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Abstract 

Lipid membranes which interact via direct hydration forces and which exhibit thermally excited protrusions 
are studied in the framework of interface models. These models are studied by functional renormalization 
group methods which predict two different interaction regimes: (i) a protrusion-dominated regime for 
sufficiently high temperature, and (ii) a hydration-dominated regime for sufficiently low temperature. These 
predictions are fully confirmed by Monte Carlo simulations. It is also shown that the protrusion-induced 
roughness of the lipid water interfaces acts to reduce the bending rigidity. 
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1. Introduction 

The interaction between lipid bilayers and 
other flexible membranes is governed by the in- 
terplay between direct molecular forces and en- 
tropic forces arising from thermally excited fluc- 
tuations (for recent reviews, see ref. [I]). On 
length scales which are large compared to the 
membrane thickness, the typical fluctuations are 
expected to be bending modes for which the 
surface area of the membrane remains un- 
changed. On length scales which are comparable 
to or smaller than the membrane thickness, on 
the other hand, the membrane will be roughened 
by protrusion modes, i.e. by the relative displace- 
ments of the lipid molecules [2-61. These latter 
fluctuations change the surface area of the mem- 
brane. 

From the theoretical point of view, bending 
modes act to renormalize the long-ranged van der 
Waals or other long-ranged forces [I]. Protrusion 
modes, on the other hand, renormalize the 
short-ranged forces as will be explained in this 
paper (a short report of some of our results will 
be given elsewhere [7]). 

The interaction of lipid bilayers can be experi- 
mentally studied by a variety of techniques (for a 
review, see ref. [8]): (i) using crossed mica cylin- 
ders, the separation of two bilayers immobilized 
on these cylinders can be measured as a function 
of the applied force between their surfaces [9]; 
(ii) the cohesion of two large vesicles can be 
controlled by micropipettes and observed by 
phase contrast microscopy (for a review, see ref. 
[lo]); (iii) accidental cohesive contacts within 
membrane bundles can also be studied by optical 
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microscopy [Ill, and (iv) the separation of bilay- 
ers within multilayer systems can be measured by 
X-ray or neutron scattering as a function of the 
applied osmotic pressure 181. 

It has been found from the multilayer mea- 
surements that lipid bilayers exhibit a strong re- 
pulsive force at separations of the order of 1 nm. 
The force per unit area or disjoining pressure, P,  
has been observed to decay exponentially as P = 
Pt exp[-<'//;I with the mean separation S of the 
two membranes (here and below, the subscript t 
stands for "total"). The experimentally deter- 
mined decay length 1, varies from 0.1 to 0.3 nm; 
the measured amplitude Pt of this pressure is 
rather large and is estimated to be in the range 
4 x lo7  < Pt < 4 x lo9 ~ / m ~ .  

A similar short-ranged and repulsive force was 
found for bilayers immobilized on mica surfaces. 
However, the functional dependence of the bi- 
layer separation on the force as obtained for the 
immobilized membranes is somewhat different 
from the one obtained for the multilayer systems 
[121. 

If the immobilized bilayers are firmly attached 
to the mica surfaces, they should not undergo any 
shape fluctuations and their interactions should 
be determined only by the direct molecular forces. 
Here, we will consider lipid bilayers which are 
not charged and which do not interact via macro- 
molecules or colloids. The direct interaction of 
these membranes is then given by repulsive hy- 
dration forces and attractive van der Waals forces. 
We will focus on short separations of the order of 
1 nm for which the repulsive hydration interac- 
tion dominates. 

1.1. Hydration length 

The hydration interaction is believed to arise 
from the intrinsic structure of the two lipid water 
interfaces bounding the intermediate water layer. 
The density used to describe these interfaces 
could be the local polarization of the water 
molecules [13] or an order parameter which de- 
scribes the hydrogen bonds [14]. 

In order to give a precise definition of the 

hydration length, consider a membrane which has 
been immobilized on a planar surface. The lipid 
water interface of such a bilayer is characterized 
by a density profile which represents the lateral 
average of the local density and thus depends 
only on the coordinate, say y, perpendicular to 
this interface. 

If the lipid water interface were smooth and 
planar on the scale of the water molecules, the 
density profile would exhibit oscillations which 
represent the successive packing of planar water 
layers on top of the lipid bilayer. However, the 
surface of the immobilized bilayer is rough on the 
scale of the water molecules since it exhibits 
'hills' and 'valleys', the size of which is set by the 
lipid head groups. Therefore, the water layers are 
corrugated and the lateral average leads to a 
density profile for which the oscillatory part is 
strongly suppressed. The decay of this profile 
should then be characterized by an exponential 
tail - exp( -y/lhY) which defines the hydration 
length lhy. 

If two such immobilized bilayers are pushed 
against each other by the external pressure P ,  the 
density profiles of their surfaces overlap. This 
leads to a repulsive interaction of the form - 
exp( -//lhY) between these two lipid water inter- 
faces, where 1 denotes their separation. This in- 
teraction is consistent with surface force mea- 
surements for bilayers immobilized on mica sur- 
faces (for which an oscillatory behavior has not 
been observed) [6,12]. Thus, the interaction po- 
tential V(l) has the generic form 

where the hard wall potential V,,,,, is given by 

Vhw(l) = oo for 1 < 0, 

Vhw(l) = 0  for 1 > 0. 

The latter potential ensures that the membranes 
cannot penetrate each other. In addition, it is 
useful to include this potential term explicitly 
since it generates another length scale, namely 
the protrusion length, via thermally excited pro- 
trusions. 
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1.2. Protrusion length 

First, consider a single protrusion mode in 
which a single lipid molecule pulls out from one 
of the planar membranes and bridges the inter- 
mediate water gap of size 1 [2]. The lipid molecule 
is taken to have the shape of a small column with 
constant crosssection; the area of this crosssec- 
tion is denoted by A,, and its circumference by 
a,,. Such a protrusion has energy A E  = c a n / ,  
where u represents the free energy of the inter- 
face between the nonpolar part of the molecule 
and the water (or another polar solvent). Now, 
the probability for such a fluctuation can be esti- 
mated by the Boltzmann weight, exp( - A E / T )  = 

exp( - / / I s c )  with the length scale 

For a molecule with circumference a,, = 3 nm 
and interfacial free energy u = 0.02 ~ / m ~ ,  this 
length scale is lSÃ = 0.07 nm at room temperature 
with T = 4.12 x lop2' J. 

Thus, the protrusions of the lipid water inter- 

face introduce another length scale, the protru- 
sion length 1 .  Within the single mode picture, 
this scale is in fact equal to lsc. In general, one 
has 1 = zprlsc with a dimensionless coefficient 
zÃ > 1 as will be shown below. 

Thus, the interplay between hydration forces 
and protrusion modes can be understood in terms 
of two length scales, the hydration length l , ,  and 
the protrusion length 1 .  

There is, however, one obvious problem with 
the original picture based on single protrusion 
modes. Since lSc is of the order of 0.1 nm, a 
protrusion of a single molecule which bridges a 
water gap of about 1 nm is very unlikely. In real 
systems there are, however, two different effects 
which act to increase the effective range of pro- 
trusions: (i) the molecules protrude collectively. If 
several molecules protrude in a coherent fashion, 
they can form, e.g., transient ripples which are 
similar to the frozen ripples of the Pa phase. In 
this way, collective protrusions can bridge a water 
layer of 1 nm even though the relative displace- 
ments of neighboring molecules are only a few 

Fig. 1. Snapshot of membrane segment which is roughened by collective protrusion modes. The vertical scale and thus the size of 
the protrusions have been exaggerated compared to the diameter of the molecules. 



R. Lipowsky and S. Grotehans /Biophys. Chem. 49 (1994) 27-37 

angstrom; and (ii) the profile of the water struc- 
ture in front of the lipid surface is shifted by the 
protrusions. These two effects will be studied 
below. 

2. Models for collective protrusion modes 

We will now go beyond the single mode pic- 
ture and consider a rough membrane in which all 
molecules can be displaced with respect to the 
flat state [7]. A snapshot of such a membrane is 
shown in fig. 1. In addition, we will include the 
direct interaction V(l) between the membranes. 
The separation of the protruding molecule i from 
the other membrane is now described by the local 
displacement field 1 which varies along the mem- 
brane surface. Each molecule within the mem- 
brane is supposed to be in contact with n nearest 
neighbors. The energy of such a membrane con- 
figuration is given by 

and its statistical weight is given by the Boltz- 
mann factor - exp[-^{/}/TI. Strictly speaking, 
this model governs the interaction between one 
bilayer with protrusions and another flat bilayer. 
However, it can also be used in order to estimate 
the interaction of two protruding bilayers as dis- 
cussed at the end l. 

Protrusions change the area of the lipid water 
interface. Therefore, these fluctuations are gov- 
erned by an effective interfacial tension. The 
water layer between two lipid water interfaces 
then resembles a thin wetting layer. Indeed, an 

' The model as defined by (2.1) has the same form as the 
so-called solid-on-solid (SOS) models which have been fre- 
quently used for. two-phase coexistence and crystal growth. 
The name "solid-on-solid" refers to the fact that the inter- 
facial configurations have no overhangs which is certainly 
valid for the protrusions considered here. In addition, one 
has to impose the restriction that 11, - l, I is smaller than 
the length of the lipid molecule which is also fulfilled for 
the parameter values considered here. 

interface model similar to (2.1) has been previ- 
ously studied in the context of wetting in a lattice 
gas (or Ising) model. This interface model be- 
longs to the same universality class as the contin- 
uum model defined by 

in which the discrete sites i have been replaced 
by the continuous coordinate x = (x,, x2). The 
parameter Epr represents the effective interfacial 
tension on large scales; the index pr indicates 
that this tension arises from protrusions. It will 
become clear below that 

The Monte Carlo simulations described in section 
4 below lead to the estimate cE = 0.067. Using 
the above estimate for lx, one then has Epr 
0.056 ~ / m ~ .  

3. Functional renomalization of continuum inter- 
face models 

The continuum models as given by (2.2) can be 
studied by functional renormalization group (RG) 
methods. It is convenient to start from the non- 
linear recursion relation as described in ref. [15] 
in order to include the hard wall potential V,Jl). 

3.1. Disjoining pressure from hard wall 

In the absence of the hydration force, i.e. for 
V(l) = V&), the nonlinear recursion relation 
leads to an effective potential V z  which depends 
on the roughness [, and which behaves as 

for large 1 where erfc[ y ] denotes the complemen- 
tary error function 
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The mean separation t then follows by balancing 
the external pressure P with the disjoining pres- 
sure arising from the hard wall: 

The interfacial roughness [, is given by 

where a is the diameter of the lipid molecule, 
and the correlation length [,, follows from 

The three equations (3.3)-(3.5) have to be solved 
selfconsistently. In the limit of small P ,  one ob- 
tains 

and 

where the protrusion length 1 is given by 

The pressure amplitudes Phw and P h ,  are de- 
termined by the requirement that there are no 
correction terms of order one. The roughness 6, 
of the lipid water interface must be small com- 
pared to the membrane thickness. This restriction 
will be discussed in more detail below. 

If one inverts the relations (3.6) and (3.7) one 
arrives at 

and 

Thus, the protrusion length 1 governs the decay 

of the disjoining pressure which arises from the 
renormalization of the hard wall potential by the 
collective protrusion modes. Note that the contin- 
uum model leads to 1 = ( T / ~ T ~ E ~ , . ) ~ ~ ~  whereas 
the discrete model will give 1 - lsc = T/a@. 

3.2. Disjoining pressure from hydration interaction 

Now, consider potentials of the form V(1)  = 

V h J 0  + A W ) ,  where A ^ ( / )  contains the hydra- 
tion interaction as in (1.1). In this case, one may 
first implement the hard wall potential Vhw( l )  
into the nonlinear recursion relations and then 
linearize the resulting RG transformation for 
A V ( 0  [16]. In this way, one arrives at  the effective 
potential 

with 

and 

The linear renormalization of AV(1) as described 
here is somewhat different from the linear recur- 
sion relations which have been previously used in 
the context of wetting [17-191. In particular, the 
renormalization group introduced in ref. [18] leads 
to an effective potential of the same form as in 
(3.12) but with the upper integration limit yo 
replaced by m. 

In  the  present context with AV(1)  = 

Vhy  exp( - 1/lhy ), one obtains 

for large 1. Now, one may again determine I and 
6, from the relations (3.3)-(3.5) provided v^, is 
replaced by V e f f  = v,$ + A V ~ ~ ~ .  The resulting be- 
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and 6: is still given by (3.6) and (3.7) as derived 
for the hard wall. In the hydration regime, on the 
other hand, one finds 

A^/,  L) % e - l / l h y + ~ - L  /2Gy. (3.15) 

The selfconsistent solution now gives 

p = p2 e-e/'t (3.16) 

with the decay length 

lt = [l + (1pr/2fiy)2] lhy. (3.17) 

Fig. 2. Monte Carlo data for the reduced pressure Q = P/Pgc The amplitude P2 is given by 
as a function of the mean separation ( z )  = //!. Four sets 
of data are shown (i) for the hard wall potential, and (ii) for 
the hydration potential (4.2) with U,,., = 13.5 and different 

(3.18) 

values of the hydration length z,, = lb/ lsc.  The lines repre- 
sent fits according to (4.3) and (4.7). 

with 

havior depends on the relative size of the two 
The roughness 6, , on the other hand, is found 

length scales lhy and lpr = ( T / ~ I T E ~ ~ ) ~ / ~ .  Indeed, 
to satisfi the relation 

one finds two different scaling regimes: (i) the 
protrusion regime with lP, > 21^; and (ii) the = e-2t2Â / I &  

2 L (3.20) hydration regime with 1 < 21h.  
Within the protrusion regime, functional with another pressure amplitude P2, . This rela- 

renormalization leads to AVeff(l, 6 ,) - exp( - 1 tion has the same Gaussian dependence on 6 , as 
/ 2 ( 2 )  and the asymptotic P dependence of t for a hard wall. 

Fig. 3. (a) Monte Carlo data for the reduced pressure Q = P/P,,. as a function of the squared roughness ( z ' ) ~  = (^;^ /lsc)2. Three 
sets of data are shown: (i) the hard wall (o), (ii) the hydration potential (4.2) with U,,,, = 13.5 and zhy = 1.5 (X), and (iii) the 
hydration potential with U b =  13.5 and zhy = 3 (0). (b) Monte Carlo data for the squared roughness ( z 2 ) =  = (6 / lsc)'  as a 
function of the mean separation ( z )  = t / l sC.  The symbols have the same meaning as in (a). The lines represent fits according to 

(4.8). The systematic deviation of the data points from these lines for large ( z )  arise from finite size effects. 
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4. Monte Carlo simulation of discrete interface 
models 

The predictions of functional renormalization 
as described in the previous subsection can be 
checked by Monte Carlo studies of the discrete 
models as given by (2.1) [20]. It will be convenient 
to use dimensionless variables. Thus, let us intro- 
duce the rescaled coordinate z = l / lsc with the 
scale 1 = T / a o u  as before. One then arrives at 
the effective Hamiltonian 

{ z )  / T  = ^\ z,  - z,  I / n  = ^ U ( z , )  (4.1) 
<Ãˆ  i 

with the rescaled interaction 

This interaction depends on the rescaled pressure 
Q = A o P / a n u  and on the rescaled hydration pa- 
rameters Uhy = A0VhY/T and zhy = lhy/lSc.  Using 
the values an = 3 nm, A n  = 0.7 nm2 and u == 0.02 
J /m2 ,  one obtains the pressure scale Py, = 
a e / A 0  = 8.6 x lo7 J/m3, which lies within the 
range of the experimentally observed values for 
pt - 

4.1. Disjoining pressure from hard wall 

First, let us again consider the case where the 
interaction V(1) or U ( z )  does not contain any 
hydration term, i.e. the case V , ,  = U , ,  = 0. In this 
case, the repulsive interaction is determined by 
the protrusions alone which transform the hard 
wall into a smoothly decaying potential. The MC 
data for the mean separation ( z )  and the squared 
roughness ( z 2 ^  = ( ( z  - ( z  ) I2 )  are shown in figs. 
2 and 3 for n = 6, i.e. for the case of six nearest 
neighbors per lipid molecule. The data for the 
mean separation ( z )  can be well fitted to the 
functional form 

as follows from (3.9) with Q = P/Psc and ( z )  = 

Nc. From this fit, the decay length zpr  = lpr/lsc 
and the pressure amplitude Qhw = Phw/Psc are 
found to be zpr  = 1.54 Â 0.03 and Qh = 0.51 Â 
0.03. 

The data shown in fig. 2 have been obtained 
for ( N , ,  x N,, )  lattices with N,,  = 20 and N ,  = 40. 
These data are not affected by finite size effects 
over the whole range of Q values as has been 
checked by additional simulations with N,,  = 80. 
The interfacial roughness, on the other hand, is 
more susceptible to finite size effects. 

Indeed, inspection of fig. 3a shows that the 
hard wall data for Q as a function of ( z 2 ) c  
exhibits a point of inflection which lies in the 
range 5 $ ( z 2 ^  $ 6.  For larger values of ( z 2  )a 
the data are curved downwards whereas the 
asymptotic behavior of In Q should be linear as a 
function of ( z 2 ^  as follows from (3.10) by rescal- 
ing. This downward curvature of the data is an 
artifact arising from finite size effects. 

A simple estimate for the truncation of the 
accessible ( z 2 ^  range by finite size effects can 
be obtained as follows. For periodic boundary 
conditions as used here, the interface segment 
becomes strongly correlated as soon as the corre- 
lation length [ , , /a  is comparable to +N,,. It fol- 
lows from (3.4) and ( z 2 ^  = ([ that this 
limit is reached for 

For N - 20, 40 and 80 and z p r  = 1.54, one has 
( z 2 ) *  L5.5,  7.1, and 8.8, respectively. In prac- 
tice, finite size effects strongly affect the data for 
z 2 ) ^  already for [ , , /a  == %. 

If one rescales the result of functional renor- 
malization as given by (3.101, one obtains 

for large ( z2 ) , : .  Fitting the hard wall data in fig. 
3a to this functional form over different ranges of 
( z 2 ^  leads to the estimate Q h w ,  = Phwi/Pw = 
0.9. The quality of this fit has been checked in fig. 
3b which shows ( z )c as a function of ( z ). Here, 
a combination of (3.9) and (3.10) leads to 

This functional form is used to fit the hard wall 
data in fig. 3b with the parameter values for z p r ,  

Qhw and Qhw as obtained from the other fits. 
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4.2. Hydration regime 

Several hydration potentials as given by (4.2) 
with U h  > 0 and zhy  > = 0.77 have also 
been studied. These potentials belong to the hy- 
dration regime for which functional renormaliza- 
tion predicts the non-universal behavior as given 
by (3.16)-(3.20). 

The corresponding MC data for the mean sep- 
aration ( z )  = f / l sc  and the squared roughness 
( z 2 ^ :  = ( [ , / l s c )2  are again displayed in figs. 2 
and 3, respectively. In this case, the prediction 
(3.16) of functional renormalization leads to 

which has been used to fit the ( z )  data in fig. 2. 
For U ) ,  = AOVhy /T  = 13.5, one then obtains the 
decay length z ,  = l t / l sc  = 1.53, 1.89, 3.19, and 7.60 
and the amplitude Q2 = P2/Psc = 4.0 + 0.7, 5.8 Â 
1.1, 4.4k0.9,  and 1.8 k 0 . 4  for zb=lb/ lsc=0.9 ,  
1.5, 3, and 7.5, respectively. These parameter 
values are in excellent agreement with the rela- 
tions (3.17)-(3.19) [7]. 

The functional dependence of Q on ( z 2 ^  
follows from (3.20). The corresponding fits lead 
to Q z L  = P2L/Psc  = 1.4 and 2.5 for zhy  = 1.5 and 
3, respectively. The data for ( z 2 ^  versus ( z )  as 
shown in fig. 3b should exhibit the asymptotic 
behavior 

This functional form is represented by the lines in 
fig. 3b for zb  = 1.5 and 3 with the parameter 
values for z p I ,  z t ,  Q 2 ,  and Q 2 L  as determined 
before. 

positions of the two lipid water interfaces bound- 
ing the bilayer by h ( x )  + I + ( x )  and h ( x )  - l _ ( x ) ,  
respectively. 

The lipid water interfaces have a certain 
roughness given by 

We will consider the simplest case in which the 
two monolayers of the bilayer have the same 
composition, and both interfaces have the same 
roughness 8  with 

where amem denotes the thickness of the planar 
bilayer. The areas A + of the monolayers differ, 
in general, from the area A of the neutral sur- 
face. For small displacements from the planar 
state, the excess area A A +=A +-A  - is given by 

Thus, the elastic energy of the bilayer is taken to 
be 

where Epr again denotes the tension of the lipid 
water interface arising from protrusions. 

It is useful to introduce the new coordinates 

1 1 
8 = - ( l + + l _ - a m )  and S2= -(l+- 1 - ) .  
- ^2 ^2 

5. Reduction of bending rigidity by protrusions 

A bilayer which exhibits protrusions should be 
easier to bend than a planar bilayer. Therefore, 
one would expect that protrusions act to lower 
the bending rigidity. This reduction will be stud- 
ied here within a simple continuum model. Thus, 
consider protrusions from a bilayer which is 
slightly curved. The bending of the neutral sur- 
face of this bilayer is described by h = h ( x ) ,  the 

The roughness of one of the two lipid water 
interfaces is now given by 82 = ̂ (. 8: + 3;) .  

The displacement field 8 ,  describes peristaltic 
deformations of the bilayer in which this bilayer 
is compressed and stretched in the transverse 
direction. We will focus on the limit of low com- 
pressibility, for which 1 ,  + 1- = am,,, and thus 3 ,  
= 0. In this limit, the second displacement field 
a2 describes protrusions of two strongly coupled 
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lipid water interfaces, and the roughness 8  of one 
of these interfaces satisfies 

If the elastic energy (5.4) is expressed in terms of 
8 ,  and S2, one obtains 

Thus, up to second order in the displacement 
fields, the height variable h of the neutral surface 
is only coupled to the displacement field a2 = (1. 
- lL)/ a. 

In order to obtain a finite value for the rough- 
ness of the lipid water interfaces, one has to add 
some potentials which confine these interfaces. It 
is convenient to use the harmonic terms given by 

The coefficient A must be large in order to attain 
the limit of small compressibility; its precise value 
is, however, irrelevant in the present context. The 
coefficient B, on the other hand, determines the 
expectation value ( 5 2 )  = 213~. Indeed, after an 
integration over all configurations of h,  one ob- 
tains 

where qmax is the upper outoff of the q integra- 
tion. It then follows from ( 5 2 )  = 2 s 2  that 

with 1 2  = T / ~ I T S :  as in (3.8). 

Thus, the lipid bilayer is now governed by the 
effective Harniltonian 2Y0 + PI where the pa- 
rameter B is related to the roughness 8  arising 
from protrusions via (5.10). One may now inte- 
grate over all configurations of the displacement 
field 82 which leads to 

with 

and 

In the limit of small q, this leads to 

where Lnr = cET/ l& has been used. Using c x  = 
0.067, qmB = 2^/TT/a, a  = (as appropriate 
for a triangular lattice), one finds 

with c, = 0.9 for a,, = 3 nm and lSc = 0.1 nm. This 
would imply that A = 0.04 and 1.21, or K ~ ~ ~ / K ~  = 
0.96 and 0.45 for 8 / 1 =  1 / 2  and I,  respectively. 

Thus, as soon as the roughness 8  of the lipid 
water interface becomes comparable to the pro- 
trusion length 1 ,  the effective bending rigidity 
K,.(( becomes significantly smaller than the bare 
rigidity K ~ .  In fact, the Gaussian dependence of A 
on 8 / 1  as in (5.15) implies that a small increase 
of 8  should lead to a large increase of A and thus 
to a large decrease of K ~ .  

6. Summary and outlook 

In this paper, we studied the interplay of col- 
lective protrusion modes and hydration forces 
arising from water structure. The roughness of 
the lipid water interfaces was found to be always 
small compared to the mean separation of the 
lipid bilayers, see fig. 3b. Since the relative dis- 
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placements of the lipid molecules are only of the 
order of a few A, the head groups can be treated 
as rather rigid rods and head group flexibility can 
be ignored. (The opposite limit of very flexible 
head groups attached to a planar lipid-solvent 
interface has been studied by computer simula- 
tions in ref. [21]). 

The discrete model as given by (2.1) describes 
the interaction of one protruding and one flat 
lipid water interface belonging to two different 
lipid bilayers. For the interaction between two 
flexible lipid bilayers, there are two changes. 

First of all, each bilayer is bounded by two 
lipid water interfaces. The protrusion of one bi- 
layer will, in general, involve both lipid water 
interfaces of this bilayer in order to avoid bilayer 
cavities which would cost a lot of energy. If the 
bilayer were incompressible, the two lipid water 
interfaces would have constant separation which 
would imply that the interfacial free energy for its 
protrusions is increased by a factor of two. 

On the other hand, if both bilayers exhibit 
protrusions, the effective interfacial tension for 
their relative displacement field is decreased by a 
factor of two. Thus, these two effects compensate 
each other to a certain extent and lead to an 
overall increase of u by a factor of }/2. The finite 
area compressibility of the bilayer will act to 
reduce this factor. 

In summary, the effective repulsive interaction 
between lipid bilayers will, in general, depend 
both on direct hydration forces and on 
thermally-excited protrusions. Two interaction 
regimes have to be distinguished depending on 
the relative size of the protrusion length 1 and 
of the hydration length l,,,,. The protrusion length 
depends on temperature and on the molecular 
structure of the lipid bilayer, the hydration length 
on the structure of the solvent. 

Within the protrusion-dominated regime with 
lPr > 21h,  the decay length of the effective repul- 
sive interaction is in fact given by the protrusion 
length lpr = zprlsc = zprT/a,,u, see (3.9) and (4.3). 
Within the hydration-dominated regime with I h y > 2 1 ,  on the other hand, this decay length is 
given by l , =  l h y +  1 ; r / 4 1 h y =  l h y  + 
zy/4(aoa)21h, , ,  see (3.17) and (4.7). 

At fixed temperature T ,  the repulsive interac- 

tion will be dominated by protrusion and by hy- 
dration forces for small and for large values of 
the parameter a n u ,  respectively, where a n u  rep- 
resents an effective edge tension of the lipid 
molecule. Likewise, protrusion and hydration 
forces dominate for small and for large values of 
the hydration length, respectively. Thus, depend- 
ing on the lipid and on the solvent, a real system 
may belong to either of both interaction regimes. 

For fixed lipid and solvent, on the other hand, 
one will have a transition at a characteristic tem- 
perature T = T* which is implicitly given by 
lnr(T*) = 2lhY(TÃˆ) It follows from the above ex- 
pressions for these length scales that T* = 

2aO$u/zpr  if one ignores the T dependence of 
the mterfacial free energy u and of the hydration 
length lhY. For the hydration-dominated regime 
at low temperatures T < T*, the physical decay 
length I, increases quadratically with increasing 
T, while it increases linearly with T for the pro- 
trusion-dominated regime at T > T* . 

Protrusions are excitations of the lipid water 
interfaces which change the interfacial area and 
are thus governed by an effective interfacial ten- 
sion. These excitations should be dominant on 
length scales which are smaller than or compara- 
ble with the bilayer thickness. On the other hand, 
for larger length scales, the typical fluctuations 
are expected to be bending modes governed by 
bending rigidity. 

A crude estimate for the crossover from pro- 
trusion to bending modes can be obtained as 
follows. For a membrane interacting with a hard 
wall, protrusions lead to the disjoining pressure 
P q c Q h w  e^'p~(1sc/t)1/4 as follows from (4.3) 
and (3.9). Bending undulations, on the other hand, 
lead to P = 2 c v T 2 / ~  with 2cv = 0.1 15 Â 0.005 
(this estimate for c., follows from fig. 1 of ref 
[22]). Thus, the exponential dependence of P on 
t becomes algebraic when S becomes compara- 
ble to the crossover scale t * with 

The previous estimates for PC and I lead to 
P& = 2.9 x J. For bending rigidity K = 
1 O l 9  J, one then obtains the crossover scale 
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f *  = 9.1 1 at room temperature. For f  < l * ,  the 
disjoifling pressure arises primarily from the col- 
lective protrusions. 

In the presence of a hydration interaction, 
V h  exp[ -///,,], the crossover scale f\ is in- 
creased. As an example, consider such an interac- 
tion with lhy = 1.5 lsc - Ip, and Vhy = 13.5 T/A".  
In this case, the above parameter values lead to 
the crossover scale (  ̂= 21.4 I .  For separations 
f  < t * , the disjoining pressure is governed by the 
combined effect of collective protrusions and hy- 
dration while the bending undulations do not 
contribute significantly. 

It has also been shown in section 5 that protru- 
sions act to reduce the bare bending rigidity. If a 
single molecule protrudes from the bilayer, it is 
easier to bend this membrane away from this 
protrusion. The model introduced in section 5 
predicts that this effect is enhanced by collective 
protrusions. In fact, one finds that the reduction 
of the bending rigidity depends very strongly on 
the ratio 8 / 1  where 8 denotes the roughness of 
one lipid water interface, see (5.15). 

The same considerations apply to surfactant 
bilayers. Surfactant molecules are typically 
smaller than lipids and thus characterized by a 
larger protrusion length. In this case, the rough- 
ness 8 of the surfactant solvent interface can be 
enhanced by the addition of cosurfactants. The 
theory described here then gives a simple expla- 
nation for the observed reduction of the bending 
rigidity. 
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