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The unbinding of N membranes interacting with attractive potentials is considered theoretically 
for zero pressure. In the symmetric case, for which the membranes have the same bending rigidity, all 
N membranes unbind simultaneously at the N-independent temperature Tz but with N-dependent 
effective critical exponents. In the asymmetric case, for which the lowest membrane acts as a 
rigid wall, they exhibit a sequence of unbinding transitions with universal exponents; the transition 
temperature of the uppermost membrane for a semi-infinite stack (N = oo) is again given by T,?. 

PACS numbers: 82.70.-y, 64.60.-i 

Lipid bilayers in aqueous solutions often form multi- 
layer systems consisting of well-aligned membrane stacks. 
Bulk samples of such multilayer systems have been ex- 
perimentally studied for a long time, primarily by x-ray 
diffraction [I]. It  is also possible, however, to observe 
stacks consisting of a relatively small number of bilay- 
ers. This can be done by optical microscopy for freely 
suspended stacks [2] or by surface reflectivity measure- 
ments for bilayers which have been immobilized onto an 
interface [3]. 

The adhesion of the bilayers within the stack is gov- 
erned by attractive van der Waals forces. These forces 
are renormalized by thermally excited shape fluctuations 
which act to reduce the adhesion energy [4]. TK is renor- 
maliiation can be understood in a qualitative way if one 
considers the competition between the van der Waals at- 
traction and the loss of entropy arising from the confine- 
ment of the membranes [5]. A more systematic treat- 
ment of this competition led to the theoretical prediction 
of a critical unbinding transition between bound and un- 
bound membrane states [6] which has been observed ex- 
perimentally for stacks of six to eight sugar-lipid mem- 
branes [7]. All membranes of these stacks appeared to be 
quite flexible and to have the same bending rigidity. The 
experimentally observed transitions were reversible and 
showed no hysteresis. In addition, the dependence of the 
unbinding temperature on the number of the membranes 
was found to be very weak. 

In this Letter, we theoretically study the adhesion and 
unbinding of N > 2 fluid membranes. We distinguish two 
different types of stacks which we call "symmetric" and 
"asymmetric." First, consider the symmetric case, for 
which all N membranes have the same bending rigidity 
and interact via identical potentials, which should apply 
to the stacks of sugar-lipid membranes as studied exper- 
imentally by Helfrich and co-workers [2,7]. In this case, 
we find that all N membranes unbind simultaneously at 
the N-independent temperature 

T a N )  = T;. (1) 

However, we also find that the effective critical exponents 
for the unbinding transition depend on N and thus are 
nonuniversal over the accessible range of length scales. 

This is in marked contrast to other theoretical work, as 
will be discussed below. 

Next, consider an asymmetric stack, for which N - 1 
identical membranes are bound towards a rigid wall (la- 
beled by n = 0). This corresponds, e.g., to a stack of 
bilayers which has been immobilized on a glass slide [8] 
or at  a liquid-vapor interface [3]. In this case, we find a 
sequence of unbinding temperatures Tt(n). These tem- 
peratures must satisfy the inequalities Tt(1) > Tt(n) > 
T~(IxI) .  In fact, the unbinding temperature of the nth 
membrane is found to satisfy the relation 

1 - [T: ( c o ) / ~ a n ) ] ~  - l /nA (2) 

in the continuum limit with A = 2.0 i 0.2 and 

T̂  ̂ T^ /VZ  = T;. (3) 

Here, all unbinding transitions exhibit the same univer- 
sal critical exponents. Thus, the mean separation (61n) 
behaves as (61n) - [Tt(n) -TI-^ with </> = 1. It then fol- 
lows from (2) that a semi-infinite stack at  T = T s s  char- 
acterized by the self-similar density profile p(z) - z ^  
where z denotes the distance from the rigid wall and 
p = A</>/(l+ A$) cx 2/3. 

Our approach is twofold: First, we apply standard 
Monte Carlo (MC) techniques to stacks of N two- 
dimensional membranes; the enormous numerical ex- 
pense of these simulations restricts the number of mem- 
branes to N < 3. Second, we perform transfer ma- 
trix (TM) calculations for bundles of N one-dimensional 
strings (or stretched polymers); here, we are able to con- 
sider symmetric and asymmetric systems with N < 4. 
Renormalization group arguments predict the critical be- 
havior to be analogous for strings and membranes [4,9]. 
This is confirmed by our analysis for N < 3 and will 
be assumed to hold for general N. Extrapolation of our 
results to large N leads to (1)-(3). 

The effective Hamiltonian for N manifolds is given by 

(4) 
with q = 1 and 2 for strings and membranes, respec- 
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tively. The manifolds are, on average, parallel to each 
other and parametrized by single-valued functions ln(x); 
the statistical weight of a configuration {IN} is given 
by the Boltzmann factor exp(-'H{lN}/T). The positive 
constants Kn, which are the line stiffnesses and bending 
rigidities for q = 1,2, respectively, have the values 

K n =  K for n = 0 ,  ..., N - 1  (5) 

in the symmetric case and 

~ n = {  
00 for n = 0 ,  
K for n = l ,  ..., N-1  (6) 

in the asymmetric case, where KO = oo corresponds to 
the rigid wall. The interactions are defined by 

00 for 1 5 0, 
V0 for 0 < I < 10, 
0 for lo < I, 

(7) 

with VO < 0 for an attractive potential well. Renormal- 
ization group calculations show that interactions which 
decay faster than 1/12 are all mapped onto one fixed 
point and thus give rise to identical critical unbinding 
behavior [lo]. Since the van der Waals attraction be- 
tween two membranes behaves as 1/14 for large I, the 
universal properties can be studied using the interaction 
(7). 

Most of the interesting physics is caused by the non- 
crossing constraint, i.e., lo < 11 < . - .  < IN-1 in (4), 
which is embodied via the hard wall at  zero separation 
in (7). For our numerical studies, the center-of-mass co- 
ordinate, which diffuses freely, has been separated off. 
We also discretize the coordinate x with lattice constant 
a and use periodic boundary conditions in order to sup- 
press edge effects; the problem defined by (4) then de- 
pends only on the rescaled potential depth U = - a V O / T  
and on the rescaled potential range 1Â s 1Â°- /̂KJ2Td11 

In our calculations, we measured the mean separations 
between manifolds (dln) (In - lnel) , and the corre- 
sponding perpendicular and parallel correlation lengths, 
CLn and ljira. The separations are expected to scale as 

and similarly and fin with exponents UJ. and UII , re- 
spectively; (61n(U = oo)) = lÂ¡/ represents a correction 
to scaling. For direct comparability, we always set lo = 1, 
i.e., separations {Sin} are measured in units of lo. 

For the MC simulations, a square lattice consisting of 
3920 discrete sites is partitioned into five sublattices; each 
sublattice is updated independently using a fully vector- 
ized code employing the standard Metropolis algorithm 
[ll]. In most runs, we did =s; lo7 MC steps per site, which 
gives a statistical error of less than 1%. The rescaled 
range was always set to 1Â = 0.0185. 

In Fig. 1, we show results for the asymmetric sys- 

FIG. 1. Asymmetric stack of membranes: Monte Carlo 
data for the mean membrane separations (&) as a function 
of the potential strength U: numerical errors are denoted by 
vertical lines. 

tern of membranes bound to a rigid wall; (611) and 
(612) for N = 3 (open and closed circles, respectively) 
clearly diverge at  two different-critical potential strengths 
U a n  = 1) and U 3 n  = 2). Below U32), the values of 
(611) obtained for N = 3 equal the ones obtained for 
N = 2 (denoted by open squares) as expected: After 
the unbinding of the upper membrane of an asymmet- 
ric N stack, the problem reduces to a stack of N - 1 
membranes. Above U:(2), the upper membrane pushes 
the lower membrane closer to the wall, as can be seen 
from the difference between ( a l )  for N = 2 and N = 3; 
it exerts a pressure on the lower membrane. By fitting 
(ai) for N = 2 and (612) for N = 3 to the form (8) we 
obtain Ut(1) = 2.44 & 0.01 with $ = 0.99 & 0.03 and 
U s )  = 2.67 k 0.03 with $ = 1.0 5 0.2. This confirms 
the expectation that each unbinding transition is char- 
acterized by the universal exponent i f )  = 1, as for two 
membranes. The solid curves in Fig. 1 correspond to the 
fits; the broken lines denote the obtained critical poten- 
tial strengths. 

Also shown in Fig. 1 is the variation of the separation 
for the case of two identical membranes (denoted by n = 
oo as explained below); here we obtain U:(N = 2) = 
2.78 & 0.01 and $ = 0.99 & 0.05. For three identical 
membranes we obtain U:(N = 3) = 2.785 z t  0.01 (as 
shown in Fig. 3). The two potential strengths are the 
same within the numerical error, thus suggesting that 

Ui (N) == Ui. 

For the transfer matrix calculations we also discretize 
the coordinates {In} with lattice constant A1 = 
on a hypercubic lattice (except where noted otherwise); 
this has to be done in accord with several symmetry 
and area conserving constraints [12]. Here we iterate the 
transfer matrix corresponding to (4) in the so-called re- 
stricted solid-on-solid approximation until convergence to 
the stationary probability distribution is achieved. [9] 
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FIG. 2. Asymmetric bundle of strings: (a) Transfer matrix 
results for the mean string separations (6ln) as a function of 
the potential strength U. (b) Critical potential strengths (0) 
indicated by broken lines in (a) are shown together with an 
exact result (x). 

In Fig. 2(a) we show our results for the unbinding of 
up to three strings from a rigid wall with n = N - 1; here 
1Â = 1/\/2. As in Fig. 1, we denoted the unbinding of 
two identical manifolds by n = oo; here, we also calcu- 
lated (614 for the case N = 4. For a given value of the 
potential, (614 < (6Zj) for i < j; this indicates the ef- 
fective flattening of the bound strings by the wall, which 
is mediated through the strings and becomes smaller for 
increasing n. The critical exponents for all four curves 
are given consistently by ip = 1 k0.02; the critical poten- 
tial strengths (7: are plotted in Fig. 2(b) as a function of 
1/n2, which are well fitted by a straight line. 

Both for membranes and for strings, our results for the 
critical potential strengths are described by the form 

with A = 2.0 2z 0.2. The equality Ufin = oo) = Us fol- 
lows from the expectation that the influence of the rigid 
wall on bound manifolds becomes weaker with increasing 
n; thus, for large n, the nth manifold should unbind at a 
potential strength identical to the one found for symmet- 
ric stacks. This is indeed supported by the observation 
that the critical potential strength data in Fig. 2(b) ex- 
trapolate nicely to for large n. 

In the continuum limit of zero cutoff a, scaling shows 
that the set of parameters T ,  K ,  VO, and lo reduces to the 
combination v = VÂ° (101~)~. In this limit, one finds 
Uz(oo) = (7: = 2U;(1) and obtains (2) and (3) using 
relation (10); this determines the temperature window for 
the unbinding transitions of the semi-infinite asymmetric 
stack. This window is reduced by the small-scale cutoff 
a: The larger the cutoff, the smaller the temperature 
window. 

In Fig. 3 our MC results for a symmetric stack of three 
membranes are displayed. Here, due to the up-down 
symmetry, we expect (and indeed observe) (614 = (61d 
and use (61) = (61^/2 + (&}I2 (similarly for the other 
length scales). The parallel correlation length was esti- 
mated using fi = a exp[2~r((ViW)~)/T] [ll]. Figure 3(a) 

0.07 U-Uc 0.7 

FIG. 3. Symmetric stack of three identical membranes: 
(a) Monte Carlo data for the membrane separation (61) and 
roughness tJ_ plotted against the parallel correlation length 
tli. (b) All length scales plotted as a function of the reduced 
potential strength U - Uc; the straight lines denote our fits. 

shows the behavior of (61} and $J. vs the parallel correla- 
tion length on a log-log plot. The data tend toward the 
line with slope unity as one approaches the transition, 
indicating that $ = UJ. = MI [13]. We fitted the data 
according to (8), obtaining Uc = 2.785 & 0.01 and the 
effective exponents ip = 0.91 & 0.04, UJ. = 0.83 k 0.10, 
and v\\ = 0.93 & 0.06. In Fig. 3(b) we plot the data on 
a log-log scale, which shows that they scale rather nicely 
sufficiently close to the transition. 

Figure 4 summarizes our TM results for the symmet- 
ric case with N = 2, 3, and 4, for which the discretiza- 
tion dictated 1Â = 1, -s/3/2, and 4 ,  respectively. For 
N = 4, one has to distinguish between the outer separa- 
tions, which are again related by the up-down symmetry, 
thus (610) s (611)/2 + (&)/2, and the inner separation, 
(611) s (Sly}; in principle, the unbinding process could 
now occur in two steps at  distinct potential values. How- 
ever, we find the two separations to diverge at  exactly the 
same critical potential, namely Uc = 0.192 & 0.005; the 
critical potential for the unbinding of two strings with 
1Â = was found to be Uc = 0.193 & 0.005 [12]; within 

FIG. 4. Symmetric bundle of N strings: Transfer matrix 
results with the reduced potential strength u = (U - Uc)/Uc. 
(a) The string separations (61) for N = 2,3, and 4 scale with 
different exponents Q, which are given in the inset (0) together 
with the exponents of the perpendicular correlation length UJ. 
(x )  and the MC estimate of Q ( 0 )  for three membranes. (b) 
Extended analysis of the data shown in (a) using the quantity 
E for the (61) data; see text. 
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the numerical error, they are identical. Three strings 
were found to unbind a t  the same Uc as two strings [12], 
therefore (9) is numerically confirmed for N <: 4. 

The observed universality in the critical potential 
depths is contrasted by an apparent nonuniversality in 
the effective exponents: In Fig. 4(a), we show our data 
for (61) in a log-log plot. For N = 2 the data scale ac- 
curately with T+!J = 1.005 i~ 0.005; for N > 2, there are 
small but clear deviations from this universal value for 
the accessible length scales. Moreover, the inner and 
outer separations in the case of four strings are found 
to scale differently, giving fl'o = v ~ o  = 0.93 5 0.02 and 

= vÂ± = 0.87 5 0.02. In the inset, the values of T+!J 

(circles) and v\ (crosses) are plotted as a function of N; 
the MC result for $J obtained for three membranes is also 
included (filled circle). 

A rather accurate asymptotic analysis is possible using 
the quantity 

In summary, it was shown (i) that a symmetric stack of 
N membranes unbinds at  the transition temperature T = 
Ts which is independent of N, but exhibits N-dependent 
effective critical exponents over the accessible range of 
length scales; and (ii) that an asymmetric stack leads to 
a sequence of unbinding transitions at T = T:(n), see 
(2), which all belong to the same universality class. 

The difference in the behavior of asymmetric and sym- 
metric stacks should be observable in experiments on bi- 
layer systems [19]. In fact, the universality of the tran- 
sition temperatures for symmetric stacks is in agreement 
with experimental results for sugar-lipid membranes. [7] 
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Assuming the function F(U) to be of the form F(U) = 
b (U - Uc)-?, we get 5 w (717') (U - ~ ~ ) ~ ^ ' " l  b-l^' 
for small AU. For 717' = 1 this expression reduces to 
Z=const. For y/yl < 1 and 7/7' > 1, 5 diverges and 
approaches zero, respectively, as U tends towards Uc- 

In Fig. 4(b), we show 5[{61)] for N = 2 and 3 with 
i/)' = 1 (solid circles); the divergence for N = 3 indicates 
that 7) < 1. Indeed, plotting 5 for N = 3 with +' = 0.94 
(squares), we obtain a rather straight line over the whole 
accessible U range, indicating no crossover in the effective 
exponent as one approaches the transition. For (Slo) and 
(dli) for N = 4, 5 is calculated with T+!Jf = 0.9, which lies 
in between the values obtained for the two exponents $0 

and T+!JI. As shown in Fig. 4(b) for the inner (outer) separ- 
ration, S goes to infinity (zero) as U goes to Uc, indicat- 
ing that the corresponding exponent is smaller (greater) 
than 0.9. Thus, over the accessible range of length scales, 
our data show that the effective critical exponents for 
the symmetric case depend on N. Critical behavior with 
N-dependent singularities has also been found for the 
necklace model which predicts, however, discontinuous 
transitions for N 2 3 [14] whereas we find continuous 
transitions for N = 3 and N = 4. Likewise, our results 
disagree with the prediction of mean-field theories [15,16] 
and with the behavior of related, but somewhat different 
models [17,18] which exhibit N-independent critical ex- 
ponents. In principle, the critical behavior as found here 
could be changed on sufficiently large length scales which 
are not accessible to our numerical methods. However, 
as far as the transition temperatures are concerned, such 
a crossover would not affect (1) and (3) and should have 
a rather small effect on (2). 
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