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Abstract. Three non-intersecting strings in two dimensions which interact via short-ranged
attractive potentials

are
studied using bath transfer matrix methods and Monte Carlo tech-

niques. The critical behavior at the unbinding transition and the critical values of the potential
strength are determined for symmetric and asymmetric bundles of strings. In the asymmetric

case, for which the two outer strings have diiferent hne tensions (or interact via
dilferent po-

tentials), the strings unbind in two subsequent transitions, which then exhibit universal critical

behavior. In the symmetric case, where the two outer strings have the same line tension, trie

three strings unbind simultaneously. The critical behavior at this unbinding transition
is

found

to be non-universal for the whole range of accessible length scales, but its parameter dependence
is found to be in strong disagreement with trie predictions of trie so-called necklace model. Trie

more
flexible the inner string, the deeper the critical potential. However, within the numerical

error, three identical strings are found to unbind at the same critical potential strength
as two

strings with the same line tensions.

1. Introduction.

In general, low-dimensional manifolds which interact via short-ranged attractive potentials
and which cannot intersect have been shown, both experimentally and theoretically, to un-

dergo unbinding transitions. At low temperatures (or large attractive potentials) the manifolds

are tightly bound together, thereby minimizing the internai energy. At sufliciently elevated

temperatures (or sufliciently weakened potentials) the manifolds are unbound, maximizing en-

tropy by sampling a larger portion of configuration space. In between, an unbinding transition

takes place iii. Experimental reahzations comprise wetting transitions of interfaces in two

or three dimensions [2] and adhesion transitions of membranes [3, 4]. In finis paper, we ad-

dress the unbinding behavior of three strings
m two dimensions. The term "string" refers to

a one-dimensional fine which (1) is directed (and exhibits an average orientation of its tangent
vectors) and (ii) is govemed by a finite fine tension. Physical examples are domain watts in

adsorbed monolayers, steps on vicinal surfaces, and stretched polymers on a surface.
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The unbinding of three interacting strings was first discussed in the context of trie so-called

necklace model [si. In this model, one considers a limited set of configurations in which the

strings form two types of segments: within these segments, they either form bound triplets or

are completely unbound. The segments are connected via '3-body collisions' at which three

strings bind or unbind simultaneously. This model neglects ail configurations in which two

strings form a bound pair to which the third string does not adhere and, thus, ail '2-body
collisions' between two single strings or between a single string and a bound pair of strings.

On the other hand, one would expect that 2-body collisions are more frequent thon 3-body
collisions and thus should be important for the unbinding behavior. Indeed, if 3-body collisions

were exceptional configurations, one would even expect that the critical behavior is dominated

by bound pairs and 2-body collisions.

We have found that the latter behavior does indeed apply to the asymmetric case in which

the two outer strings have a different stiffness (or are subject to different pair potentials). In

this case, a sequence of two unbinding transitions has been found which are governed by 2-body
collisions and thus exhibit umversal critical exponents.

The symmetric case in which the two outer strings have the same stiffness and interact

with identical pair potentials tums ouf to be more subtle. This case was first studied in

the analogous context of fluid membranes [6]. Monte Carlo studies of a symmetric bunch of

these membranes showed an unbinding critical behavior which was clearly different from the

case of two membranes [7]. The effective critical exponents which were extracted from these

simulations were different both from the critical exponents for two membranes and from the

corresponding exponents for the necklace mortel.

Much more accurate data can be obtained by numerical transfer matrix calculations for

three strings in two dimensions. As has been previously reported in a short paper, the transfer

matrix calculations yield data which scale rather accurately over the accessible parameter range

[8]. The transfer matrix data clearly indicate a continuous unbinding transition whereas the

necklace model predicts a discontinuous one. However, the effective critical exponents extracted

from these data are again different from the case of two strings and exhibit a nonuniversal

parameter dependence.
This nonuniversal behavior can be understood in a heunstic way if one considers the config-

urations of three strings which form two bound triplets at their edges. In such a situation, the

string in the middle is confined by the two outer strings and will experience a loss of entropy
which scales as +~

lli~ with the separation of the two outer strings iii. This entropy loss

would lead to an effective repulsive interaction between the two outer strings. It has been well-

established that the cntical behavior of two strings with an interaction m
W/l~ is nonuniversal

and exhibits critical exponents which depend on W iii. As shown below, our transfer matrix

calculations imply that such an entropic force acts over the accessible range of separations.
On the other hand, there are now several results which indicate that, on suficiently large

scales, the asymptotic critical behavior might still be universal. Universal behavior has been

found within two mean-field thermes [9, loi and from an approximate mapping of the string
problem to a quantum spin chain il Ii. In addition, the Schrôdinger equation which corresponds

to N identical strings has been solved in the limit of infinitesimally small potential range which

again yields umversal behavior [12]. This would imply that the effective repulsion becomes

short-ranged at some suficiently large scale. So for,
our

transfer matrix calculations show no

indication of such a crossover scale.

The paper is orgamzed as follows. The effective Hamiltonian for three interacting strings is

defined in section 2 after a brief review of the two-string behavior. The statistical properties
of this mortel can be studied by transfer matrix methods as explained in subsection 2.3. This

leads to another representation of the necklace mortel. However, this model represents a rather
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crude approximation to the problem considered here since even the exactly known limiting case

of a hard watt sandwiched by two flexible strings is poorly described, as shown in section 3. In

general, one has to discretize the transfer matrix in order to perform numerical iterations, see

section 4. Transfer matrix results for the symmetric and the asymmetric case are presented
in sections 5 and 7, respectively; section 6 contains the Monte Carlo results for the symmetric

case. Due to renormalization-group arguments along the same fines as those given in reference

iii,
our results for three strings in two dimensions should aise apply to the unbinding of three

fluid membranes in three dimensions, see section 8.

2. Continuum models for strings.

2,1 BEHAVIOR oF Two INTERACTING STRINGS. The interaction of two strings can be

described by the effective Hamiltonian[1]

~~~~'~~~
Î

~~ lÎ~~
~~ÎÎ~ ~

~ Î~~
~~ÎÎ~ ~

~ ~~~~~~~ ~~~~~~ ~~~

The strings are assumed to be, on average, parallel to each other. Their configurations are

then determined by scalar, single-valued functions li(z) and 12(z). The interaction potential
contains a hard watt at zero separation Ii.e., the strings can net penetrate) and faits off to

zero for large separation. The parameters Kj and K2 denote the fine stiffness. Since the

interaction potential is taken to depend only on the local separation 1(z) e ii(x) -12(x) of

the strings (which is perpendicular to the average tangent vector), we con extract the center

of mass coordinate and obtain the effective Hamiltonian

7iiii
=

/
dz ljK (~j~ ~

+ viiix)) 12)

for the local separation 1, with K w Ki K2/(Ki + K2). This problem can be solved exactly, and

four different scaling regimes for general interaction potentials can be identified iii. These four

regimes are distinguished by the functional form of the long-rangea part of the potential and

anse due to trie competition of trie externat potential with the fluctuation-induced repulsion
between two strings. The latter, effective interaction goes as

VFL
+~

lli~. (3)

If V(1) » 1/l~ for large 1, one is either in the mean-fieid regime or in the weak-fl~lct~lation
regime. The weak-fluctuation regime is defined by VR(1) < lli~ < VA(1), where VR and

VA denote the repulsive and attractive parts of the interaction, respectively; the mean-field

regime is defined by lli~ < VR(1) < VA(1). The case V(1) < lli~ constitutes the strong-

fl~1ct~1ation regime, and the so-called intermediate regime is characterized by V(1)
+~

1/l~, which

again contains three subregimes with complex critical behavior [13]. The latter regime, where

the externat potential has the same functional form as the fluctuation-induced interaction, is

characterized by non-universal unbinding transitions, with cntical behavior depending on the

amplitude of the externat potential.
A renormalization-group treatment of the corresponding problem for two fluid membranes

leads to identical fixed point structures iii. The unbinding transitions of interfaces m two

dimensions and membranes in three dimension should therefore proceed analogously, as indeed

confirmed by Monte-Carlo simulations [7].
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2.2 EFFECTIVE HAMILTONIAN FOR THREE INTERACTING STRINGS. TO proceed, consider

three strings in a plane which are, on average, parallel to each other. Their tensions are denoted

by Ki, K2, and K3, and their mutual interactions by V12(ii -12) and 1fi3(12 -13), which are

taken to depend only on their local distances. Interactions are restricted to nearest neighbors
only; the effect of further-nearest neighbor interactions will be discussed elsewhere. In the

remainder of this work, we are concerned with interactions of the square-well form:

l~j(1)
= cc

for < 0

=(j for0<1<1[j

=
0 for 1[j < (4)

with (1, j)
=

(1,2) and (2,3). Attractive potentials correspond to lÇ[ and V(~ < 0. Clearly,
within the classification scheme presented above, a square-well potential belongs to the strong-
fluctuation regime in the case of two strings.

The effective Hamiltoman for the three strings is then given by

~~~' ~~' ~~

Î
~~

~l~ ÎÎ ~

~ ~~
ÎÎ ~

~ ~Î ÎÎ ~

+12(li 12) + V23(12 13)) (5)

The Hamiltonian can be substantially simplified by making an orthogonal transformation [14,
5, 6] to extract the center of mass coordinate, which then diffuses freely (see Appendix A). The

Hamiltonian for the relative displacement fields then has the form

with

j~ j~ 1/2

~ Ki
Î

~2 ~~~ ~~~ ~~~

and

~~ ~Î~ÎÎÎ3~~~~ KIÎK2~~~
~~~ ~ ~~

~Î'
~~~

where the center of mass coordinate y3 has been omitted already. The hard watt at ii
" 12

corresponds to yi "
0; the one at 12 " 13 to yi "

(K2(Ki + K2 + K3)/KiK3]~/~y2,
see figure 1.

Using the ratios of the fine tensions, which are denoted by

qi + Ki /K2 and q3 + K3/K2, (9)

the angle is given by
à

=

arctan(~/1/qi + 1/qiq3 + 1/q3). (1°)

The problem of three strings in a two-dimensional plane with mutual square-well interactions

has thus been transformed to a problem of one string in a three-dimensional wedge with the

square-well potential at its surface, as shown
m

figure 1. For the transformed system as shown

m
the right part of figure 1, one distinguishes four regions of different potential depths, denoted
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fij~

jj. j.
~ onhogon~

~
K2 Tmnsforrnntion

ii l'~

~~ ~

À23
X'

X

Fig. l. Visualization of the orthogonal transformation. The problem of three strings with arbitrary

hne tensions
in two dimensions (to trie left), interacting with square well potentials, is transformed

into trie problem of
one

string in
a

three-dimensional wedge with angle 0 and square-well potentials

of width d12 and d23 at trie boundaries. Here a shce of the wedge at ~ =
~' with trie distances

ii ii
"

(1/Ki +1/K3)~~~y( and Ii ii
"

(1/K2 +1/K3)~~~(yi sin0 yi cos0) is shown.

by A, B, C, and D: they correspond to zero potential, potential depth -Vi[ or -Vù, potential
depth -lÇ[ V(~, and infinitely high potential, respectively. The thickness of the two strips
denoted by B in the (yi,y2 )-Plane can be read off from (6) and is given by

and

d23
"

~~~~
l[~

=

~l[~. (12)
~

The ratio of the thicknesses is given by

d12 @~Î2
j13)

d23 ~3(~l + 1) ~Î3

The string is on average parallel to the corner of the wedge; m figure 1 we demonstrate the

transformation for one particular value x' of the x-coordinate.

For the symmetric case, with Ki
#

K3, the angle of the wedge is given by

~
"

~L~ctarl(fi), (14)

where

q + qi " q3 (là)

and q =
(1+ fi)/tan~ Ù. For q =

0 we get
=

~r/2 and the Hamiltonian decouples
into two independent problems, each of which can be solved exactly. For q = we get

= ~r
/3;

as q becomes langer and the inner string becomes more flexible, the angle of the wedge
decreases.

2.3 TRANSFER MATRIX FOR coNTiNuum MODEL. Since x is a one-dimensional coordinate

(which plays the rote of time), the statistical properties of the model defined by trie Hamiltonian
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(6) can be studied by transfer matrix methods [là, 16] which lead to a two-dimensional time-

mdependent Schrôdinger-type equation

ÎtlY»(vi, v2)
=

E»lY»(vi,v2), (16)

with trie Hamilton operator

~ ~~Î ~ ~Î ~ ~~
~fi~~

~ ~~
~~~~~

~~~~ ~~
~~~~~

(17)
which describes a 'quantum-mechamcal' partiale

m a two-dimensional potential of the form

given in figure 1.

First, it is convenient to rescale the coordinate system m such a way that the sum of the

widths of the potential strips equals two rescaled units. Using the expressions (II) and (12)
for the thicknesses one chooses

fi "
2yi/(d12 + d23) and g2 "

2y2/(d12 + d23). (18)

Using Equations (II) through (13) one finds trie Hamilton operator in trie new coordinates

to be given by

~ dj2~Î~~Î23)~ ~~Î ~ ~Î~ ~ ~~ ~~~~~~~~ ~~~~~~

+v23 ~~~ ~~~~ ~ ~~~
(ji2 sin à gi cos à)) l19)

2d23

By introducing rescaled potentials

(d~~ + d~~)2 Î(2(d12 + d23)
(2Ù)V12(Ùl)

~ ~j'2
~~

2d12 ~~

and

~~~~~~~
~~~/Î~~~~~~~~ ~~~~~~Î~ ~~~~~~

'
~~~~

which have the same potential range 2d12/(d12 + d23), and the rescaled energy

one can ail refactors and

with the Hamilton operator

Within the (gi, §2)-Plane, the range of the two potential wells is given by 2d12/(d12 + d23) and

2d23/(d12 + d23), respectively.
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Using the latter form of the problem, three different cases can be distinguished:
(A), the general asymmetric case which is characterized by the angle

=
Ù(qi,q3) as given

by (10) and by three additional parameters, namely (1) vj2 "
-(dj2 + d23)~IÇ[/2T~; (11)

V23 "
~(dj2 + d23)~Î~É3/2T~( lLnd (III) d12/d23i

(B), the restricted asymmetric case with

~fO ~fO ~fO (~~)
12 23,

leading to two parameters besides the angle Ù, namely (1) v e v12 " v23 "
-(d12 +d23)~V° /2T~

and (11) dj2/d23i and

(C), the symmetric case with V° w V/~ =
I~[ and

d w dj2
"

d23 (26)

which depends on and only one additional parameter, namely v =

-2d~V° /T~. For the cases

(B) and (C), the rescaled temperature is taken to be

t e
/ô. (27)

In the following, we will focus on case (B) which indudes the symmetric case (C). The latter

case
(C) does net only apply to qj = q3 and 1[~ =

l[~, but to the more general situation with

iii~
=

iG~, (28)

as follows from (13).
For the case K2

" cc, i-e-, if the middle string is a hard watt, one obtains

~
"

~r/2 and
~12

=

lÎ21
~~~ ~~3

~3
(29)

In ail of these cases, it is worth noticing that a difference
m

the range of the two potential
wells of the Hamilton operator (24) arises even if the ranges of the original potentials 1[~ and

1[~ are equal, due to a difference m the tension ratios qj and q3, compare (13).

3. Necklace model.

In this section we will consider an approximation to the two-dimensional potential in (17)
which leads to another representation of the necklace model. This gives rise to a long-ranged
repulsive potential between the two outer strings due to the presence of the inner string.

As already mentioned in the Introduction, one distinguishes m the necklace model only
between segments of the string system in which ail strings are bound together, and segments
where ail strings are separated; these are the strands and beads of the 'necklace', and they

con altemate m an arbitrary fashion. Within the context of the two-dimensional Schrôdinger
equation, the approximation used in the necklace model consists of changing the pair potential

V(1) between nearest-neighbor strings into a merely repulsive one, as given by

Ù(1)
=cc

fort<0

=
0 for 0 < 1. (30)

Thus, the steric part of the interaction is treated exactly. The attraction between the strings

is accounted for m an approximate fashion by keeping an attractive contact potential solely



54 JOURNAL DE PHYSIQUE I N°1

between the two outer strings, which can be thought of as a very short-ranged potential of

depth Po, expressed as P(yj, y2), which is ceiitered around the corner of the wedge. If the two

enter strings are bound together, which means that ail three strings form a bound state, the

system gains an energy Po. On the other hand, if the two enter strings are separated (which
does net necessarily mean that ail strings are separated), the total attractive energy gain is

taken to be zero.

The Hamilton operator corresponding to the necklace model is thus given by

~ ~~Î ~ ~Î~ ~ ~
~fi~~

~~
~~(Ù2

Slll Vi COS

))
+ P(Yl, Ù2), (31)

2 3

which describes a partiale m a two-dimensional potential angle with infinitely high watts and

an attractive region in the corner. The angle is again given by (10).
The corresponding Schrôdinger-type equation can be separated in polar coordinates

r
and

d, if the contact potential P(yj,y2) is taken to be radially symmetric,1-e-, P(yj, y2) +
É(r).

Then, the potential watts embodied in V(1) lead to a boundary condition for d
=

0 and d
=

Ù,

and we get

(-(T~/2) (ô~/ôr~ + (i/r)à/ôr + (i/r~)ô~/ôd~) + É(r)) lvzz(r,d)
=

Ezztvn(r,d), (32)

with

lPn(r, 0)
=

iIn(r, Ù) =
0. (33)

The attractive potential É(r) is defined by

É(r) =Po for0<r<ro

=
0 for ro < r, (34)

with Po < 0.

Due to the boundary conditions (33), the solution has to be of the form

tvn(r, d)
=

ifin(r) sin(l~rd16) + r~~/~4ln(r) sin(i~rd16), (35)

where 1is an integer. This leads to

(-(T~/2) (d~/dr~ + (1/4 (i~r/Ù)~)/r~) + P(r)) lbzz(r)
=

Ezzlbzz(r). (36)

Introducing trie rescaled coordinate z a r/ro we obtain finally

(-d~/dz~ + w/z~ + ji(z)) çizz(z)
=

ezzçizz(z), (37)

with çizz(r/ro) a lbzz(r), en e
2r]En/T~, and w a (l~r/Ù)~ i/4. The rescaled potential ji is

given by

ji(z) =po for0<z<1

=
0 for i < z

(38)
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with po a
2r(Po /T~,

The ground state is obtained for
=

1, which implies that the long-range potential has the

amplitude Ii?i

w =
~r~ /Ù~ 1/4. (39)

Thus, the necklace model gives an effective repulsive potential which goes as
i/z~

+~

1/r~, in

agreement with the simple scaling picture. As mentioned above, the corresponding critical

unbinding behavior belongs to the intermediate fluctuation regime. This problem has been

solved in [13] with the following results:

First one defines the length scales

fm + ((z (zl)~)~/~, (40)

where m is taken to be positive and real. The interfacial roughness is given by fi
=

(2.
The unbinding transition occurs at a rescaled potential depth vo = pc. New the following
subregimes can be distinguished.

For subregime (B) with -1/4 < w < 3/4 one gets non-universal critical behavior with a

parallel correlation length which govems the exponential decay of correlations parallel to trie

strings and which diverges as

f '~'1/£0
'~

(Pc l~o)~~", (41)

where eo is trie ground state energy and

v =
(1/4 + w)-1/2

=
à /gr. (42)

In this regime, ail length scales satisfy the scaling relation

(z)
+~

fi
+~

() (43)

with (
=

1/2.
For subregime (C) with w > 3/4, one has vjj =

1 but

fm
+~

(Pc -Po)~"~ (44)

with

vm = ~~
~ ~

(l/4 +
)~/~)

=

(~ ~ ~ i) (45)
m 2 m 2

for
m > (1 + 4w)1/~ 2

=
2(~r16 1) > 0.

Our way of solving the necklace model leads to exactly trie same results as the original
solution [5, 18], but in addition we obtain the effective potential in an explicit form, see

(39). The amplitude w
of the repulsive potential vanishes for

= 2~r, which is net realizable

within the original model as given by il?). The smallest value obtainable from this model

is w =
15/4 for

=
~r/2, which corresponds to the case of two strings separated by a rigid

watt. In this case, the original model can be solved exactly and gives w =
0. The value of w

obtained within the necklace model is rather high and leads already to a strongly discontinuons

unbinding transition. The presence of such a strongly repulsive potential even for the case of

two decoupled strings is an artefact of the necklace model in which attractive nearest-neighbor
interactions have been omitted.

Another severe limitation of the necklace model is that the successive unbinding of the three

strings at two different transition points is excluded a priori. As is shown below, the strings
actually do undergo two unbinding transitions as soon as one has two different potential ranges

d12 ~ d23.
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One way of improving upon trie result within trie framework of the necklace model consists m

changing the boundary condition along the edges of trie wedge in such a way, that one recovers

trie exact result for
=

~r/2. This amounts to the shifted angle Ù'
=

+ 3~r/2 as trie new angle
of trie wedge, where is still given by (10). Trie resulting amplitude is

W =
(~/Ù')~ l/4

=
7r~/(Ù + 37r/2)~ l/4 (46)

which leads to

v =
/~r + 3 /2. (47)

As will be shown below, this gives a good fit to the critical behavior at and near =
~r/2.

4. Transfer matrix for the discretized model.

Here, we introduce the numerical transfer matrix method. For the application of this formalism,
the spatial coordinate x will be discretized into a lattice with sites (xi) and lattice constant

AZ. The string configuration is then specified by yaj a
ya(xz) (a

=
1, 2), and the Hamiltonian

(6) now takes the form

~(Yli,l/21)
"

~~~ ~Î ~~~~
ÎÎ~~~~~

~
~~~~

ÎÎ~~~~~
~ ~~

~fi~~~~
1

~~~
~~~~~~

~~~ ~ ~~~ ~~~

~~
~~~~

Now we decompose this discretized Hamiltoman as

~(Zli, Z21)/T
#

~ ~Î~(Zli, Z21> Zli+1, Z21+1)> (49)

1

with

~lz(Zli, Z21, Zli+1, Z21+1) ~ j(Zli Zli+1)~ +
(Z21

Z21+1)~ + ~2(Zli+1)

+Ù23(z2z+1 sinÙ ziz+i cosÙ), (50)

where we have used the rescaled variables zaz e
yaz/fi and the reduced interactions

Ù12(z) e AxV12(~ÎAXT(Ki + K2)/KiK2z)/T

and Ù23(z) e AxV23(~ÎAzT(K2 + K3)/K2K3z)/T. The potential depths of these reduced

interactions are given by

Ù12(z)
=

-U12 + @V~[ for 0 < z < z[~ (si)

~~~

~~~~~ ~~
~

Îv13 for o < z < zj~ ~~~

with trie potential ranges given by

d23
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.B.

~-
.

. . .Ù' 'A

~-~

Fig. 2. Discretization of trie wedge for q =
Ki/K2

=
K3/K2

"
1.à, or

0
=

2arctan(1/2),
as used

in trie transfer matrix calculation. The potential depths in trie regions denoted by A, B, and C
are

0, U, and 2U, respectively.

The statistical weight W(ziz+1,z2i+1) of a path ending at (ziz+1, z2z+1) satisfies the recursion

relation

W(ziz+1, z2z+1)
"

fif~~ / /
dzizdz2z exp (-Hj(ziz, z2i, ziz+1, z2z+1)) W(ziz, z2z), (54)

where tif is a normalization constant. The integral kernel in (54) is called the transfer matrix.

In Dur implementation we aise discretized the variables ziz and z2z with sites (z(~) and (z)j)
and lattice constants Azi

"
Az2 % hz

m
the directions perpendicular to the strings, replacing

the double integral f fdzizdz2z by the double sum £~ £~(Az)~. Moreover, we restricted

the double sum to nearest neighbors only, yielding the so-called restricted solid-on-solid model.

Since our system is homogeneous in the x-direction, we drop the1 index and obtain the recursion

formula

J'+i k'+i
W'(zl', zl')

=
fif~~(Az)~ £ ~j

exp (-H(z(, z(, zl', zl') W(z(, z() (55)

j=j'-i k=k'-i

as used in our calculation. The restriction to nearest neighbors should not change the critical

behavior but saves computer time. This is well-established for the case =
~r/2. We also

confirmed this expectation by numerical analysis of a discretized version of the necklace model

for the angles
= ~r, ~r/2, 2arctan(1/2), and 2arctan(1/3), where we indeed find accurate

agreement between our measured exponents and the exponents derived in the last section, see

subsection 4.3.

We discretized the system using 40, 000 or 80, 000 sites. The recursion relation (55) was

iterated typically 20, 000 times for each lattice site using a fully vectorized code.

4,1 DiscRETizATioN. The discretization of the Hamiltonian (50) in the (zi, z2)-Plane de~

serves special attention. First of all, the discretization has to be symmetric with respect to

an interchange of the two expressions zi and z2 sinÙ zi cosÙ if the original system of three

strings is symmetric uuder au interchange of the outer two strings. This can be achieved by
putting the bisector of the potential angle parallel to one of the axes of the orthogonal set of

discrete sites (z(, z( ).
Secondly, the thickness of the square wells has to be chosen in such a way that the density of

sites is constant in ail regions of the wedge. As an example, consider figure 2 in which the actual

realization of the two-dimensional potential for
=

2arctan(1/2) is shown. This is achieved
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o

by displacing the potential edge by p =
2 in the horizontal direction at every vertical step.

The thickness of the potential in the horizontal direction is denoted by m. The three regions
denoted by A, B, C are distinguished by the potential depth being 0, U, 2U, respectively.

The constants p and m have to be adjusted in such a way that the density of sites in regions
B and C are the same. The density d(B) of sites in region B is d(B)= (in umts of the lattice

constant). The area of region C is m~ /2 cot(Ù/2). The number of sites in region C is (for small

enough values of m) equal to m, so the density d(C) is d(C)=2cot(Ù/2) /m. Since cot(Ù /2)
= p

we arrive at the simple condition m =
2p, which is actually met in figure 2. We satisfied this

condition for ail transfer matrix calculations.

The validity of this discretization is checked by our transfer matrix calculation of the necklace

model, presented in subsection 4.3 below.

4.2 OBSERVABLES. Once the transfer-matrix iteration has been performed sufficiently often,
the distribution W(z(, z() becomes stationary under the operation defined by (55) and we get
W'((zi,z2))

=
W((zi,z2)) + Wst((zi,z2)). This stationary state is then proportional to

the ground state of trie transfer matrix. The expectation value of an operator A((zi, z2)) for

penodic boundary conditions can then be obtained by usmg

£ ~wj(~j~~j) ~(~j~~j)
~~~ ~~

£ w2 ~J ~k
~~~~

j,k St 1, 2

We calculated the mean string separations (lai, and higher moments thereof,

(lm)~/~, (57)

as well as the perpendicular correlation length

tj
=

j(ia (lai)211/2, (à8)

where the variables la are defined by

ii~ m ii i~ =
~~~(~j~ ~~~zi (59)

1 ~

and

i~~ + i~ i~ =
/~~~'([jj

~~~
(z~ sin à zi Cos à). (60)

We always checked for the symmetric case Ki
"

K3 that the equality 112 "123 actually froids.

Trie free energy per unit length con be obtained (up to a
constant) via

f
=

-~)~
(61)

where tif represents the numerically determined normahzation as m (55). The parallel corre-

lation length is then given by
f

"
T/(fo f), (6~)

where Jo is the free energy of the lowest scattering state (which corresponds to the zero-energy

state m the Schrôdinger-equation formalism).
In the course of our calculation, we scanned the potential depth U w U12

"
U23 from a large

value-where the strings are tightly bound together-to a small value, where one is sufficiently
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close to the unbinding transition. We typically calculated the above mentioned averages for

100 values of U, the points distributed logarithmically in U to ensure good fitting in a log-log
plot.

We also subtracted from the averages the values at infinitely high potential depth, which

can be calculated exactly:
(la)oo

=
1[ /2 for U

= cc (63)

and

( [~
=

l$ llà for U
= cc. (64)

These values represent a correction to scaling and are especially important for small values

of iii. Through the remainder of this paper, these corrections are subtracted from all length
scales used for further analysis.

In our transfer matrix calculation (using the Hamiltonian given by (50) we set the lattice

constant hz equal to one. The line tensions Ki, K2, and K3 do not enter the transfer matrix

explicitly but determine the wedge angle and the ranges z[~ and z(~ of the potential wells,

see
(10), iii), (12), and (53).
Another subtle point is the range of the potential depth for which the data are to be con-

sidered. If the potential is too deep, the distribution will be centered close to the edge of the

wedge and will not feel a continuous angle but rather the single steps of trie potential rim

(especially for small angles) if the potential is too shallow, the distribution will approach the

cutoff of the discretization and the finite size of the system will affect the unbinding.
Calling lm~x the maximal value available due to the spatial restriction imposed by the finite

system, we obtained data only within the following limits:

1$ < (la) < furax/5. (65)

Consequently, the data for the discretization introduced in subsection 4.i are restricted to a

range of half a decade in (1) or fi, which seems rather small but nevertheless allowed us to

infer effective critical exponents. Furthermore, for q =
i, we were able to extend the scaling

regime to more than a decade by using a different discretization scheme.

4.3 NUMERICAL TRANSFER MATRIX RESULTS FOR THE NECKLACE MODEL. The numerical

implementation of the transfer matrix method involves two subtle points: (1) the discretization

of the wedge for different angles and (ii) the restriction to nearest-neighbors only, the so-called

restricted solid-on-solid case. Since the critical behavior is found to be non-universal, 1-e-,
dependent on the model parameters, it is not obvious a priori that this behavior is not aflected

by (1) and (ii). To check this important point, we performed a numerical transfer matrix

calculation of the necklace model, for which the exact exponents were derived in section 3.

The approximation constituting the necklace model is implemented in the numerics by keep-
ing the attractive potential of depth U only on the left two discretization sites of region C in

figure 2, having potential zero on ail other sites (and similarly for different wedge angles Ù).
Note that the repulsive part of the potential is treated exactly through the boundary conditions.

We performed calculations for
= ~r, ~r/2, 2arctan(1/2), and 2arctan(1/3), the discretization

for
=

2 arctan(1/2) is shown in figure 2. In figure 3, we show calculated moments of the radial

distance from the corner of the wedge, r e
@@, for the angle

=
~r/2. The moments

were fitted to a power law of the form

(rm)I/m
~

ju u~) -Mm j66)

This fit led to the estimate Uc ct 1.35. The rescaled potential depth, (U-Uc) /U,
was varied over

two orders of magnitudes. The resultant exponents are v3 "
0.164 + 0.005, v4 "

0.251+ 0.005,
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4

m=3

0.0002 Ô.coi Ô.ol 0.04
U-Uc

Fig. 3. Log-log plot of transfer matrix results for trie necklace model with 0
=

gr/2, corresponding

to the middle string being
a

hard wall.

~2r r r/2 r/3

~
zi4 r/5

V~

0.6

0.4

0.2

o-Ù

o-o
W

Fig. 4. Comparison of the analytic results for trie necklace model, derived in section 3, and the

numerical results for four dilferent angles. Shown
are various exponents of the moments of the radial

distance, (r~)~/~

and v5 "
0.307+0.01, which are to be compared with the analytic results (45) #ving v3 "

1/6,

v4 "
1/4, and u5 "

3/10. These exponents, together with results for the other wedge angles,

are plotted and compared with the exact results in figure 4. The overall agreement between

the numerical data and the analytic results is quite satisfactory. Note that for
= ~r, the

border between subregime B (characterized by one length scale), and subregime C (with many

different length scales) is reached. In the latter regime, all moments of
r scale with a different

exponent.

The good agreement shows that iii the discretization of the wedge is adequate, and (iii the

restricted solid-on-solid approximation does not change the critical behavior. This makes us

quite confident about the transfer matrix results obtained and presented in the following.
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Table I. Symmetric systems with Ki
"

K3 as studied by the transfer matrix method with

lattice parameter p, wedge angle Ù, fine tension ratio q =
Ki/K2> and width z° of the potential

strips in units of the lattice constant hz. Figure 2 shows the particuiar discretization used for
the third system with p =

2, corresponding ta the enter strings being 3/2 times more rigid thon

the middle string. The last co1~lmn grues the critical potential strength Uc.

=
hz

=
Uc

=
~r/2 0 0.1930

1.s 2 arctan(2/3) cf 0.37~r 0.625 1.6641 0.1543

2 2 arctan(1/2)
cf 0.30~r 1.5 1.7889 0.1395

3 2 arctan(1/3)
ci 0.20~r 4 1.8974 0.1273

4 2 arctan(1/4)
ci 0.16~r 7.5 1.9401 0.1223

6 2 arctan(1/6)
cf 0.ll~r 17.5 1.9723 0.l178

8 2 arctan(1/8)
cf 0.08~r 31.5 1.9846 0.l158

10 2 arctan(1/10) ci 0.06~r 49.5 1.9899 0.l147

12 2 arctan(1/12) ct 0.05~r 71.5 1.9937 0.l140

5. Transfer matrix results for symmetric bundles.

For the symmetric case
land in the continuum limit), the critical behavior depends on a single

parameter q, defined by Ki
"

qK2
"

K3, and the wedge angle
=

arctan 2/q+1/q2
as

in (14). For the discretized case, one also expects a nontrivial dependence of non-universal

properties (such as the transition temperature) on the small-scale cutoff AZ via the range of

the attractive potential z° e z[~
= z(~ as given by (53). The string separation is now calculated

as an average over the two separate string separations

Ill + lÎi2l/2 + (Î231/2, (67)

and analogously for the other length scales.

Table I summarizes the parameters of the different symmetric systems studied using the

transfer matrix method. The lattice parameter p as given in the first column, determines the

angle of the wedge and, in tum, the ratio of the line tensions of inner and outer strings. Only

a discrete set of angles is accessible using the discretization scheme displayed in figure 2.

5.1 CRITICAL EXPONENTS. In figures 5 and 6 we show data for the angles 7r/2 and

2arctan(1/8), respectively. Here and below, the string separation 1is measured in units of

the potential range 1°. In figures Sa and 6a data for (ii, fi
"

((1- (1))2)~/2, and (jj =

fo /T + In tif)~~
are plotted on a log-log scale as a function of U Uc, where the corrections

to scaling have been subtracted already and U is defined by

u + ui~
=

u~~, (68)

using (SI) and (52). First we fitted iii to a straight fine in a log-log plot, thus determming Uc

and the critical exponent ifi, according to

Ill
+~

lu Ucl~~. 169)

The values for the critical exponent vi were obtained from fitting fi to the form

t1
~

ju u~)-ù j70)



62 JOURNAL DE PHYSIQUE I N°I

q"0 (a) 12

<1> ~jj
(b)

~~

0.03 u-UC o-1
ù 0.05 u-u o-1

Fig. 5. Transfer matrix results for trie case K2
= oo

and Ki
=

K3, (q
=

0 and 0
=

~r/2). (a) In
a

log-log plot, data for trie parallel correlation length'(filled circles)
are shown to scale

as iii
+~

(U Uc)~"ll
with vii =

1.8 + 0.2. The
mean separation goes as (1)

+~

(U Uc)~~ with ~b =
I.ol + 0.02 and the

perpendicular correlation length goes as fi
+~

(U Uc)~"À with vi =
0.99 + o.02. (b) The diiference

function E as
defined in subsection 5.3 for (1) (circles) and fi (squares) with 7'

=
1.

q=31.5 (a)
~ c

(b)
10 °

~~

~ii ~q~ ~

o~
°

~

~~ Îoo

0.001 u-u~ 0.007 0 u-u~ 0.005

Fig. 6. Transfer matrix results for the case Ki /K2
=

K3/K2
=

31.5 or
0

=
2 arctan(1/8). (a) Data

for the parallel correlation (filled circles)
are

shown to scale
as (ii

+~

(U Uc)~"" with vii =
1.6 + 0.2.

The mean separation behaves
as (1) +~

(U Uc)~~ with ifi =
0.707 + 0.02 and the perpendicular

correlation length diverges
as fi

+~
(U Uc)~"À with vi =

0.712 + 0.02. (b) The diiference function

E for (1) with 7'
"

1 (open circles) and with 7'
"

0.707 (closed circles) and fi with 7'
=

1 (open
squares) and with 7'

#
0.712 (closed squares).

For ail fitting procedures we used the Levenberg-Marquardt method for a three-parameter fit

[19]. In a second step we
fitted (jj, determmmg fo and vjj.[20] The data for iii and fi are

shown to scale accurately in the same fashion, giving ifi =
1.01+ 0.02 and vi "

0.99 + 0.02 for

=
~r/2, see figure Sa, and ~

=
0.71+ 0.02 and vi "

0.71+ 0.02 for
=

2arctan(1/8),
see

figure 6a. The data for (jj confirm that the roughness exponent (
=

1/2 within 5 per cent.

Since there are two fitting procedures involved in determining the behavior of (jj, this behav-

ior is less reliable than the behavior for iii and fi, and we used the data for trie exponents ifi

and vi for further analysis. In figure 7 we plotted the varions values for the exponents ifi (open
cirdes) and vi (filled cirdes) as a function of the angle of the potential wedge. The exactly
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Fig. 7 The critical exponents ~b
(open symbols) and vi (filled symbols)

as a
function of the

wedge angle 0. Trie square denotes the Monte Carlo result for vi, the circles denote transfer matrix

results. Trie cross denotes trie exactly known result for trie case 0
=

~r/2, namely ~b = vi =
1. The

prediction of trie improved necklace model is shown
as a

broken fine. The inset shows the prediction

of trie original necklace model, indicating the existence of discontinuous transition for 0 < ~r.

Fig. 8. The effective amplitude w of trie fluctuation-iuduced, repulsive interaction obtained from

trie results for ~b (open circles) and vi (closed circles)
as a function of trie line tension ratio q =

Ki/K2
=

K3/K2. The prediction of trie improved necklace model is shown
as a solid line. A linear

extrapolation for large q values leads to trie prediction
w =

0.75 (trie onset of discontinuous transitions)
for q ci 130.

known result ifi =
1 for

=
~r/2 (denoted by a bold cross) is reproduced quite accurately.

The predictions of the necklace mortel, which are shown in the inset, are quite different.

Following these predictions, subregime (B) with continuons transitions and ifi > o-s is only
realized for > ~r. In contrast, we find critical behavior which is characteristic for subregime

(B) clown to fl
=

2 arctan(1/12), as confirmed by the scaling behavior vi "
~.

The results of the improved necklace mortel, derived in section 3, see (46) and (47), are

shown in figure 7 as the broken line; they agree well with our numerical findings for close to

~r/2.
From the measured exponents we can calculate the amplitude w of the effective repulsive

potential, using the expressions w =
1/(41fi2) 1/4 and w =

1/(4v() 1/4.[13] The resulting
data points are shown m figure 8 plotted as a function of the tension ratio q. The results of the

improved necklace model are again mduded and correspond to the solid line. In this plot, the

exponents lie approximately on a straight line for large q-values, as indicated by the broken

line; extrapolating this line up to w =
3/4 corresponding to the onset of the C regime leads to

q ci 130.

Thus, if the critical exponents as determined here govern the asymptotic critical behavior,
the line tension of the inner string has to be about 130-times smaller thon the tension of

the outer strings m order to_ enter subregime (C), where discontinuous unbinding transitions

occur, which are then governed by exceptional fluctuations of the strings. As a consequence,

the unbinding of three strings (interacting with short-rangea potentials) will typically proceed
via a continuons transition.
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Fig. 9. Critical potential strength Uc as a
function of trie potential width z°. Results of trie

two-dimensional transfer-matrix calculation are shown as open circles, exact results
as crosses, and

trie numerical results of trie one-dimensional transfer matrix as filled circles.

5.2 CRITICAL POTENTIAL STRENGTHS. Another important question, which can be an-

swered using the transfer matrix results, concerns the critical value Uc of the potential depth

as a function of the angle Ù. In the last column of table I the critical potential strengths are

listed. As mentioned above, one expects a nontrivial dependence of the critical potential U~

on the range z° of the potential. In order to separate the eflects of the potential range z° and

of the wedge angle on the critical potential depth, we compare the data for Uc listed in table

I with results for the one-dimensional case for z°
=

1, 2, and 3. As explained in subsection

2.i, the one-dimensional case corresponds to the system of only two strings or one string inter-

acting with a hard wall. It is formally equivalent to the two-dimensional transfer matrix with

= ~r
/2. We solved the discrete one-dimensional system exactly for the three cases considered

above (see Appendix B) and obtained very accurate numerical transfer matrix results as well.

In figure 9 we show the exact results for Uc (denoted by crosses) together with the numerical

results (filled circles), obtained from the one-dimensional transfer matrix for three diflerent

values of z°. The agreement between exact and numerical results is very good in this case.

The broken fine interpolates betweeu these data points. The numerical results of the transfer

matrix calculation for the two-dimensional wedge are shown as open cirdes. The angle de-

creases monotonically as the potential range z° increases, as determiued by our discretizations

scheme (see Tab. I). It is observed that the deviations of the two-dimensional results from the

interpolation curve are rather small and are probably due to crossover eflects. Thus, from a

numerical point of view, we coula not detect a dependence of the critical potential depth (or
the cntical temperature via (Si) and (52))

on the angle Ù. The observed variation in Uc con

be explained by the change in z° atone, as suggested by figure 9.

This implies that the unbinding of two strings with line tensions K proceeds at the same

critical potential strength as the unbinding of three strings with identical line tensions K. This

can be seen from the fact that, after subtraction of the center-of-mass coordinate, the potential
width in the rescaled coordinates is the same for the systems of two and three identical strings
and given by iii), (12) and (53) for the continuous and discretized mortel, respectively. With

the result from the last paragraph, we condude that the critical potential strength Uc does not

depend on whether two or three strings unbind. Thus, the unbinding temperature of identical

strings seems to be independent of the number of strings involved.

This result seems to stand in contradiction to the scaling picture invoked in the Introduction

to explain the observed nonuniversality of the cntical exponents. Following the scaling picture,
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the presence of a third string between the two outer ones induces an entropically generated
effective interaction between the two outer strings which is repulsive and goes like 1/12. Such

an interaction should, in fact, increase the cntical potential strength.[13] However, this simple

argument neglects that the area of the region where ail three strings are bound together (region
C in Fig. i) depends on and is given by d12d23/ sinÙ. For the case of three identical strings

(Ù =
~r/3), the area of this region is increased by a factor of 2/vi

ci 1.15 as compared to the

case of two strings 16 =
~r/2). This increase m area of the attractive corner could compensate

the effective repulsive interaction and lead to the observed universality in Uc.
A question pertaining to the initial model of three strings in a plane is how the unbinding

potential depth Uc depends on q if one keeps Ki
"

K3 fixed. In the continuum limit, the

unbinding potential expressed as the rescaled potential strength vc as defined after (26) is

mdependent of ail parameters. Assuming that it is also independent of the angle (as suggested
above), we can write[13]

~~~~~ ~~~~ ~~~~~
~

~~ T2~ (Î+ Î)T2
Î

'
~~~~

where we used (II) and (12) with Ki
"

K3. For the critical potential strength lÇ°, this implies

lÇ° =
(q +1)~r~T~/8Ki(1°)~. (72)

For q =
0, we obtain the result already known from the case of two strings. For fixed Ki

"
K3,

the critical potential increases linearly with q =
Ki/K2. This eflect is due to the fluctuations

of the inner string, which are greatly enhanced with decreasing fine tension K2. They drive

the outer strings apart, which increases the critical potential strength l~.

5.3 ASYMPTOTIC DATA ANALYSIS. Next, we will introduce a very effective method of

analyzing our data as one approaches the unbinding transition. Consider the diflerence function

B iF(u), vi
+

~~~ ~ ~~~[[ ~~~~~~~'
(73)

Assuming that the function F(U) is of the form

F(U) m a
(U Uc)~~ (74)

we obtain for small AU

B CS
) (U UC)~~~'~~ ù~~/~' (75)
~

For ~/~'
=

l this expression reduces to B m
a~l/~', which is a constant. For ~/~' < l, B

diverges as U tends towards Uc; for ~/~' > l, E approaches zero with infinite slope as U tends

towards Uc. It transpires that the diflerence function E is a very useful tool for determining
effective critical exponents, since for ~ =

~' the parameter Uc drops out. The existence of

crossover eflects in the effective exponents on the approach to Uc can be inferred from the

behavior of the diflerence function plotted as a function of U: if the curvature of B is positive
and negative, one has ~ < v and ~ > v, respectively.

In figures 5b and 6b we show the diflerence function B for the angles
=

~r/2 and
=

2arctan(1/8), respectively. The diflerences are always calculated between nearest neighbor
data pairs. Open symbols denote results for ~'

=
l; in figure sa, the diflerence functions

using (1) (circles) and using fi (squares) are straight lines over the accessible range, signaling
that indeed ifi = vi =

1. In figure 6b, the diflerence functions for v
=

diverge as U Uc

goes to zero; this indicates that the effective exponents are smaller than unity. The closed
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Fig. 10. Transfer matrix results for the dilference function B of (a) (l~) (circles), (l~)~/~ (triangles),
and (b) fi (squares). Shown are data with 7'

"
1 (open symbols) and 7'

"
0.94 (dosed symbols);

thus, ifi = vi =
0.94 over trie whole range considered here.

symbols denote E[(1),ifi] (circles) and B[(i, vii (squares), with the effective exponents taken

to be ifi =
0.71 and vi =

0.71 as obtained in subsection s-1- Again we obtain straight lines,
signaling that there is no systematic trend in the data.

In figure 10 we present data for the angle
=

~r/3 obtained from a discretization on a

hexagonal lattice using 320400 sites [21]. Values of U Uc vary by more than a decade and

data for iii range from 3 to 30. This calculation corresponds to the case of three identical

strings. Data for B[(1),~'
=

Ii (open cirdes) and B[(l~)1/~,~'
=

Ii (open triangles), shown

m figure 10a, and for B[(1,~'
=

Ii (open squares), shown in figure lob, diverge as U Uc

vanishes; choosing ~'
=

0.94 (filled symbols) the data scale rather mcely over the whole range.
These values for ifi and vi agree satisfactorily with the values obtained from an interpolation

of the results shown in figure 7.

Thus, from a numerical point of view, no crossover in the data coula be detected. Instead,
the results indicate that ifi < 1 over the numencally accessible range as soon as the angle

< ~r/2. This is especially true for the case of three identical strings with
=

~r/3, where we

systematically searched for such a crossover by going to very large values of < >.

6. Monte Carlo simulation.

In order to check our results with a second, independent method, we performed an extensive

Monte Carlo simulation of the system defined by the Hamiltoman (50) with q =
i, simulating

three strings with identical fine tensions. The range of the reduced interactions was taken to be

z°
=

@W and the displacement fields zi and z2 were treated as continuous variables. The

length of the string was soc in units of the lattice constant and periodic boundary conditions

were used in the x-direction. The program code was fully vectonzed. The moments of iii

were calculated as in the last section. However, trie parallel correlation length (jj had to be

determined in a diflerent way (see Appendix Ci.
Using the obtained values for the parallel correlation length, we found that the length of

the string must exceed the parallel correlation length by about a factor of fifty to ensure

selfaveragmg. We usually performed 107 Monte Carlo steps at a given potential value. The

vanance of the data was always smaller than 5 per cent.
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~à
o

0.2 u_u~ 0.8

Fig. ii. Monte Carlo results for q =
1. The perpendicular correlation length (open squares)

diverges with the exponent vi =
0.93 + 0.05, the parallel correlation length (dosed cirdes) diverges

with vii =
1.8 + 0.2. The

mean
separation (1) (open circles) scales

as
the perpendicular correlation

length sufficiently close to trie transition.

In figure II we show data for the perpendicular correlation length fi (open squares), for the

parallel correlation length (jj (filled circles), and for the mean separation (ii (open circles). It is

observed that the scaling relation fi
+~

(1) holds well for higher values of the
mean separation.

We fitted the perpendicular correlation length to a power law, yielding Uc
=

1.5733 and the

exponent vi "
0.93+0.05. The mean separation does not scale as nicely and yields a somewhat

higher exponent. The longitudinal correlation length yields an exponent of vjj =
1.8+0.2. This

yields (
=

0.52+ 0.06, which is to be compared with the expected value of (
=

1/2. We included

this measured exponent value in figure 7 (filled square), thus confirming the transfer matrix

results within our error bars.

7. Transfer matrix results for asymmetric bundles.

Now we tum to the asymmetric case with Ki # K3, which contains the hmits Ki
= cc

and

K3
" cc. Inspection of the orthogonal transformation introduced in section 2 shows that the

three fine tensions enter the formulas for the angle and for the ratio of the thicknesses of the

potential strips only in the form of the two ratios qi "
Ki/K2 and q3 "

K3 /K~, see figure 1

and the relations (10) and (14).
In figure 12 we mapped out ail diflerent combinations of qi and q3 in the plane of the angle
and the ratio of the widths of the potential strips, d12/d23. Using the rescaled variables Qi

and Q3, defined by

~~ qi~l 1 l +
jÎ2/Ki '

~~~~

~~
q3 + + K2/K3'

(77)

the linear horizontal and vertical axes of the mapping are given by Q3/(Qi + Q3) and QiQ3,
respectively. The connection between the variables Qi and Q3 representing the fine tensions

and the variables and d12/d23 determming the Schrôdinger problem is given by

Ql~Q3 d12/d~3)~
+ l

>

~~~~
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Fig. 12. Parameter space for a string in a
(1+2)-dimensional wedge with angle 0 and ratio d12/d23

of the ranges of the potential wells;
see

figure 1. The various lines denote hnes of constant qi or q3.

The open and closed circles denote transfer matrix and Monte Carlo calculations, respectively. The

bold hnes with QI
=

1, QI
=

Q3
=

0, and Q3
=

1 denote the hmiting cases for three strings
m

two dimensions corresponding to Ki
= oo, K2

= oo, and K3
" oo, réspectively. The vertical line

with d12/d23
=

1 denotes trie symmetric bundle with Ki
"

K3 for which trie three strings unbind

simultaneously. Away from this line, trie unbinding process occurs m two successive transitions.

and

QiQ3
=

cos~ Ù, (79)

for V/~
= V(~ and L(~

=
L]~.

The various fines in figure 12 denote fines of constant qi or q3. The three bold fines denote

qi " cc
(Qi

"
1), q3 # cc (Q3 "1), and qi " q3 #

0 (Qi
"

Q3
"

o). They correspond to the

physical cases where the first string, the third string, and the string in the middle is a hard

watt, respectively.

It is important to note that only the region of the parameter space inside the three bold fines

is accessible starting from three strings in a plane described by Hamiltonian (5). To leave this

domaiu of the parameter space, one would bave to lune one of the hne tensions to a negative
value, which does nbt correspond to a physical situation.

Nevertheless, the region outside the bold fines constitutes a well-defined physical problem,

even though it does not correspond to three strings m a plane: it represents a string m a wedge
with variable angle and potential wells at the edges with variable thickness ratio d12/d23.
Indeed, trie bold hnes (the boundaries of the physically accessible region for trie unbinding
of three strings in two dimensions) are by no means singular m this more general unbinding
problem of one string in an attractive wedge in d

=
1 + 2.

The values for which transfer matrix (TM) calculations bave been performed are denoted

by open circles, the Monte Carlo simulation is denoted by a dosed cirde. Most of the TM

calculations have been performed for trie symmetric case, i e., on the vertical fine d12/d23
"

1,
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Fig. 13. Discretization used for the asymmetric bundle with K3
" oo

and Ki
=

K2, corresponding

to (a) in figure 12. Trie angle of trie wedge is 0
=

~r/4, trie ratio of trie widths of trie two potential

strips is
zÎ2/zÎ3

"

2~~/~. Trie three regions A, B, and C correspond to regions of dilferent potential

depth as in figure 2.

Fig. 14. Two successive unbinding transitions for two identical strings ai a
hard wall. Trie two

string separations (ii 2) and (123) diverge ai dioEerent potential depths UÎ2 and UÎ3. Trie data
are

fitted

to a power law yielding trie exponents ifi12 =
1.ol + 0.01 and 1fi23 "

1.I + o-1-

as descnbed in the previous section.

The straight horizontal bold fine m figure 12 represents ail systems with K2
" cc, corre-

sponding to the inner string being a rigid watt. In this case, the problem separates into two,
exactly solvable unbinding problems. As

a consequence, trie two outer strings unbind sepa-
rately (at diflerent temperatures or potential strengths) as soon as Ki/K3 # 1. To be precise,
denote the two critical potential depths at which the Upper string and the lower string unbind

from the rigid watt by U[~ and U(~, respectively. On the bold fine, 1-e-, for K2
# cc, the ratio

of the two critical potentials is then given by

uc d2# # ~~~~
12 23

m the continuum limit. Only for the symmetric case with d12/d23
"

1, the two unbinding
transitions occur simultaneously.

Three calculations have been performed for the case of two strings unbinding from a rigid
watt with K3

" cc, denoted by (a), (b), and (c) in figure 12. The parameter values are:

(a) q3 " cc, qi "
1,

=
~r/4, d12/d23

"

1là, (81)

(b) q3 " cc, qi "
4,

=
arctan(1/2), d12/d23

"
2 /VÎ, (82)

(c) q3 " cc, qi "
9,

=
arctan(1/3), d12/d23

"

311À. (83)

The discretization of the case
(a) is given m figure 13. In ail these asymmetric cases, we

observed two distinct unbinding transitions. For the case
la), the measured exponents are
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intermediate temperatures and off the symmetry fine (Ki K3)/(Ki + K~)
=

0, we obtain a

situation where just one string is unbound, whereas the other two still form a bound pair. This

represents the simplest phase diagram which is consistent with our data. Note that, following
the discussion in subsection 5.2, the reduced transition temperature t seems not to depend on

the angle Ù, and the multicritical fine in figure là is likely to be straight and horizontal in the

continuum limit.

As one softens the inner string, the angle decreases and one moves bock into the diagram
shown m

figure 15. As described in section 5, our calculations for the symmetric case give
Ù-dependent critical behavior for the accessible range of length scales. If this Ù-dependence
applies to the asymptotic critical behavior, the multicritical points on the fine are coupled. On

the other hand, the unbinding transitions on the four wings m figure 15 are still govemed by
universal critical exponents and meet in the plane defined by the symmetry Ki

"
K3. One

then expects crossover fines changing the critical behavior from universal to non-universal,
depending on the distance from the transition. However, the four regions corresponding to

different physical states of the three strings still meet at this fine.

8. Conclusions.

We considered the general problem of the unbinding of three strings with different string
tensions in two dimensions. The interaction potential was short-ranged and of a square-well

form.

For the symmetric case, where the tensions of the two outer strings are identical, the three

strings unbind simultaneously. If the mner string corresponds to a rigid Walt, the two outer

strings are decoupled and the critical exponent ifi has the universal value ifi =
1, as confirmed

by our calculation. As soon as one softens the inner string, the value for ifi as determined in

the transfer matrix calculation changes m a continuons fashion. This behavior is analogous to

the unbinding of two strings in the presence of
a repulsive potential which goes as V(1)

+~

1/l~.
This analogy is expected from a simple scaling picture, since the spatial cqnfinement of the

inner string due to the presence of the two outer strings at distance leads to an entropically
generated loss in free energy of the identical functional form.

Based on our numerical data, we estimate that one stays in the regime of continuons un-

binding transitions, 1-e-, the so-called subregime (B), at least until the inner string becomes

about 130 times more flexible than the outer strings.
The critical potential depth lÇ° increases linearly with the tension ratio q =

Ki /K2
"

K3 /K2
for fixed Ki

"
K3. However, we estimate that three identical strings unbind at the same

potential strength as two identical strings.
As soon as the up-down symmetry of the string bundle is broken and Ki # K3, the unbinding

proceeds via two separate transitions, which exhibit the same critical behavior as the unbinding
transition of two strings. The symmetry fine is thus revealed to be a fine of multicritical points.

Finally, the effective Hamiltoman as given by (6) can also be studied by functional renor-

malization group methods. iii For infinitesimal rescaling factor b m 1 + ht, one obtains

)
=

TU + va fia U + In det(bap + fia ôp U), (84)
( t

where the two-dimensional potential U(y) is a rescaled superposition of the mutual interactions

in (6). For strings in two dimensions one has (
=

1/2 and T =
2. The flow equation (84) also

applies to fluid membranes in three dimensions with (
=

1 and T =
2. Since

T =
2 in both cases,

the fixed points, defined by ôU/ôt
=

0, are identical, and the cntical exponents are related in

a trivial way. Thus our results obtained for three strings should also be applicable to three
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interacting membranes, as confirmed by recent MC simulations of three fluid membranes [6, 21].
Experimentally, it has been observed that there is no or little dependence of the unbinding
temperature of a stack of membranes on the actual number of membranes involved.[4] This can

be understood by using the analogy between strings and membranes (84) and our results for

the critical potential strength of two and three interacting strings, where the same behavior is

observed.

Very recently, two mean-field type calculations for the simultaneous unbinding of a stack of

identical membranes have been descnbed,[9, loi which predict ~lniversal critical behavior, in

contrast to the results presented here.

In addition, the problem of N identical strings (N > 2) has been studied via an approximate
mapping onto a quantum spin chain iii], and has been solved analytically in the continuum

hmit for infinitesimally small potential ranges [12], which also leads to N-independent critical

behavior.

Thus, it is conceivable that we have not determined the asymptotic critical behavior by our

numerical iterations, but have observed a pronounced crossover regime. In the latter case,

the critical exponents determmed here, see figure 7, would represent effective exponents which

applied only to a certain range of length scales. Since the range of scales studied in our work

is rather large, however, these effective exponents would also apply to the accessible behavior

of real systems governed by short-ranged forces.

Useful discussions with Ted W. Burkhardt, Wolfgang Helfrich, Christin Hiergeist, and Michael

Làssig are gratefully acknowledged.

Appendix A.

Orthogonal transformation.

First, one absorbs the hne tension parameters mto the displacement fields by the followmg
coordinate transformation:

l/Î
"

/~11
,

l/~ "

/~12
,

l/~ "

/~13. (A.Î)

After a rotation of the coordinate system the potential energy m Hamiltonian (5) depends

on two displacement fields only. The transformation (yi,y2,y3)
"

O[(y[, y[, y()] is explicitly
defined by the matrix

J~ )-1/2 J~ )-1/2
~~~j~~)1/2

J~
/~

jl/2 b(

ç~jç
)1/2

fJ
=

3 1 2 ~_~)
(/(l/2 (/(1/2 (jç )/2

1 2 3

a a a

with a % (Ki + K2 + K3)~/~, b a (1/Ki +1/K2)~/~ and det(O)
=

and O~~
=

O°~

String separations appeanng in the Hamiltoman (5) can now be calculated as follo~n.s:

~~ ~~

à à Il
+

il
(v~ sin~ vi cos~~, ~~~~
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where

~~~~ ~(~~~~~)12~~) ~~ ~~

~ ~
j

~°~ ~
(Ki + K21(12 + K3)

~~'~~

The potential energy does not depend on the center-of-mass coordinate y3 #
(Kili + K212 +

K313) la which diffuses freely and can be omitted from the Hamiltonian.

Appendix B.

Exact solution in one dimension.

The discretized one-dimensional Hamiltonian is constructed in analogy to (49) and (50) and

given by

~ilzil/T
=

~ )(zz
zi+1)~ +

lzz+i)j
lB.I)

with

Ù(z)
=

-U for 0 < z < z°. (B.2)

It derives from a system of two strings after subtraction of the center-of-mass coordinate. The

range of the attractive potential is measured in multiples of the lattice constant hz and given
by z°

=
nAz. For the case n =

1, 1-e-, where the attractive potential extends over one lattice

site, the problem has been solved exactly [22]. Here, we extend the results for Uc to the cases

n =
2, 3. First, one defines

B +
e~~ and R e

e~(~~J~/~ (B.3)

The critical potential can be expressed for general
n as

Bc
=

~ ~~~~~
(B.4)

with

x(n
=

1)
=

(B.5)

m agreement with the known result [22],

x(n
=

2)
= +

~
t 1.618, (B.6)

2@ ~L~CC°~
(fil

~r

~
~o2 (B.7)~(~

=
3)

=
+ COS §3 3 ~

For infinite potential range, one expects x(n
=

cc)
=

2. Setting the lattice constant hz
=

1

as was done in the numerical analysis, we obtain for the critical potential strengths Uc(z°
=

1) m 0.3203, Uc(z°
=

2) ci 0.l106, and Uc(z°
=

3) ct 0.0558. These exact results are denoted

in figure 9 as crosses; the corresponding numerical results, obtained for a system using 1000

discretization sites, are denoted by filled circles.
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Appendix C.

Determination of the parallel correlation length.

Consider the correlation function C(z), which is defined as

C(z)
=

(1(zo + z)i(zo)1 (1(zo + zll(Î(zo)1, (C.l)

the brackets denoting an average over time only. Averaging over the system does net change
the function, smce the system is translationally invariant:

C(z)
=

/ )(Î(zo + z)Î(zo)) (1(zo + z))(1(zoll, lc.2)

where L is the length of the system. The fourier transformed of this function for q =
0 is (in

the continuum limit)

à(q
= 01 =

/ ~ /
dz(1(zo + z)1(zo)1 11(zo + zll(Î(zoll. (C.3)

Using the notation 1= f dzl(z)
we arrive at the following equation:

~
~~

((i)2) (f)~
(c.4)

On the other hand, the parallel correlation length can be defined to be (jj =
~/(K/T)Ô(q

=
0),

so that we get the final expression

1
=

Î~~~~~~ÎÎI~ ~~

~~'~~

References

iii Lipowsky R., Phys. Scr. T 29 (1989) 259;
Forgacs G., Lipowsky R., and Nieuwenhuizen Th.M., Phase Transitions and Critical Phenomena,
C. Domb and J. Lebowitz Eds. (Academic, London, I991) Vol. 14.

[2] A review of wetting transitions m two and three dimensions is provided by Fisher M.E., J. Ghem.

Soc. Faraday Trans. 2 82 (1986) 1569.

[3] Lipowsky R., Nature (London) 349 (1991) 475; Physica A 194 (1993) II4.

[4] Helfrich W. and Mutz M., Random Fhct~ations and Growth, H-E- Stanley and N. Ostrowsky
Eds. (Kluwer, Dordrecht, 1988);
Mutz M. and Helfrich W., Phys. Reu. Lent 62 (1989) 2881.

[5] Fisher M.E. and Gelfand M., J. Star. Phys. 53 (1988)175.

[6] Cook-Rôder J. and Lipowsky R., Europhys. Lent. 18 (1992) 433.

[7] Lipowsky R. and Zielinska B., Phys. Reu. Lent. 62 (1989) 1572.

[8] Netz R-R- and Lipowsky R., Phys. Reu. E 47 (1993) 3039.

[9] MiIner S-T- and Roux D., J. Phys. Î France 2 (1992) 1741.



N°1 THREE INTERACTING STRINGS 75

[loi Helfrich W., J. Phys. Il France 3 (1993) 385.

[iii Burkhardt T.W. and Schlottmann P., J. Phys. A 26 (1993) L501.

For a lucid discussion of trie methods used (and its limitations)
see

Burkhardt T.W. and

Schlottmann P., Z. Phys. B 54 (1984) lsl.

[12] Hiergeist C., Làssig M. and Lipowsky R. (to be published).

[13] Lipowsky R. and Nieuwenhuizen T.M., J. Phys. A 21 (1988) L89.

[14] McGuire J-B- and Hurst C.A., J. Math. Phys. 13 (1972) 1595.

[15] Bahan R. and Toulouse G., Ann. Phys. 83 (1974) 28.

[16] Lipowsky R., E~rophys. Lent. 15 (1991) 703.

[17] Lipowsky R., Grotehans S. and Schmidt G-J-O-, Mat. Res. Soc. Symp. Proc. 237 (1992) II.

[18] Note that Eq.(4.8) in [5] should read as
mc(Î)

=
2(~3(bj) 2).

[19] W-H- Press, B-P- Flannery, S-A- Teukolsky and W-T- Vetterling Eds., Numerical Recipes: The

Art of Scientific Computing, 1989, p. 523.

[20] The free energy of trie lowest scattering state, fa, for
an

infinite system can be calculated from

(61) using fiÇ
=

1 +
4e~l~~~~/~

+ 4e~l~~~~

[21] Netz R-R- and Lipowsky R., to be published.

[22] Chui S-T- and Weeks I.D., Phys. Reu. B 23 (1981) 2438.


