood 
in terms of a curvature model [I]. 

Recently, vesicles of toroidal topology have been found 
experimentally [2] which had been previously predicted 
in theoretical work [3-61. The new feature of toroidal 
shapes not present for shapes of spherical topology is 
the degeneracy of the shape of minimal curvature energy 
with respect to conformal transformations of the three- 
dimensional embedding space [4,7]. However, since this 
degeneracy is broken by the presence of physical con- 
straints such as the fixed area to volume ratio of vesicles, 
it has no observable consequences for toroidal vesicles 
and the ground state of these vesicles is unique in any 
realistic model [6]. 

The purpose of this paper is to show that for genus-2 
vesicles, i.e., for vesicles with two holes or two handles, 
qualitatively new behavior emerges. For these vesicles, 
as well as for all higher genus vesicles, the  ground state 
is degenerate with respect to  conformal transformations 
for a certain range of shapes, even if one takes into ac- 
count the constraints on the area to volume ratio and 
the additional constraint arising from the fact that the 
membrane is a bilayer. Thus we predict that conformal 
modes become visible in the microscope as pronounced 
shape fluctuations for vesicles with genus g > 2. More- 
over, we determine the phase diagram for genus-2 vesi- 
cles using a combination of direct numerical minimization 
for nonaxisymmetric shapes, conformal transformations, 
and symmetry considerations. 

The shape fluctuations which correspond to  conformal 
modes are quite different from shape fluctuations of vesi- 
cles of spherical topology (and genus-1 vesicles) where 
bending modes with finite energy (i.e., nonzero restoring 
force) are thermally excited. In contrast, the conformal 
modes lead to a diffusion process in shape space along a 

path of conformally degenerate shapes. In analogy with 
translational and rotational diffusion, this process will be 
called conformal diffusion; an example is shown in Fig. 1. 

To derive these results, we first recall the Willmore 
problem [8]: Determine the surface which minimizes the 
curvature energy 

where H is the mean (extrinsic) curvature and K is the 
bending rigidity. For genus-0, the solution is known to 
be the sphere with G = GO = ~ T K ,  while for genus-1 
the solution is conjectured to be the Clifford torus (and 
its conformal transformations) with G = GI = (7r/2)87r~ 
[8]. For genus-2, there is a mathematical conjecture by 
Kusner [9] that the Willmore problem is solved by the 
Lawson surface L shown in Fig. 2 [10,11]. By numeri- 
cally minimizing a discretized version of the energy G,  
Hsu, Kusner, and Sullivan found the Lawson surface L 
to be a minimum of G with G = G c  1.742 x 8 7 r ~  [12]. 
To obtain a numerical representation of a genus-2 Will- 
more surface, we also developed an algorithm for mini- 
mizing the bending energy G for a triangulated surface 
[13]. We find the Lawson surface L as shown in Fig. 2 
with Gg = (1.75h0.01) x 8 7 r ~ ,  as a minimum of our algo- 
rithm, in full agreement with the results of Hsu, Kusner, 

FIG. 1. Three different shapes which all minimize the cur- 
vature energy G for fixed reduced volume v = 0.78 and 
m = 1.027. These shapes represent an example for a confor- 
mal mode. The shapes (a) and (c) are the two special shapes 
along this conformal mode which both possess one symmetry 
plane, while shape (b) has no symmetry plane. 
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FIG. 2. Willmore surfaces with energy G = G2 e 1.75 
~ 8 ~ 6 .  These shapes correspond to points at the boundary of 
the region W :  The V 3 h  symmetric Lawson surface L;  the V 2 h  

symmetric button surface B; and examples of Civ symmetric 
shapes along the lines CBS, CBL, and CLS, respectively; com- 
pare Fig. 3. 

and Sullivan. This surface has a threefold symmetry axis 
and an additional mirror symmetry plane and, thus, Vsh 
symmetry in the Schonflies nomenclature, which we will 
use further on. 

We now use the property that the bending energy G 
of any shape is invariant under special conformal trans- 
formations (SCT's) of the three-dimensional embedding 
space [7,8] to generate a continuous space W of Willmore 
surfaces with the same energy G = G2, but with sym- 
metry properties which are different from those of the 
Lawson surface. A SCT, which can be parametrized by 
a vector a = (az,aY,a,),  transforms any point R of the 
surface to R' with R' = (R/R2+a)/(R/R2+a)2. Apply- 
ing SCT's to the Lawson surface L, the three-dimensional 
space W of Willmore surfaces which can be parametrized 
by the vector a is found. Consequently, the ground state 
for the energy G is threefold degenerate for genus-2 [14]. 

For real vesicles, both the total area A z 47r-R; as well 
as the enclosed volume V, are fixed quantities. Moreover, 
the vesicle membrane is a bilayer which leads to a further 
constraint on the area difference of the two monolayers. 
These constraints imply that both the reduced volume 
v ~ / [ 4 7 ~ ( ~ / 4 7 7 ) ~ ^ ~ / 3 ]  and the reduced mean curvature 
m = if d A f f / ( ~ / 4 7 r ) l / ~  are constant (at constant tem- 
perature). Thus, the physical state of the genus-2 vesicle 
corresponds to the shape of minimal curvature energy G 
for given u and m. 

A part of this phase diagram is obtained by project- 
ing the three-dimensional space W onto the (v, m) plane. 
This leads to a region W in the phase diagram where the 
ground state is indeed given by the Willmore surfaces. 
Since the space W is three-dimensional while the (u, m) 

plane is two dimensional, the ground state within the re- 
gion W is one dimensional degenerate. A quantitative 
expression for the conformal mode which corresponds to  
this degeneracy can be obtained by studying SCT's with 
small la1 << 1. A SCT acting on a surface with ini- 
tial values v = ui and m = mi  generates a new shape 
with u = vl (a) and m = ml(a)  given by vl (a) = VI [1 + 
~ $ ' ) a ~  + 0(a2 ) ]  and rnl(a) = ml[ l  +  pa^ + 0(a2)] .  
The vector coefficients A^ and A^ can be expressed 
as A(") = 6(RA - R v )  and A^ = 2(RA - R M )  by 
the center of area R A  = if dAR/A, the center of vol- 
ume R" = f dVR/V, and the center of mean curvature 
R M  = if dAHR/ $dAH [Is]. Thus, the conformal mode 
which conserves both v and m can be identified as the 
SCT with a obeying the differential equation 

where s parametrizes the path in the space W. In gen- 
eral, this conformal mode a(s) which solves (2) destroys 
all symmetry planes of the shapes in the region W. How- 
ever, along the path a(s) which is a closed loop within 
W,  there are two different shapes which have one sym- 
metry plane left. The shapes shown in Fig. 1 represent 
the conformal mode with (v, m) = (0.78,1.027) and have 
been obtained by numerical integration of (2). 

The boundary of the region W in the phase diagram is 
most easily determined numerically by first introducing 
the button surface B shown in Fig. 2. This is another 
highly symmetric Willmore surface which is conformally 
equivalent to the Lawson surface L and which was al- 
ready found by Hsu, Kusner, and Sullivan [12]. The sur- 
face B with (v, m) = (0.66,l .O84 x 47r) has three orthog- 
onal mirror symmetry planes, i.e., symmetry Vah. We 
now apply SCT's to the button surface. If the x-y plane 
is chosen to be the midplane of the disk and the centers of 
the two holes lie on the x axis, a SCT with a = (0,0, a,) 
breaks the symmetry with respect to the x-y plane and 
generates the line CBL with shapes of C2,, symmetry; see 
Fig. 2. For a, Y 3.4/Ro, the V3h-symmetric Lawson 
surface L with (v, m) î. (0.67,1.037 x 47r) is reached. 
A further increase in a, breaks the threefold symmetry, 
generating the line CLS with C2u-symmetric shapes; see 
Fig. 2. For a, 3 15.5/Ro, the shape along CLS ap- 
proaches a sphere S with two infinitesimal handles at 
(v, m) = (l,47r). The line CBS can be generated from 
the button surface by breaking the x-z symmetry plane 
with a = (0, ay,  0). A typical shape along this line is 
also shown in Fig. 2. These shapes again approach a 
sphere S with two infinitesimal handles for av P 0.8/R0 
at (v, m) = (l,47r). The shapes along CBS, CQL, and 
CLS constitute the boundary of the region W since these 
shapes have at least two mirror planes, i.e., C2" symme- 
try, which implies that A^ and A  ̂ are parallel and 
there is no conformal mode as follows from (2) [16]. 

Outside of W, the shapes of minimal energy are no 
longer Willmore surfaces with constant energy G = G2, 
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FIG. 3. Phase diagram for genus-2 vesicles. Within the 
phase W the ground state is conformally degenerate. This 
region is bounded by the lines CB% CBL, and CLS. The 
Lawson surface L and the button surface B are special points 
at the boundary of W. Adjacent to W ,  five different regions 
exist. The symmetries of the shapes within these regions are 
indicated. Cartoons characterize the shapes within three re- 
gions. 

but rather shapes with a larger energy G = G(v,m), 
which can also be classified by their symmetry proper- 
ties. Any shape on a sheet of stationary shapes where 
generically 9G/9v # 0 and 9G/9m # 0 must fulfill the 
condition that A^ is parallel to A('"). Otherwise one 
could find a shape nearby using conformal transforma- 
tions which has the same v and m but lower energy [15]. 
By symmetry, A^ is parallel to A  ̂ for any shape 
with at least two symmetry planes. Thus, the ground 
state outside of W should have at least C2,, symmetry. 
The topology of the phase diagram of genus-2 vesicles as 
shown in Fig. 3 then follows from the symmetry proper- 
ties of the Willmore shapes. 

It is instructive to compare the genus-2 phase diagram 
with the phase diagram of toroidal (or genus-1) shapes 
shown in Fig. 4 [6]. Apart from a large region of non- 
axisymmetric shapes this phase diagram contains three 
regions of axisymmetric shapes: (i) a region of discoid 
tori, (ii) a region of sickle-shaped tori, and (iii) a region 
of toroidal stomatocytes. All regions are separated by 
continuous phase boundaries. The genus-1 Willmore sur- 
faces form a one-dimensional space and exist along a line 
W, which starts with the Clifford torus CL and ends up 
at (v, m) = (1,47r) with a sphere S with an infinitesimal 
handle. 

Comparison of Figs. 4 and 3 shows that the two phase 
diagrams for genus-1 and genus-2 are quite similar. The 
three axisymmetric families of genus-1 shapes, the dis- 
coid tori, toroidal stomatocytes, and the sickle-shaped 
tori, correspond to the genus-2 shapes with V2/i, Civ, and 
Vyh symmetry, respectively. The corresponding shapes 
indeed look very similar even though the additional hole 
of the genus-2 shapes necessarily breaks the axisymme- 
try. Likewise, the line W of genus-1 Willmore tori in 

FIG. 4. Phase diagram for genus-1 vesicles. Three regions 
of axisymmetric shapes exist: (i) Vooh symmetric discoid tori, 
(ii) Vyoh symmetric sickle-shaped tori, and (iii) Coo,, sym- 
metric toroidal stomatocytes. The large region of nonaxisym- 
metric shapes has Civ symmetry. The line W denotes the 
Willmore surfaces starting at the Clifford torus CL. 

Fig. 4 corresponds to the region W for genus-2 vesicles 
in Fig. 3. 

The present reasoning can be extended to vesicles 
with higher genus. Regions with conformally degenerate 
ground state exist for any genus g >_ 2. For g > 2, the 
functional (1) possesses even more than one stationary 
point [17]. Consequently, there will be several regions 
of one-dimensional degenerate ground states for higher 
genus vesicles. Discontinuous transitions together with 
regions of metastability are then likely to occur. 

Similar results are found if one relaxes the hard con- 
straint on m and considers the area difference elastic- 
ity model (ADE model) with energy W = G + ~ a ( m  - 
mo)'/2. Here, mo is the equilibrium value of the (scaled) 
area difference and a is the ratio of two elastic moduli 
with a = 1 [18]. In the (v, mo) plane of this model, the 
region W with conformally degenerate ground state has 
the same shape as in the (v,m) plane shown in Fig. 3. 
Outside of W, the location of the phase boundaries de- 
pends on a .  For small enough a, we expect first-order 
transitions to occur. 

Genus-2 vesicles have recently been observed experi- 
mentally [2]. The observed genus-2 discocyte with Vzh 
symmetry can be directly located in the phase diagram 
for genus-2 shapes shown in Fig. 3. According to our the- 
ory, a ground state with three symmetry planes cannot 
be degenerate. Consequently, this shape does not be- 
long to the degenerate phase W and should not exhibit 
conformal diffusion in agreement with the experimental 
observations. 

For a crucial test of the results presented here, one 
control parameter, such as the temperature, should be 
varied systematically. Such a temperature change corre- 
sponds to a path in the phase diagram. Starting from a 
genus-2 discocyte as observed in Ref. [2], a decrease in 
temperature will increase v which should eventually lead 
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into the phase W [19]. The onset of conformal diffusion 
should then be observed as soon as the  temperature tra- 
jectory crosses the  boundary t o  the  region W. Within 
W, the  typical diffusion time in the  shape space should 
be of the  order of tcf = rlRS,/T for a solvent of viscosity 
q a t  temperature T, as follows from dimensional analy- 
sis. Note tha t  this time scale is significantly longer than 
the time scale t b  = r l R $ / ~  for long-wavelength bending 
fluctuations since K/T = 25 for phospholipid membranes. 

The existence of the  phase W is strongly dependent on 
the  specific form of the  local curvature energy as given by 
(1). The observation of conformal diffusion would there- 
fore directly confirm this form. Even though one expects 
higher order corrections to  this energy, the amplitude of 
these terms should scale like d/Ro % l o 3 ,  where d is 
the  thickness of the  bilayer and Ro the  size of the  vesi- 
cle. Thus, these terms are not expected t o  suppress the  
conformal diffusion process proposed here. 

In summary, we have shown that  genus-2 vesicles ex- 
hibit a new phase characterized by conformal diffusion 
which makes conformal transformations visible in the  mi- 
croscope. 
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