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1. Introduction: the shapes of vesicles

All biological cells contain complex mixtures of macromolecules not present in
their environment. The ‘container’ of these cells is provided by the plasma mem-
brane. This membrane forms a closed bag which is essentially impermeable for
the macromolecules. Likewise, many organelles or compartments within the cells
are surrounded by additional membranes which ensure that different compartments
can have a different composition of molecules. The biomembranes of all present-
day cells are composed of lipids and amphiphilic proteins. In fact, the basic and
universal building block of all biomembranes seems to be a lipid bilayer which is
‘decorated’ by proteins.

Biomembranes exhibit a rather complex morphology [1]. The surface formed by
intracellular organelles often have a very complicated topology such as those of the
endoplasmatic reticulum or the Golgi apparatus. Likewise, the plasma membrane can
develop small buds as in exo- or endocytosis, microvilli, i.e. finger-like protrusions,
and pseudopods. These dynamic shape transformations are used in cell locomotion.

Some aspects of these morphological transformations can be studied with lipid
vesicles which are closed bags formed spontaneously from lipid bilayers in aqueous
solutions. These vesicles provide the simplest model system for the formation of
distinct compartments in biological systems. They can conveniently be studied with
video microscopy.

The current theoretical understanding of the morphology and morphology transfor-
mations of vesicles is based on the important notion of bending elasticity introduced
some twenty years ago by Canham [2], Helfrich [3, 4] and Evans [5]. However,
a systematic analysis of these so-called curvature models was performed only re-
cently [6–9]. These studies revealed a large variety of shapes which minimize the
energy for certain physical parameters such as the enclosed volume and the area of
the vesicle. These shapes are then organized in so-called ‘phase diagrams’ in which
trajectories predict how the shape transforms as, e.g., the temperature is varied.

As an example for this approach, see fig. 1, where the most prominent shape
transformation, the budding transition, is shown as it has been observed by video
microscopy [7, 10, 11]. An increase in temperature transforms a quasi-spherical
vesicle via thermal expansion of the bilayer to a prolate shape and then to a pear.
Finally, a small bud is expelled from the vesicle. Upon further increase of temper-
ature several additional buds can emerge. Usually, the buds remain connected to
the mother vesicle via narrow constrictions or necks. Another shape transformation,
the discocyte–stomatocyte transition, is shown in fig. 2. This transition resembles
a shape transformation which can be induced with red-blood cells by depletion of
cholesterol.

405



406 U. Seifert and R. Lipowsky

Fig. 1. Budding transition induced by temperature which is raised from 31.4 ◦C (left) to 35.8 ◦C (right)
in this sequence. The theoretical shapes have been obtained within the bilayer-couple model assuming

an asymmetric thermal expansion of the two monolayers [7].

Fig. 2. Discocyte-Stomatocyte transition induced by temperature which is raised from 43.8 ◦C (left) to
44.1◦C (right) in this sequence [7].

Shape transformations are also predicted to arise in vesicles consisting of a bi-
layer with several components due to a different mechanisms. If the two compo-
nents form domains, the line energy associated with these domain boundaries can
be reduced by budding of such a domain [12]. Even if the membrane is in the
one-phase region, a temperature induced budding process should lead to curvature-
induced phase segregation since, in general, the two components couple differently
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to the local curvature [13]. So far, these effects are not yet verified experimentally
even though budding and fission have been observed in vesicles consisting of lipid
mixtures [14].

Qualitative new behavior has been predicted for vesicles with non-spherical topol-
ogy, i.e. vesicles with holes or handles. For tori, i.e. vesicles with one hole or
handle, the shape of lowest energy is non-axisymmetric for a large range of param-
eters [15, 16]. For shapes with at least two holes or handles, one even predicts
that the shape of lowest energy is no longer unique. This degeneracy leads to the
phenomenon of ‘conformal diffusion’ in shape space [17]. The simplest examples
of artificial vesicles with non-trivial topology are shown in fig. 3 [18, 19].

The interaction of vesicles with substrates (or other vesicles) also effects their
shape. For weak adhesion, an adhesion transition driven by the competion between
bending elasticity and adhesion energy is predicted [20, 21]. For strong adhesion,
the notion of an effective contact angle becomes applicable [20]. Experimentally,
the adhesion of vesicles can be studied either with the micro-pipet aspiration tech-
nique [22] or by reflection interference microscopy [23, 24]. The latter technique
allows very precise length measurements and, thus, to deduce the shape of adhering
vesicles. In this way, a flat pancake can be distinguished from a quasi-spherical
shape which is only slightly distorted by the adhesion to the substrate.

In this chapter, we describe the present understanding of these phenomena with an
emphasis on the theoretical aspects. However, we make an attempt to link the theory
with the experiments where this is possible. Various aspects of the work presented
here have also been treated in recent reviews, see refs [25–27].

2. Bending elasticity and curvature models

2.1. Physical guidelines

In equilibrium, we can neglect processes such as hydrodynamic flows, convection
or transport related to temperature gradients. Vesicles will then acquire the shape at
which their total energy is minimal. The modelling of such an energy is guided by
the following essential features of lipid bilayers:

(i) Length-scale separation: The thickness of the bilayer is in the nanometer-
range, while the typical size of the vesicles considered here is in the microme-
ter-range, i.e. three orders of magnitudes larger.

(ii) Fluidity: The membrane is taken to be in its fluid state. Thus, it does not
resist shear forces within the plane of the membrane.

(iii) Insolubility: Lipid molecules are practically insoluble in the aqueous medium,
i.e. the number of molecules in the membrane remains essentially constant on
experimentally relevant time-scales.

(iv) Bilayer architecture: The membrane is a bilayer consisting of two monolayers
which do not exchange lipid molecules on the time-scale where the shape
transformations take place. In addition, the monolayers can freely glide over
one another, being coupled only through a constant separation and the topo-
logical constraint of forming a closed surface. These characteristics are less
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Fig. 3. Vesicles of non-spherical topology. (a) a non-axisymmetric torus, (b) an axisymmetric torus,
and (c) a ‘button’ shape [18, 19].

universal than those mentioned above. For instance, cholesterol is known to
flip between the two monolayers on shorter time-scales [28]. Likewise, in-
terdigitated states (which, so far, have not been found in fluid phases) do not
exhibit this bilayer architecture.

2.2. Derivation of spontaneous-curvature model

The length-scale separation allows the vesicle to be described as a closed two-
dimensional surface R(s1, s2) embedded in three-dimensional space. Here, s1 and s2
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denote (arbitrary) internal coordinates. Such a surface can be locally characterized
by its two radii of curvature R1 and R2 which determine the mean curvature H and
the Gaussian curvature K, see fig. 4. These important quantities are defined as

H ≡ (1/R1 + 1/R2)/2, (1)

and

K ≡ 1/(R1R2). (2)

Note that the radii R1 and R2 carry a sign. In particular, saddle surfaces can have
vanishing mean curvature if the absolute value of the two radii of curvature are the
same. Surfaces with H = 0 everywhere are called minimal surfaces.

The curvature model for vesicles is based on the assumption that the local energy,
f1, associated with bending the membrane can be expanded in H and K. For small
deformations, the most general expression symmetric in R1 and R2 up to second
order in 1/Ri can be written as [3]

f1 ≡ (κ/2)(2H − C0)2 + κGK. (3)

This expression contains three material parameters. The parameter κ is the bending
rigidity. Typical values for phospholipid bilayers are of the order of 10−19 J, see
section 2.6. The Gaussian bending rigidity, κG, is difficult to measure for reasons
discussed below. However, κG and κ are expected to be of the same order of
magnitude. Stability with respect to the spontaneous formation of saddles would
require κG < 0. A somewhat different expression for the local bending energy based
on the combination |1/R1 − 1/R2| has recently been discussed in ref. [29].

Fig. 4. Curvature on a two-dimensional surface. The length scales R1 and R2 denote the radii of
curvature. The vector n denotes the normal.
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The spontaneous curvature C0 reflects a possible asymmetry of the membrane, jus-
tified either by a different chemical environment on both sides of the membrane or
by a different composition of the two monolayers. (Note, however, that we have not
yet incorporated the bilayer architecture and therefore the latter justification seems
somewhat premature at this stage.) C0 is usually assumed to be laterally homoge-
neous; this implies that it does not depend on the local shape of the membrane. So
far, no direct measurements of C0 are available for phospholipid vesicles.

The local energy (3) does not contain any quantity characterizing the internal
degrees of freedom in the membrane. As a first step, it will be useful to include
at least one additional variable which is suggested by the fluidity of the membrane.
A fluid can be characterized by its local density φ(s1, s2). Small deviations of this
density from the equilibrium density φ0 lead to an elastic energy

f2 = k(φ/φ0 − 1)2, (4)

with an elastic compression modulus k.
Adding these two energies and integrating them over the closed vesicle surface

yields the total energy

F = (κ/2)
∮

dA (2H − C0)2 + κG

∮
dA K + (k/2)

∮
dA (φ/φ0 − 1)2. (5)

This energy depends on the shape as well as on the density distribution φ(s1, s2). In
this simplified model, the density distribution does not couple to the shape. There-
fore, the last term in (5) is minimal for a uniform density. Because of the insolubility
of the molecules, one can further minimize the energy F with respect to the total
area, A, subject to the constraint

∮
dAφ = N , where N is the total number of

molecules in the membrane. This leads to

F = (κ/2)
∮

dA (2H − C0)2 + κG

∮
dA K + (k/2)(A−A0)2/A0, (6)

where A0 ≡ N/φ0 is the equilibrium area. Here and below, we have neglected higher
order contributions in (A − A0)/A0. Since the bending rigidities κ and κG are of
the order of 10−12 J, while k ' 102 mJ/m2, see section 2.6, curvature energies can
balance only minute deviations of the area A from its equilibrium value A0. As
a crude estimate, one obtains from balancing the first with the last term in (6) at
constant enclosed volume that

|A−A0|/A0 ' (∂F/∂A)/k ' κ/kR2
0 ' 10−8

for R0 = 10 µm. Therefore, one ignores the elastic term and rather imposes the
constraint of fixed total area.

A similar reasoning applies to the enclosed volume. Since the membrane is per-
meable to water, one might expect that the volume of the enclosed fluid can adjust
freely. However, if additional molecules are present in the aqueous solution such as
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ions or impurities, which cannot move through the membrane, any net transfer of
water will lead to an osmotic pressure. Typically, such a pressure is huge on the
scale of the bending energy. Consequently, the enclosed volume is essentially fixed
by the number of enclosed, osmotically active molecules and by the concentration
of these molecules in the exterior fluid through the requirement that the osmotic
pressure is essentially zero [3].

In summary, the three properties (i) length-scale separation, (ii) fluidity and (iii)
insolubility lead to the curvature energy

FSC = (κ/2)
∮

dA(2H − C0)2 + κG

∮
dAK, (7)

which has to be minimized at constant total area A and constant enclosed vol-
ume V . This constitutes the spontaneous-curvature model as introduced by Helfrich
in 1973 [3].

Three mathematical properties of this energy should be noted. First, by virtue of
the Gauss–Bonnet theorem the integral over the Gaussian curvatureK is a topological
invariant given by 4π(1 − g) where g is the genus, i.e the number of holes or
handles, of the vesicles. As long as the topology does not change, the second term
in eq. (7) can thus be ignored. Secondly, for C0 = 0, the curvature energy is scale-
invariant, i.e. the energy of a vesicle does not depend on its size since

∮
dA H2 is

a dimensionless quantity. Finally, the latter quantity is even invariant under general
conformal transformations, see section 5.1.

2.3. Bilayer architecture and area-difference-elasticity model

So far, no explicit consideration has been given to the bilayer architecture. The
relevance of the bilayer structure becomes evident through the following gedanken-
experiment. Suppose an initially flat symmetric bilayer membrane is suddenly bent.
This necessarily leads to a stretching of the outer monolayer and a compression
of the inner one. The elastic energy stored in such a deformation can relax if the
two monolayers glide over each other thus accommodating the local densities within
each monolayer to the local shape [5, 30]. For a closed topology, however, this
density relaxation can usually not succeed completely. As derived in the Appendix,
there remains a contribution to the energy whenever the number of molecules within
the two monolayers does not fit with the shape. This energy can be written as an
area-difference-elasticity

FADE ≡
κ̄π

8A0d
2

(∆A−∆A0)2, (8)

since it attributes an elastic energy to deviations of the area difference, ∆A, between
the two monolayers from the equilibrium value ∆A0. Using a simple geometrical
relation, ∆A is given by the total mean curvature M according to

∆A ≈ 4d
∮

dAH ≡ 4dM (9)
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for a separation of 2d between the (neutral surfaces of the) two monolayers up to
corrections of order dH and d2K. The equilibrium value ∆A0 is determined by the
numbers N+ and N− of lipid molecules within each layer and by the equilibrium
density φ0 according to

∆A0 =
(
N+ −N−

)
/φ0. (10)

Since the non-local character of this energy arises from equilibration of the densities
within each monolayer, the model implicitly assumes that the time-scale of the phe-
nomena we are interested in is larger than the typical time-scale for this equilibration
which takes place via propagating sound waves.

The full energy in the area-difference-elasticity model, W , then reads [31–33]

W ≡ (κ/2)
∮

dA(2H)2 +
κ̄π

8A0d
2

(∆A−∆A0)2. (11)

It has been introduced in 1991 by three groups independently based on much earlier
work by Evans [5, 34] and Sheets and Singer [35]. The first term in eq. (11) is the
scale-invariant local bending energy which is broken by the area-difference elasticity
if ∆A0 is not rescaled properly.

The elastic constant κ̄ in front of the second term is the so-called non-local bending
rigidity. In the derivation given in the Appendix, it turns out to be

κ̄ ≡ ακ ≡ 2k(m)d2/π. (12)

If one assumes that the monolayers are homogeneous sheets of thickness 2d, the
monolayer rigidity κ(m) = κ/2 is related to the monolayer compression modulus
k(m) through

κ(m) = k(m)d2/3. (13)

This leads to the important estimate of α = κ̄/κ = 3/π. However, from a theoretical
point of view it is convenient to leave the value of α open and to treat it as an
independent material parameter. Moreover, the area-difference-elasticity model may
be applicable even if a simple relation like (13) breaks down due to the internal
structure of the monolayer. Likewise, the effective value of α for multilamellar
vesicles can become larger since it is roughly quadratic in the number of bilayers [36]
assuming a fixed inter-membrane separation.

For α = 0, one recovers the spontaneous curvature model from the area-difference
elasticity model, provided one replaces 2H by 2H −C0 in eq. (11). This applies to
the case where the two monolayers are asymmetric in the first place which would
leave an effective C0 for the bilayer. The explicit derivation of the area-difference-
elasticity model assuming monolayers with different C0 requires some care in the
definition of the neutral surfaces [37, 38, 39]. In fact, it turns out that the effect
of a spontaneous curvature C0 6= 0 in the area-difference elasticity model is easy to
determine theoretically since any C0 6= 0 can be mapped on a renormalization of the
area-difference ∆A0 [38, 39].
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2.4. Bilayer-couple model

In the limit of large α, the elastic energy for the area-difference enforces the ‘hard’
constraint ∆A = ∆A0. One thus recovers from the area-difference-elasticity model
the so-called bilayer-couple model, introduced by Svetina and Zeks in 1983 based
on the bilayer-couple hypothesis [40]. In view of the above derivation, the bilayer-
couple model is based on the implicit assumption that the monolayers are incom-
pressible.

2.5. Simple shapes of minimal energy

It is instructive to neglect initially the non-local energy contribution and to dis-
cuss simple shapes within the spontaneous curvature model ignoring the constraints
on A and V . First, consider the shapes for which the local curvature energy,
(κ/2)

∮
dA (2H − C0)2, vanishes. Obviously, spheres with radius R = 1/C0 as

well as cylinders with radius R = 1/2C0 have zero curvature energy. In fact, a
whole family of axisymmetric surfaces, the so-called unduloids, have H = 1/2C0
and, therefore, zero curvature energy. These shapes interpolate between the cylinder
and a necklace of spheres, see fig. 5. In particular, the narrow necks which the
unduloid develops as it approaches the necklace conformation do not contain any
curvature energy even though the absolute value of each radius of curvature be-
comes very small. Since these curvature radii have different signs, H retains a finite
value. The evolution of these unduloids suggests that budding phenomena which
are characterized by the occurrence of narrow necks might be understood within the
framework of these curvature models.

The basic physical effect of the non-local energy contribution in (11) can be
qualitatively understood as follows. A spherical vesicle with radius R0 has an area

Fig. 5. Unduloids. All shapes are axisymmetric with respect to the broken line and have zero bending
energy, since the mean curvature 2H = C0 = const everywhere.
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difference ∆A = 16πR0d. If the equilibrium area difference ∆A0 is larger, the
non-local term will induce a driving force towards a shape which has a larger ∆A,
i.e. a larger total mean curvature such as prolates or pear shapes. In fact, the limit
shape of two spheres of equal radius R0/

√
2 sitting on top of each other has an area

difference of ∆A =
√

2 × 16πR0d. Likewise, an equilibrium area difference which
is smaller than the value of the sphere favors oblates, discocytes and stomatocytes
(or invaginations).

2.6. Elastic material parameters

2.6.1. Bending rigidities
Great effort has been devoted in order to determine the bending rigidity κ. Concep-
tually, two different approaches can be distinguished. In the mechanical approach,
the response of the membrane to an applied force is measured from which the bend-
ing rigidity is deduced. The extreme softness of these systems is exploited by the
second type of methods where the bending rigidity is derived from the thermally
excited membrane fluctuations.

One example for the mechanical approach [41, 42] is provided by studies of tether
formation from giant vesicles which are aspirated with a micropipet [43]. The tether
is pulled out by the gravitational force on a small glass bead which adheres to the
vesicles surface. The length of the tether is determined by the balance of the suction
pressure, the gravitational force and bending energies. It has been realized only
recently, that, with this method, both the bending rigidity κ as well as the non-local
bending rigidity, κ̄ = ακ, can be measured simultaneously [44].

In the flickering experiments, the bending rigidity is derived from mean-square
amplitudes of thermally excited membrane fluctuations using phase contrast mi-
croscopy combined with fast image processing. This technique has been used with
quasi-spherical vesicles [45–50], shape fluctuations of tubular vesicles [51], fluctu-
ations of almost planar membrane segments [52] and fluctuations of weakly bound
vesicles [23, 53]. So far, all these experiments are analysed in terms of the local
bending rigidity κ. The theoretical background for this method is given in section 4,
where it is also pointed out that one can safely ignore the non-local contribution in
the analysis of these experiments.

A third class of experiments combines the mechanical with the entropic approach.
Since aspiration of the vesicle in the micropipet changes the area available for fluctu-
ations [54], the strength of the fluctuation can be controlled mechanically. From the
relation between the area stored in the fluctuations and the suction pressure which
is related to the effective entropic tension, the bending rigidity can be deduced [55].
The same idea has also been used in a very different set-up where quasi-spherical
vesicles are elongated in an AC electric field [56]. Again the bending rigidity is
derived from the relation between the area stored in the fluctuations and the applied
field which controls the tension.

The values obtained by these techniques are given in table 1 for different lipids.
Even for the same lipid, the bending rigidity differs by a factor of 2 using different
methods. Sometimes, the same technique applied by different research groups yields
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Table 1
Experimental values for the bending rigidity κ.

Lipid Temp. [◦C] κ [10−19J] Method Ref.

DMPC 1.15± 0.15 Flickering of quasi-spherical vesicles [49]

DMPC 26 0.35–0.65 Flickering of quasi-spherical vesicles [46]

DMPC 29 0.56± 0.06 Entropic tension, micropipet [55]

G–DG 0.15–0.4 Flickering of quasi-spherical vesicles [49]

DGDG 0.12–0.27 Fluctuations of planar pieces [52]

DGDG 23 0.44± 0.03 Entropic tension, micropipet [55]

DGDG 0.1± 20% Entropic tension, electric field [56]

SOPC 18 0.9± 0.06 Entropic tension, micropipet [55]

SOPC 18 2.0 Tether formation, micropipet [43]

DAPC 18 0.44± 0.05 Entropic tension, micropipet [55]

DMPC 1.0–2.0 Flickering of tubular vesicles [51]

EYPC 0.4–0.5 Flickering of quasi-spherical vesicles [48]

EYPC 1.15± 0.15 Flickering of quasi-spherical vesicles [49]

EYPC 0.8 Fluctuations of planar pieces [52]

EYPC 0.25± 20% Entropic tension, electric field [56]

DLPC 0.34± 20% Entropic tension, electric field [56]

POPC 0.25± 20% Entropic tension, electric field [56]

DMPC:DPPC 1:1 0.38–0.49 Flickering of quasi-spherical vesicles [46]

DMPC + 20% CHOL 2.1± 0.25 Flickering of quasi-spherical vesicles [49]

DMPC + 30% CHOL 4.0± 0.8 Flickering of quasi-spherical vesicles [49]

SOPC:CHOL 15 2.46± 0.39 Entropic tension, micropipet [55]

significantly different values. Whether these discrepancies have to be attributed to
real physical effects such as impurities or to experimental problems needs further
analysis. Likewise, the hypothesis put forward by Helfrich [57, 58] that these dis-
crepancies support evidence for a superstructure of the membrane on suboptical
scales still awaits direct verification, see chapter 14 in this book.

The bending rigidity for mixtures is particularly interesting given the fact that
biological membranes always involve mixtures. Addition of cholesterol to fluid bi-
layers increases the bending rigidity (as well as the area compressibility) significantly
[42, 49]. However, the non-local bending rigidity seems not to change with the ad-
dition of cholesterol [59]. This may be related to the fact that cholesterol can flip
between the monolayers quite rapidly.

A significant decrease in the apparent bending rigidity of an order of magnitude
follows from addition of a few (2–5) mol% of a short bipolar lipid (bola lipid)
or small peptides (e.g., valinomycin) [49]. Since the apparent bending rigidity then
becomes comparable to the thermal energy T , these vesicles exhibit very strong shape
fluctuations. Entropic terms then become relevant for the description of typical
conformations. One must note, however, that bola lipid is much more soluble in
water and thus will go in and out of the bilayer more rapidly.
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Table 2
Area compression modulus k and thermal expansion coefficient β of bi-

layers taken from ref. [42].

Lipid k [mJ/m2] β [10−3/K]

DMPC (29◦)C 145 ± 10 6.8± 1.0

DMPC (35◦)C 4.2± 0.2

SOPC (15◦)C 200 ± 13 3.3± 0.7

SOPC:CHOL 1:1 (23◦)C 1077 ± 167 1.62± 0.16

DMPC:CHOL 1:1 (22◦)C 685 1.33

The Gaussian bending rigidity is difficult to measure experimentally since it is a
topological invariant. In principle, it can be inferred from measurements on ensem-
bles of vesicles which are equilibrated with respect to topological changes. To our
knowledge, there is no experimental record of a topology change in single-component
phospholipid bilayer vesicles. Thus, one can conclude that the time-scale for such
changes is quite large. For vesicles containing several domains, on the other hand,
the Gaussian bending rigidity should have observable effects even for a single vesi-
cle [60].

2.6.2. Area compression modulus
The area compressibility k does not enter the curvature energy. However, many
experiments involve stretching of the membrane which is governed by this quantity.
Detailed values as determined by micro-pipet aspiration can be found in the review
by Evans and Needham [42] from which a table is reprinted here as table 2. A typical
order of magnitude is k ' 102 mJ/m2. This value is indeed compatible with the order
of magnitude of the bending rigidity, κ = 10−19 J, since the relation κ = kd2/3 from
continuum mechanics for a thin homogeneous plate of thickness 2d then leads to
2d ' 3.5 nm, which is a typical bilayer thickness.

2.6.3. Thermal expansion coefficient
The thermal area expansion coefficient β which enters the calculation of temperature
trajectories can also be determined by micro-pipet aspiration. Values are also given
in table 2 again taken from Evans and Needham [42].

3. Shapes of minimal energy and shape transformations

3.1. Theoretical methods

The first step towards a systematic theory based on curvature models is to calculate
the shapes of lowest energy. Since for phospholipid membranes, the bending rigidity
κ is large compared to the thermal energy T , thermal fluctuations around the shape
of lowest energy can be ignored in such a first step. This holds for vesicles which are
small compared to the persistence length ξp ≡ a exp(2πκ/T ), where a is a molecular
scale of the order of nanometers [61]. For phospholipid membranes, this length scale
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is astronomical. If the size of the vesicle becomes comparable or larger than ξp,
thermal fluctuations lead to irregular shapes which can theoretically be investigated
by Monte Carlo simulation [62].

In general, one obtains different types (or families or branches) of shapes of lowest
energy in different regions of the parameter space. This division of the parameter
space represents the so-called phase diagram of the model.

So far, the complete phase diagram has not been obtained for any curvature model
since, in most cases, the minimization of the corresponding curvature energy has
only been performed within a certain subspace of shapes. A significant simpli-
fication arises if one restricts the problem to axisymmetric shapes. Whether this
restriction which might look plausible is indeed permissible has to be checked a
posteriori. The canonical procedure for the calculation of axisymmetric shapes of
lowest energy is as follows [4, 6, 8, 9, 63–67]: First, the constraints of fixed volume
and area are added to the curvature energy via Lagrange multipliers. Then, the ax-
isymmetric shape is expressed in terms of its contour parameters. Stationarity of the
shape leads to the Euler Lagrange equations corresponding to the curvature energy
(augmented with the constraints). These coupled non-linear differential equations
have to be solved numerically. The solutions (the so-called stationary shapes) can be
organized in branches due to their symmetry properties. The most important branches
are the prolate and oblate ellipsoids which include the dumbbells and discocytes, re-
spectively. Pear-shaped vesicles and stomatocytes bifurcate from the prolate and the
oblate branch, respectively. Since the solutions to the shape equations contain local
energy minima as well as unstable saddle points one has to check the stability of each
solution. Stability with respect to axisymmetric deformations follows from a close
inspection of the bifurcation diagram [9]. Stability with respect to non-axisymmetric
perturbations requires additional work which has not yet been performed in a sys-
tematic way [65, 68] except in the spherical limit [69–73]. However, stability under
general conformal transformations has been studied systematically, see section 5.1
below.

All the curvature models introduced above, lead to the same set of stationary
shapes since they only differ in global energy terms. However, the stability of these
shapes and, thus, the phase diagram depends crucially on the specific model and the
corresponding model parameters.

3.2. A simple model: Local curvature energy only

To illustrate the general procedure described above, consider the spontaneous curva-
ture model for C0 = 0 together with the constraints on the area A and the enclosed
volume V [9]. Since the curvature energy is scale-invariant in this case, only the
reduced volume

v ≡ V/
[
4πR3

0/3
]

(14)

enters, where

A ≡ 4πR2
0 (15)
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Fig. 6. Shapes of lowest bending energy for spontaneous curvature C0 = 0 and several values of the
reduced volume v. D and Dsto denote the discontinuous prolate/oblate and oblate/stomatocyte transition,

respectively. All shapes have the same area [9].

Fig. 7. Bending energy FSC as given by (7) for C0 = 0 (and κG = 0) as a function of the reduced
volume v. Three branches of stationary shapes are displayed: the prolate, the oblate and the stomatocyte
branch. The latter bifurcates from the oblate branch. Its upper part between the bifurcation and the cusp
corresponds to locally unstable shapes. Its lower part correspond to locally stable shapes. The oblate

branch beyond the diamond corresponds to selfintersecting (and thus unphysical) states [9].

defines the equivalent sphere radius R0. Such a model is presumably the simplest
model for a vesicle consisting of a symmetric bilayer. It should be applicable to
membranes with fast flip-flop between the two monolayers.

For v = 1, the shape is necessarily a sphere, while for v < 1, the solutions to the
shape equations are prolate ellipsoids and dumbbells, oblate ellipsoids and discocytes,
and stomatocytes. Typical shapes as well as their energy are shown in figs 6 and 7
taken from ref. [9]. For v . 1 the prolates have lowest energy. For v < 0.65, the
energy of the oblates becomes smaller than the energy of the prolates. This amounts
to a discontinuous transition from the prolates to the oblates with decreasing v. For
any discontinuous transition, it is important to know for which value of the reduced
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volume a metastable shape looses its local stability. Approaching the transition
from either the small or the large v-values, the shapes will be trapped in the local
(metastable) minimum as long as the thermal energy is not sufficient to overcome
the barrier for the transition towards the global minimum. An approximate stability
analysis shows that the prolates are locally stable for all v whereas the oblates loose
local stability with increasing v at some value v∗ with 0.7 < v∗ < 0.85 [73]. Thus,
for large reduced volume, the oblates whose energy is shown in fig. 6 correspond to
saddle points.

The energy diagram shown in fig. 7 directly reveals, that for even smaller volume,
the oblates become unstable with respect to an up/down symmetry breaking for
v < 0.51. This type of instability which preserves the axisymmetry can be read off
from the bifurcation diagram. It is then also obvious that the upper part of the
stomatocyte branch corresponds to the saddle point between a locally stable oblate
and a locally stable stomatocyte. This energy diagram leads to a discontinuous
transition between the oblate and the stomatocytes at v ' 0.59. The limits of
metastability are at v ' 0.66 for the stomatocyte and v ' 0.51 for the oblate,
respectively.

Two facts about this simple model should be emphasized: (i) The biconcave
discocytes have lowest energy in a narrow range of reduced volume v. Thus a
negative C0 is not required to obtain these red-blood-cell like shapes contrary to
repeated claims in the older literature. (ii) Budding does not occur in this model
since pears do not show up as stationary shapes for vanishing spontaneous curvature.

3.3. Phase diagrams

3.3.1. Spontaneous-curvature model
The phase diagram in the spontaneous-curvature model is shown in fig. 8 taken
from [9]. Apart from the reduced volume v, it depends on the scaled spontaneous
curvature

c0 ≡ C0R0. (16)

It contains large regions of stomatocytes, oblates/discocytes, prolates/dumbbells and
pear-shaped vesicles. A negative C0 favors stomatocytes while a positive C0 leads to
pear-shaped vesicles which are involved in the budding transition [8, 9, 66, 74, 75].
In particular, the pear shapes end up at a curve Lpear along which the neck diameter
of the pears tends to zero. The shapes then consist of two spheres with radii R1 and
R2 which are connected by a narrow neck. For such an ‘ideal’ neck, one has the
‘kissing condition’ [8, 9, 66, 75]

1/RA + 1/RB = C0. (17)

Here, RA and RB denote the local radii of curvatures of the two adjacent segments
extrapolated through the neck which are necessarily equal at the poles in each indi-
vidual segment. This kissing condition can be phenomenologically derived by the
requirement that the energy density (2H − C0)2 is the same for the two adjacent
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Fig. 8. Phase diagram of the spontaneous-curvature model. This phase diagram shows the shape
of lowest bending energy as a function of the scaled spontaneous curvature c0 and of the reduced
volume v. The regions where the prolate/dumbbell, pear-shaped, oblate/discocyte and stomatocytes
have lowest energy are separated by transition lines. The line Cpeardenotes a continuous transition. All
other transitions are discontinuous. The lines Lsto and Lpear correspond to limit shapes with infinitesimal
neck. Beyond the lines SIoband SIsto selfintersecting states occur. In the shaded area, the shape of

lowest energy has still to be determined [9].

segments. As a thorough mathematical analysis shows it also holds for more com-
plicated budding processes where spheres and prolates are connected by this type of
neck [76]. Beyond the limiting line Lpear, the phase diagram becomes quite compli-
cated since further branches of shapes appear which involve a prolate connected to
a sphere or shapes of multiple segments [8]. In this region, additional energy terms
such as attractive Van der Waals interaction can become relevant [77, 78].

Two general features of the phase diagram of the spontaneous-curvature model
should be kept in mind: (i) Most transitions are discontinuous, i.e. one expects large
hysteresis effects. (ii) Even though one cannot exclude the possibility that somewhere
in the phase diagram the ground-state of the vesicle is non-axisymmetric, there are
so far no indications for such a region.

3.3.2. Bilayer-couple model
In the bilayer-couple model, the phase diagram depends on the reduced area differ-
ence

∆a ≡ ∆A/16πR0d (18)

and the reduced volume v. The phase diagram [9] is shown in fig. 9. Qualitatively
speaking, ∆A takes over the role of the spontaneous curvature. A large ∆A promotes
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Fig. 9. Phase diagram of the bilayer-couple model. This phase diagram shows the state of lowest
energy as function of the reduced area difference ∆a and of the reduced volume v. Cpear denotes
the line of continuous transitions between up-down symmetric prolate/dumbbell shapes and up-down
asymmetric pear-shapes. Likewise, Csto denotes the locus of the continuous transitions between the
oblate/discocyte shapes and the stomatocytes. Lpear and Lsto are limit curves which correspond to
budding and the inclusion of a spherical cavity, respectively. In the region between the prolate/dumbbell
and discocyte regime, non-axisymmetric ellipsoids have lowest energy. This region is separated by
continuous transitions Cpro and Cob from the corresponding axisymmetric shapes. E denotes the point
where two spheres of equal radii are sitting on top of each other. Along the line SIsto, the two poles of
the shape touch each other. In the shaded areas, the shape of lowest energy has not been determined so

far [9].

pear-shaped vesicles, while smaller values can lead to stomatocytes. However, two

important differences to the phase diagram of the spontaneous-curvature model arise:
(i) All transitions found so far are continuous, i.e. there are no metastable states and
there are no hysteresis effects. (ii) A region of non-axisymmetric ellipsoids emerges
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between the oblate and the prolate phases [9, 68, 73].

3.3.3. Area-difference-elasticity model
Since the area-difference-elasticity model interpolates between the spontaneous-curv-
ature model and the bilayer-couple model, its phase diagram also interpolates between
the two phase diagrams shown above. In fact, the phase diagram of the area-
difference-elasticity model depends on three variables: the reduced volume v, the
reduced equilibrium area-difference

∆a0 ≡ ∆A0/16πR0d (19)

and the parameter α = κ̄/κ as discussed in section 2.3. Since the phase diagrams
of the two limiting cases are notably different, one can expect that the full three-
dimensional phase diagram reveals a complex topology. So far, mainly two parts of
this three-dimensional phase diagram have been investigated in some detail, namely
the oblate/prolate transition [68] and the budding region [31, 38, 39]. Rather than
presenting the three-dimensional phase diagram here, we will discuss the specific part
of the phase diagram which describes the budding region in relation to experimental
results. To this end, we first need to know the effect of a temperature change on
those variables which determine the shape.

3.4. Temperature trajectories

For a physical interpretation of the phase diagrams one has to relate the variables
v, c0,m0 to physical observables which poses practical as well as fundamental prob-
lems. For an axisymmetric vesicle, the area and the volume can be inferred, in
principle, from its contour, if the orientation of the symmetry axis is known. How-
ever, thermal fluctuations as well as rotational diffusion of the vesicle limit the
resolution. No direct measurements of the total mean curvature M which would
yield ∆A, compare eq. (9), have been performed so far even though this quantity
could also be obtained from the contour through higher derivatives.

As for the spontaneous curvature C0 and the equilibrium area-difference ∆A0, the
situation is different since these quantities cannot be measured directly. Even though
a certain amount of theory exists on the effective spontaneous curvature induced
by different electrostatic parameters on the two sides of the bilayer (compare chap-
ter 12 in this volume), there is no practical method for determining the spontaneous
curvature directly for phospholipid bilayer vesicles. In a symmetric environment,
however, one would expect that C0 = 0. Likewise, the equilibrium area-difference
∆A0 is not accessible to any direct measurement, compare section 3.6 below. Ac-
cording to (10), ∆A0 depends on the number of molecules in the two monolayers
which is determined by the preparation process.

Given this somewhat unsatisfying situation, one has to be content with a knowl-
edge of the relative variation of these parameters upon changing a physical control
parameter. The most widely used parameter, so far, is the temperature T which can
be controlled within 0.1◦C. An increase in temperature from an initial value T0 leads
to a thermal expansion of the area of the two monolayers. It will be necessary to
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consider a small asymmetry γ of the expansion coefficients of the two monolayers
[7, 9], βin and βex, defined as

βin ≡
1
Ain

∂Ain

∂T
≡ β and βex ≡

1
Aex

∂Aex

∂T
≡ (1 + γ)β. (20)

A typical value is β ' 6× 10−3/K which is one order of magnitude larger than
the expansion coefficient for the enclosed aqueous solution. The latter can therefore
be neglected. However, one has to take into account that the thickness 2d of the
bilayer also becomes temperature dependent according to

1
d

∂d

∂T
≡ βd. (21)

Assuming temperature independent expansion coefficients, one finds for a temper-
ature trajectory the expression

∆a0 =
(
v(T0)/v

)r{
∆a0(T0) + b

[(
v(T0)/v

)γq
− 1
]}

, (22)

parametrized by an initial point with ∆a0 = ∆a0(T0) and v = v(T0) on the trajectory
[7, 9]. The exponents are given by

q = (2 + γ)/3, (23)

and

r =
2− γ − 4βd/β

3(2 + γ)
. (24)

The latter value can be bounded theoretically by two limiting cases. (i) If the
monolayer separation 2d does not change with temperature, one has βd = 0 which
leads to r = 1/3. (ii) If d decreases with temperature in such a way that the bilayer
volume as given by ∼ Ad remains temperature independent, i.e. βd = −β, one has
r = 1. Experiments using nuclear magnetic resonance indicate that the latter case
is a good approximation [79]. Without asymmetry, i.e. for γ = 0, one obtains the
simple expression

∆a = ∆a0(T0)
(
v(T0)/v

)r
. (25)

However, even a small asymmetry γ of the order 10−3 has a considerable influence
on the temperature trajectory [7] since the dimensionless coefficient b in (22) is given
by

b ≡ Aex(T0)/
{

8d(T0)
[
πA(T0)

]1/2}
. (26)
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It is proportional to the radius R0 of the vesicle and becomes of the order of 103

for R0 ' 10 µm. The physical basis for this tremendous effect is the length-scale
separation emphasized in section 2. The relevant quantity for a change in shape is
not only the absolute change in area, which mainly affects v, but also the variation
of the area-difference in the two monolayers for which the relevant scale is of the
order of dR0. If the outer monolayer expands more than the inner one, the additional
area accumulated in this outer layer will cause budding since the formation of buds
increases the area difference. Likewise, a stronger increase of the area of the inner
monolayer induces a transition to the discocytes and the stomatocytes.

This sensitive dependence of the thermal trajectory in the phase diagram indicates
that it will be rather difficult in general to reproduce experiments on vesicle shape
transformations. Presently, the available purity of the lipids does not exclude the
presence of residual impurities which could result in an asymmetric expansion of
the order of 10−3. It would be highly beneficial to investigate this effect systemat-
ically by deliberately adding traces of a second (miscible) component to one of the
monolayers. However, one then has to be aware of additional effects arising from
the mixture, see section 6.

3.5. Temperature-induced budding

The discussion in the last section has demonstrated that even though temperature
trajectories can be calculated in principle, direct comparison with experimental tra-
jectories is difficult because not all of the relevant parameters are known. Therefore,
it is reasonable to focus first on those qualitative aspects which can be treated even
without detailed knowledge of the precise temperature trajectory.

As an example for such an approach, consider the phase diagram of the budding
region in the area-difference elasticity model shown in fig. 10. This is a section
of the three-dimensional phase diagram in the region where budding occurs at a
fixed value of α = 4, chosen here for illustrative purposes [39]. Two different cases
for the budding transition can be distinguished: (i) For a relatively small reduced
volume v, the symmetry-breaking budding transition between the prolates and the
pear-shaped vesicles is continuous. Weak pears are therefore stable and an increase
in ∆a0 will progressively increase the neck diameter until at Lpear the limit line, or
vesiculation line, is reached. Along this line, the neck diameter has formally shrunk
to zero. The shape then consists of two spheres sitting on top of each other. (ii) For a
large reduced volume, the budding transition becomes discontinuous, with the line of
instability extending well into the vesiculated region beyond the limiting line Lpear.
Therefore, the theory for this value of α predicts a qualititative difference between
budding at a small reduced volume and budding at a larger reduced volume.

At present the best estimate for α is α ' 1, which is supported by derivations
using standard elasticity theory as sketched in section 2.3 as well as by experimental
measurements [44]. For such a value, the area-difference-elasticity model predicts
a discontinuous budding transition irrespective of the reduced volume (if budding
takes place at all).

These theoretical predictions are presently still in partial conflict with the exper-
imental results. Experimentally, two apparently different scenarii for the budding
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Fig. 10. Phase diagram of the area-difference-elasticity model in the budding region for rigidity ratio
κ̄/κ = α = 4 as a function of the equilibrium area-difference ∆a0 and of the reduced volume v. The
lines Cpearand Dpeardenote a continuous and a discontinuous budding transition, respectively, separated
by the tricritical point T . For a discontinuous transition, the prolates become infinitesimally unstable at
the line Mpro. Lpearis the vesiculation curve where two spheres of different radii are connected by an

ideal neck. At E, the two spheres have equal size [39].

transition can be distinguished: (i) For DMPC-vesicles, a slow increase in tem-
perature leads continuously to a pear with weak up-down asymmetry which upon
further temperature change jumps to a vesiculated shape with a narrow neck [7, 11].
(ii) For SOPC-vesicles in sucrose/glucose solutions, discontinuous budding is ob-
served without the pear-shaped intermediates [80]. A similar sequence can also be
obtained for DMPC-vesicles provided they are kept under some tension before the
heating starts [11].

The second experimental scenario (ii) is compatible with the predictions of a
discontinuous budding of the area-difference elasticity model for α ' 1. To explain
experimental scenario (i) within the area-difference elasticity model seems to be
impossible. The apparent continuous transition from the symmetric shape to the
pear with weak up-down asymmetry could be caused by a large α value, which
is expected to apply for multilamellar vesicles if the bilayer are strongly coupled.
However, the apparent transition from a wide neck to a narrow neck is not contained
in any of the curvature models discussed so far. Therefore, even on this qualitative
level, there remains a serious discrepancy between theory and experiment. Further
energy terms beyond those contained in the area-difference-elasticity model could,
in principle, provide such a scenario [78]. However, one expects any corrections
to (11) arising from elastic interactions to be of the order of d/R0 ' 10−3. This
magnitude is not sufficient to cause a discontinuous transition between two different
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neck sizes. Whether the interplay of these correction terms and the large effect caused
by impurities can lead to such a discontinuous transition remains to be investigated.

Another possible explanation for the discrepancy could be that the pears with
weak up–down asymmetry correspond to long-lived dynamical fluctuations around
a metastable shape [39]. Indeed, one expects very long relaxation times near an
instability since the time-scale tf ≡ ηR3

0/κ for long-wave length bending fluctuations
acquires an additional factor 1/(vc− v) near an instability at v = vc. Thus, the time-
scale for a shape fluctuation towards the unstable mode tf then formally diverges
due to ‘critical slowing-down’. In practice, this divergence will be cut-off by the
decay of the metastable shape as soon as the energy barrier becomes comparable
to the thermal energy T . On the basis of this estimate, the ‘stable’ pears would be
long-lived fluctuations around a still metastable symmetric shape. Experiments to
settle this issue are underway.

3.6. The equilibrium area difference as a possible control parameter

The equilibrium area-difference depends on the number of molecules in the two
monolayers. If one assumes that the vesicles are relaxed with respect to the non-local
bending energy right after they have been formed, i.e. ∆A = ∆A0, the dimensionless
equilibrium area-difference ∆a0 depends on the specific shape the vesicle acquired
after closure. The difference between, e.g., a sphere and a capped cylinder leads to
a difference of O(1) [38, 39]. Presently, the swelling process is not understood well
enough to know which factors determine ∆A0.

There are two effects which indicate that ∆A0 can be modified by other factors
than temperature. First, Fargé and Devaux [81] showed that redistributing lipids
from one monolayer to another by applying a transmembrane ph-gradient induces
shape transformations similar to those predicted theoretically as one increases ∆A0.
Secondly, the effect mentioned above that precooling leads to budding can, somewhat
speculatively, also be related to changes in ∆A0 using an intruiging suggestion by
Helfrich and co-workers [82]. They proposed that osmotically enforced flow of water
through the membrane drags along lipid molecules. Since precooling also forces
solvent to flow through the membrane, one could wonder whether such a treatment
also causes an increase in ∆A0. In the phase diagram shown in fig. 10, this would
shift the initial spherical vesicle upwards. A temperature trajectory starting at the
sphere would then reach the budding line for a smaller temperature increase and
the size of the buds should be smaller. So far, there are no systematic tests of
this hypothesis. Obviously, quantitative experiments on the effect of the equilibrium
area-difference will be very helpful in assessing whether the area-difference-elasticity
model describes the main physics of these systems.

4. Shape fluctuations of quasi-spherical vesicles

4.1. Static amplitudes

Membranes are so flexible that they undergo thermally excited shape fluctuations
which are visible in the microscope. The spectrum of these fluctuations depends on
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the bending rigidity κ. Therefore, the analysis of the observed flickering of vesicles
can be used to estimate κ as it will now be discussed for the case of quasi-spherical
vesicles.

Quasi-spherical vesicles can be characterized by a fixed enclosed volume V ≡
(4π/3)R3

0, which defines R0 and a fixed internal (‘true’) area

A ≡ (4π +∆)R2
0, (27)

which defines the (dimensionless) excess area ∆. Note that in this section R0 is
defined by the enclosed volume rather than by the area as in the preceding sections.
The fluctuating shape of a quasi-spherical vesicle can be parametrized as

R(θ,φ) = R0

(
1 +

lmax∑
l>0

l∑
m=−l

ul,mYlm
(
θ,φ
))

, (28)

where |m| 6 l, ul,−m = (−1)mu∗l,m and the functions Ylm are the usual spherical
harmonics.

The volume constraint fixes the amplitude u0,0 as a function of the other ampli-
tudes. The area constraint is difficult to incorporate exactly. It can be included in
an approximative way by a Lagrangean multiplier term ΣA which is added to the
energy W . If the area, A, and the bending energy, W , are expanded to second order
in the amplitudes ul,m, the result can be written as

A− 4πR2
0 ≈ R

2
0

lmax∑
l>2

l∑
m=−l

|ul,m|
2(l + 2)(l− 1)/2 (29)

and

W +ΣA ≈ const + (κ/2)
lmax∑
l>2

l∑
m=−l

|ul,m|
2(l + 2)(l − 1)

[
(l + 1)l+ σ)

]
, (30)

with the effective tension

σ ≡ ΣR2
0/κ+ α(4π −∆A0/4dR0). (31)

With the Boltzmann weight exp[−(W +ΣA)/T ], one obtains the mean square am-
plitudes〈

|ul,m|
2〉 = (T/κ)

[
(l + 2)(l− 1)

(
(l + 1)l + σ

)]−1
. (32)

For α = 0, i.e. without the area-difference elasticity but including a spontaneous cur-
vature, the expressions (31) and (32) have been derived previously [45, 83, 84, 69].
The presence of the area-difference elasticity modifies the mean-square amplitudes
whenever the equilibrium area difference ∆A0 deviates from the optimal value for a
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sphere (16πdR0) as it will in general. However, this dependence is hidden together
with the dependence on the Lagrangean multiplier in the effective tension σ.

The expressions for the mean square amplitudes (32) have been used to determine
experimentally the bending rigidity κ from the contour fluctuations of quasi-spherical
vesicles using phase contrast microscopy combined with fast image processing [45–
50]. In this approach, σ is usually treated as a fit parameter for which one typically
obtains values in the range 0 . σ . 100.

Since the Lagrangean multiplier Σ has been introduced only to enforce the area
constraint it should be eliminated in favor of the excess area∆ which is the physically
meaningful quantity. Inserting the mean square amplitudes (32) into the expansion
of the area (29) and comparing with the constraint (27) yields the implicit equation

lmax∑
l>2

(2l + 1)/
(
l2 + l + σ(∆)

)
= 2∆κ/T ≡ δ (33)

for σ. An analogous relation was first derived by Helfrich and Servuss for almost
planar membranes [54]. The relation (33) shows that σ depends on the excess area
only in the combination δ ≡ 2∆κ/T . In general, (33) has to be inverted numerically
to yield σ = σ(δ, lmax). If this inversion is performed approximately by replacing the
sum with an integral one obtains

σ '
l2max + lmax − 6eδ

eδ − 1
. (34)

This relation shows that for 2 ln(lmax/6) > δ > 1, the effective tension depends
exponentially on the excess area. This effective tension is also called an entropic
tension since it restricts the fluctuations of the individual modes by the area constraint.

After elimination of the effective tension the mean square amplitudes as given
by (32) depend only on three quantities: (i) T/κ, (ii) the scaled excess area δ ≡
2∆κ/T , and (iii) the cutoff lmax. They are independent of the equilibrium area
difference ∆A0 and the value of the non-local bending rigidity ακ.

The temperature dependence of the mean square amplitudes provides an additional
parameter which could become valuable for a more precise determination of the
bending rigidity. To a first approximation, neither the cutoff lmax, nor the bending
rigidity should depend strongly on T in the narrow temperature range where the
vesicle is quasi-spherical. However, the excess area depends quite dramatically on T .
Assuming a constant thermal area expansion coefficient, β, i.e A(T ) = A(T0)[1 +
β(T − T0)], we find

∆ = 4πβ(T − T0), (35)

where T0 is the temperature where the excess area formally vanishes. With a typical
value β ' 5× 10−3/◦C, a temperature change from T = T0 + 2 ◦C to T = T0 + 7 ◦C
spans the range from 6 to 20 for δ, i.e. effective tensions σ ranging from 2500
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to −5.3 (for lmax = 1000). The entire set of measured mean square amplitudes at
different temperatures should then all be described by the expressions (32), (33)
and (35) using only T/κ, T0 and lmax as fit parameters provided the quasi-spherical
limit is applicable in the whole range. If the excess area ∆ becomes too small, the
fluctuations work against elastic expansion. If the area excess ∆ becomes too large,
the vesicle is no longer quasi-spherical but becomes prolate by a gradual crossover.
For non-spherical shapes, the fluctuations have to be calculated numerically. So
far, such a program has only been performed for discocyte shapes in an attempt to
understand the flickering of red-blood-cells [85].

A similar reasoning would hold if the osmotic conditions were used to change
the reduced volume of quasi-spherical vesicles. Again, the mean-square amplitudes
should then be analysed as a function of the concentration of the osmotically active
components.

4.2. Dynamics

The static mean-square amplitudes are, in principle, sufficient to determine the bend-
ing rigidity. However, more valuable information is contained in the dynamical be-
havior of these fluctuations. Since strong dissipation arises from the viscous damping
in the surrounding fluid, these fluctuations are overdamped [86]. Within the spon-
taneous curvature model, Milner and Safran [69] based on work by Schneider et
al. [45] derived the damping rates

γl =
κ

ηR3
0

l(l + 1)(l+ 2)(l − 1)((l+ 1)l + σ(∆))

(2l+ 1)(2l2 + 2l− 1)
, (36)

which show up in the dynamical correlation functions as〈
ul,m(t)u∗l,m(0)

〉
=
〈
|ul,m|

2〉e−γlt. (37)

Here η is the viscosity of the surrounding medium. Measurements of the damping
rates are indeed consistent with this prediction even though a detailed comparison is
not yet feasible due to experimental limitations [49, 50, 87].

In this calculation, the bilayer architecture has been ignored. However, the analysis
of the dynamical fluctuations of an almost planar bilayer membrane has shown, that
the coupling between shape and density difference modifies the damping rates for
wave-vectors q which are larger than a cross-over wave-vector q1 [88]. For shorter
wave-lengths, bending modes are so fast that the lipid density can no longer accom-
modate to the shape since intermonolayer friction provides an additional dissipative
mechanism [89, 90]. This leads to a renormalization of the effective bending rigidity
for shorter wave-length modes from κ to κ + 2kd2 [88]. Rough estimates indicate
that the cross-over vector q1 corresponds to a wave-length in the µm-range. Even
though the somewhat tedious calculation of this phenomenon in the quasi-spherical
geometry has not yet been performed explicitly, one can expect significant devia-
tions from the result (36) for wave-lengths smaller than this cross-over length due
to the renormalization of the bending rigidity. In fact, because of the coupling be-
tween shape and lipid density, the correlation function decays no longer as a single
exponential but rather involves two damping rates in this regime.
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5. Non-spherical topology

5.1. Vesicles with one hole

5.1.1. Willmore problem, Clifford torus and conformal transformations
For vesicles of non-spherical topology [15, 91], an apparently simple theoretical
problem remains to be solved [92]: What is the shape of minimal local bending
energy

G ≡ (κ/2)
∮

dA(2H)2 (38)

among all shapes of given topology? For shapes of spherical topology, one can proof
mathematically that the sphere is the absolute minimum. Willmore’s conjecture gives
a tentative answer for genus-1 vesicles, i.e. tori with one hole or, equivalently, shapes
which are topologically equivalent to a sphere with one handle [92]. According to
this conjecture, the shape of minimal bending energy is the Clifford torus which
is an axisymmetric torus with circular cross-section and the ratio

√
2 between the

two generating radii, see fig. 11. It has local bending energy G = (π/2)8πκ and a
reduced volume v∗ ' 0.71.

A fundamental mathematical property of the local curvature energy G (38) is its
invariance under conformal transformations in three-dimensional space [92]. In three
dimensions, the group of conformal transformations contains inversions in a sphere
apart from the trivial rotations, translations and scale-transformations. If such an
inversion is applied to the Clifford torus, one obtains a one-parameter family of non-
axisymmetric shapes which all have the same local curvature energy G but different
reduced volume v in the range v∗ 6 v < 1 [93, 94, 16]. A particular member of this
family is also shown in fig. 11.

5.1.2. Phase diagram in the area-difference-elasticity model
As we have argued in section 2, the non-local bending energy is an important in-
gredient to describe the energy of vesicles more realistically. If this energy as well
as the volume constraint is taken into account, the search for the shape of minimal

Fig. 11. Clifford torus (left) and a non-axisymmetric shape (right) obtained by a conformal transfor-
mation of this torus [16].
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total energy becomes as complex as in the case of spherical topology. A detailed so-
lution of this problem has been obtained by combining two methods. In a first step,
the branches of stationary axisymmetric shapes of toroidal topology are determined
[15, 16]. In a second step, the stability of these shapes is studied with respect to
special conformal transformations [16].

A special conformal transformation consists of an inversion at the unit sphere, a
translation about a vector a and a second inversion. Thus, any point R on the surface
is mapped onto

R′ =
R/R2 + a

|R/R2 + a|2
. (39)

The advantage of such a mapping is that it can be treated perturbatively since it
becomes the identity for small a. For an axisymmetric shape, the transformed shape
will be non-axisymmetric, if the vector a is not parallel to the axis of symmetry.
Therefore, the stability of the axisymmetric shapes with respect to a (particular)
non-axisymmetric perturbation can be studied [95]. If, for a given set of parameters,
the axisymmetric shape of minimal energy is found to be unstable, the groundstate
must be nonaxisymmetric for these parameters. Even though one cannot expect to
obtain the region of the non-axisymmetric ground states exactly, this method gives
at least a lower bound on the extension of this region. This lower bound should be a
reasonable approximation since it becomes exact in the neighborhood of the Clifford
torus. The phase diagram obtained in this way within the area-difference-elasticity
model together with some representative shapes is shown in fig. 12 [16]. The main
feature is the large region of non-axisymmetric shapes which are separated from the
axisymmetric shapes by the instability line C∗.

5.1.3. Experiments
The different types of toroidal shapes as observed experimentally by Bensimon and
co-workers [18] can indeed be located in the phase diagram. (i) The axisymmetric
circular torus with an estimated reduced volume of v ' 0.5 [18] fits well into
the phase diagram since circular shapes with v = 0.5 exist within a large range
of ∆a0. (ii) The observed non-axisymmetric torus with v ' 0.77 [18] resembles
the non-axisymmetric shape shown in fig. 11. Indeed, the phase diagram of the
area-difference-elasticity model shows that shapes with v ' 0.77 are definitely non-
axisymmetric for all ∆a0. (iii) Mostly Clifford tori have been observed in the first
experimental study of genus-1 tori where the lipid was partially polymerized [96].

For a crucial test of the theory, one parameter such as temperature should be
varied in a systematic way. A temperature trajectory passing through a circular
torus at low reduced volume and a non-axisymmetric torus at large reduced volume
is also shown in fig. 12. Thus, the model predicts that for any circular torus a
decrease in temperature will lead to a non-axisymmetric torus via a continuous shape
transformation which indeed has been verified experimentally [19].
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Fig. 12. Phase diagram for tori in the area-difference-elasticity model with rigidity ratio κ̄/κ = α = 1
as a function of the equilibrium area-difference ∆a0 and of the reduced volume v. Three axisymmetric
regions which are separated by continuous shape transformation linesCsick and Cdisc can be distinguished:
(i) discoid tori, (ii) sickle-shaped tori and (iii) toroidal stomatocytes. Within each region, a typical
contour is shown. The line Ldisc represents limit shapes with vanishing hole diameter. The instability
with respect to axisymmetry breaking conformal transformations is denoted by C∗. Within the region
of axisymmetric shapes with a reflection plane, discontinuous shape transformations from circular tori to
discoid tori occur along the line D which ends in the critical point Dcp. The Clifford torus is the shape of
minimal energy along the dotted line CL. A temperature change corresponds to a temperature trajectory
as indicated by the dashed line (tt). This trajectory crosses the line C∗ which implies that axisymmetry

breaking shape transformations of toroidal vesicles can be induced by temperature changes [16].

5.2. Shapes with more holes or handles

5.2.1. Phase diagram and conformal diffusion for genus 2
Vesicles with more than one hole or handle are necessarily non-axisymmetric. This
makes the calculation of such shapes much more difficult than for the cases consid-
ered so far. Fortunately, the combination of a mathematical conjecture, conformal
transformations, and numerical methods provide much insight into the phase diagram.

For genus-2 vesicles, i.e. vesicles with two holes or handles, Kusner conjec-
tured that the Lawson surface as shown in fig. 13 minimizes the local bending
energy [97]. Applying conformal transformations to this Lawson surface generates
a three-dimensional space of shapes with the same energy [17, 98, 99].

For real vesicles, the constraints on the reduced volume as well as the presence of
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Fig. 13. Lawson surface (L) and some of its conformal transformations, where B denotes the button
surface. The letters refer to the location of these shapes in the phase diagram shown in fig. 14 [17].

the non-local bending energy ‘eliminate’ two dimensions of this degeneracy. How-
ever, there still remains a one-parameter family of shapes which all have the same
reduced volume and the same total bending energy [17, 99]. For genus-2 vesicles,
there is a whole region in the phase diagram where the ground state is degenerate
as shown in fig. 14.

In this region, theory predicts a diffusion process in shape space along a confor-
mal mode which neither changes the reduced volume nor the total mean curvature
[17, 99]. An example of such a conformal diffusion process is shown in fig. 15.
Within the parameter space region W , the typical diffusion time in the shape space
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Fig. 14. Phase diagram for genus-2 vesicles as a function of the reduced volume v and the area
difference ∆a. Within the region W , the ground state is conformally degenerate. This region is bounded
by the lines CBS, CBL and CLS. The Lawson surface L and the button surface B are special points at
the boundary of W . The shape S denotes the sphere with two infinitesimal handles. Adjacent to W ,

five different regions exist. Cartoons characterize the shapes within three of these five regions [17].

Fig. 15. Shapes along a conformal diffusion mode. All three shapes have the same curvature energy,
the same reduced volume and the same reduced area-difference. Both the left and the right shape are
the two special shapes along this conformal mode which possess one symmetry plane, while the shape

in the middle has no symmetry plane [17].
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should be of the order of tcf = ηR3
0/T for a solvent of viscosity η at temperature T ,

as follows from dimensional analysis. This time-scale is significantly longer than the
time-scale tb = ηR3

0/κ for long-wave-length bending fluctuations since κ/T ' 25 for
phospholipid membranes. Since the existence of the phase W is strongly dependent
on the specific form of the bending energy, the observation of conformal diffusion
would directly confirm this form. Higher order corrections to the energy (11) which
are of the order of ∼ d/R0 ' 10−3 are small compared to a thermal energy T and
thus should not suppress conformal diffusion.

Outside of W , the shapes of minimal energy have a larger energy than the Lawson
surface. Cartoons of these shapes which have at least two symmetry planes are also
shown in the phase diagram of fig. 14.

5.2.2. Higher genus
Conformal diffusion will be generic for higher genus vesicles since regions with
conformally degenerate ground state exist for any genus g > 2. For g > 2, the local
bending energy without any constraint possesses even more than one stationary shape
[100, 98] Consequently, there will be several regions of one-dimensional degenerate
ground states for higher genus vesicles. Discontinuous transitions together with
regions of metastability are then likely to occur.

5.2.3. Experiments
Genus-2 vesicles have recently been observed experimentally. First, a button-like
shape has been found [18]. It can be directly located in the phase diagram for
genus-2 shapes shown in fig. 14. According to the theory, a ground state with three
symmetry planes cannot belong to the degenerate phase. Consequently, this shape
does not belong to the degenerate phaseW and should not exhibit conformal diffusion
in agreement with the observation. Starting from this button surface a decrease in
temperature will increase v which should eventually lead into the phase W . The
onset of conformal diffusion should then be observed as soon as the temperature
trajectory crosses the boundary to the region W .

The second type of genus-2 shapes observed so far [101] resembles the phase with
threefold symmetry in the lower left corner of the phase diagram. For small v, these
shapes consist of two concentric spheres connected by narrow necks. The position of
these necks shows strong fluctuations. Even though one does not expect conformal
diffusion for these shapes to happen, the pronounced fluctuations indicate that there
are shape excitations of low energy for these shapes. In fact, in the limit of small v,
the effective interaction between the necks vanishes [101]. The same type of shapes
with more than three necks has also been observed [101].

Finally, recent experiments show strongly fluctuating shapes which could be in-
terpreted as conformal diffusion [19]. However, it is difficult to distinguish experi-
mentally rotational diffusion from conformal diffusion since only a two-dimensional
cut of the three dimensional shape can be observed. More experiments are certainly
needed in order to obtain more information on these diffusion processes.
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6. Lipid mixtures

6.1. Fluid membranes consisting of several components

In general, a lipid bilayer is composed of different types of molecules which may
differ in their head groups, in the length of their hydrocarbon chains or in the num-
ber of unsaturated bonds within these chains. In such a multi-component system,
the composition can become laterally inhomogeneous within each monolayer and
can be different across the two monolayers. As a result, the elastic parameters of
the membrane such as the bending rigidity and the spontaneous curvature become
inhomogeneous which leads to a coupling between the composition and the shape.
Moreover, there are energies associated with the composition variables such as en-
tropy of mixing and the cost of an inhomogeneous composition profile. To categorize
the various phenomena which arise from the competition between these energies and
the curvature energy, it is helpful to distinguish two cases based on the phase diagram
of a multi-component bilayer.

Usually, the phase diagram of a multicomponent bilayer exhibits a homogeneous
one-phase region at high temperature and a two-phase coexistence region at lower
temperatures for a certain range of compositions.

(i) In the two-phase region, domains for which the lipid composition is different
from the surrounding matrix are formed [102, 103]. The edges of these domains are
characterized by an edge or line tension. Since the length of the domain boundary
decreases if the domain buds, the competition between this edge tension and the
curvature energy leads to domain-induced budding [12, 60, 104]. This budding
process is discussed in section 6.2 both for a flat membrane matrix and for vesicles.

Quite generally, these domains seem to be an essential feature of the spatial or-
ganization of biological membranes. For example, the plasma membranes of most
cells contain specialized regions such as coated pits or various types of cell junc-
tions. These domains represent an important theme of current research in structural
biology [105].

(ii) In the one-phase region, the groundstate is a flat and laterally homogeneous
membrane in the absence of a spontaneous curvature. However, any inhomogeneity
in the composition, either laterally within a monolayer or between the two monolay-
ers, induces a local spontaneous curvature if the two lipid species have a different
molecular geometry. For an almost planar membrane, this leads to a coupling be-
tween bending fluctuations and composition fluctuations which decreases the bending
rigidity [106, 107]. For a non-spherical vesicle, this coupling between shape and
composition causes curvature-induced lateral phase segregation [13] as discussed in
section 6.3.

In the following, we focus on fluid lipid bilayers. Even though the mixture of two
lipid components often leads to the coexistence of a fluid and a gel phase, there are
several examples for the coexistence of two fluid phases. An especially important
one is provided by mixtures of phospholipids and cholesterol as has been established
quite recently [108, 109, 110]. Fluid-fluid coexistence also occurs in the binary
mixture of DEPC and DPPE [111] and in mixtures with partially unsaturated alcyl
chains [112].
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Domain-induced budding and curvature-induced phase segregation as considered
here must be distinguished from related but different phenomena such as striped
phases [113, 114], spontaneous formation of small vesicles in mixtures of oppositely
charged surfactants where phase separation occurs across the membrane [115–118],
and shape transformations induced by a coupling between a local in-plane order and
the membrane normal for smectic-C vesicles [119].

6.2. Domain-induced budding

6.2.1. Phase separation within bilayers
The two coexisting phases of the lipid mixture will be denoted by α and β. This
(αβ) two-phase region exhibits (i) a nucleation regime, in which one has to overcome
an energy barrier in order to form a ‘critical’ domain, and (ii) a regime of spinodal
decomposition in which such a barrier is absent.

Now, consider a membrane which is initially prepared in a homogeneous state
within the one-phase region and is then quenched into the (αβ) two-phase region.
This leads to phase separation within the membrane which can proceed in two dif-
ferent ways depending on the ‘depth’ of the quench: (i) The membrane is quenched
deep into the spinodal decomposition regime. In such a situation, many small do-
mains will be formed initially which may then undergo the usual coarsening process
of spinodal decomposition. At this stage, the morphology of the domains and of their
boundaries may be quite complex. At later stages, on the other hand, the coarsening
process should be dominated by a few large domains the size of which grows as t1/3

with time t. In this way, one may finally attain a state of complete phase separation
in which the bilayer consists of two large domains. (ii) The membrane is quenched
into the nucleation regime. If the activation energy for the ‘critical’ domain is suf-
ficiently large, only one domain will be nucleated initially and one may study the
diffusion-limited growth of such a single domain.

6.2.2. Edge energy and line tension
The edge of an intramembrane domain has an energy which is proportional to the
edge length. Therefore, the domain has a tendency to attain a circular shape in order
to minimize its edge energy.

The line tension, Σe, is equal to the edge energy per unit length. Its magnitude
can be estimated as follows [12]. First, consider a domain in the lipid bilayer which
extends across both monolayers. In this case, the edge of the domain represents
a cut across the whole bilayer. The cross-section of such a cut consists of three
distinct regions: two hydrophilic headgroup regions of combined thickness ' 1 nm
and an intermediate hydrophobic tail region of thickness ' 4 nm. These two regions
can have distinct interfacial free energies per unit area. For 3-dimensional fluid
phases, a typical value for the interfacial free energy is ' 10−2 Jm−2. If one
assumes that this value is also applicable to the headgroup region and that the latter
region gives the main contribution to the line tension, one obtains the crude estimate
Σe ' 10−17 J/µm. For a domain which extends only across one monolayer, the line
tension is reduced by a factor 1/2. For monolayers composed of a phospholipid-
cholesterol mixture, experimental studies of the domain shape gave the estimate
Σe ' 10−18 J/µm [120].
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6.2.3. Egde energy versus bending energy
A flat domain will form a circular disk in order to attain a state with minimal edge
length. For a circular domain with radius L, the edge energy, Fe, is given by

Fe ≡ 2πLΣe. (40)

However, as far as the edge energy is concerned, a flat circular disk does not represent
the state of lowest energy since the length of the edge can be further reduced if the
domain forms a bud: the domain edge now forms the neck of the bud, and this neck
narrows down during the budding process, see fig. 16.

Budding involves an increase in the curvature and thus in the bending energy of
the domain. Therefore, the budding process of fluid membranes is governed by the
competition between the bending rigidity κ of the domain and the line tension Σe of
the domain edge. This competition leads to the characteristic invagination length,
ξ ≡ κ/Σe [12]. Using the typical values κ ' 10−19 J and Σe ' 10−17 J/µm, one
obtains ξ ' 10 nm for domains across the bilayer. For phospholipid-cholesterol
mixtures, this length scale seems to be much larger. On the one hand, the bending
rigidity κ was experimentally estimated to have the relatively large value κ ' 4 ×
10−19 J [49]. The line tension, on the other hand, seems to have the relatively small
value Σe ' 10−18 J/µm as mentioned above. This implies the invagination length
ξ ' 400 nm. It will become clear in the following that the invagination length ξ
provides the natural length scale for shape transformations of the domain.

6.2.4. A simple model
The competition between the edge and bending energies can be understood in the
framework of a relatively simple model in which one assumes that the membrane

Fig. 16. Budding of the membrane domain β embedded in the membrane matrix α. The domain
edge is indicated by the full-broken line. The length of this edge decreases during the budding process

from (1) to (3) [12].
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matrix is flat and that the membrane domain forms a spherical cap with radius R. If
the domain has surface area A = πL2, mean curvature C = 1/R, and spontaneous
curvature Csp = C0/2, its total energy F = FSC + FΣe has the form

F/2πκ = (LC − LCsp)2 + (L/ξ)
√

1− (LC/2)2. (41)

For Csp = 0, such a model has also been studied in order to discuss the size of vesicles
generated by sonification and to study the closure of open fluid membranes [121–
123]. The energy F has several minima and maxima as a function of the reduced
curvature LC. There are always two boundary minima at LC = ±2 corresponding
to complete spheres on both sides of the membrane. The complete sphere with the
lower energy will be called the complete bud. For zero spontaneous curvature, both
complete spheres have the same energy, and the complete bud can develop equally
well on both sides. A finite value of Csp breaks this symmetry, and budding occurs
preferentially on one side of the membrane. For small values of L/ξ, the energy F
exhibits another minimum at intermediate values of LC. This minimum corresponds
to the incomplete bud. For Csp = 0, this minimum is at LC = 0, and the incomplete
bud is flat.

Now, consider a domain which is characterized by fixed spontaneous curvature
Csp and fixed invagination length ξ = κ/Σe. The domain size L, on the other
hand, changes with time by the diffusion-limited aggregation of molecules within
the membrane and thus plays the role of a control parameter for the budding process.

For small L, the domain forms an incomplete bud corresponding to the minimum
of F at small LC-values. As L grows, the edge of the domain becomes longer, and
the energy of the incomplete bud is increased. At a certain critical size, L = L∗,
the incomplete and the complete bud have the same energy but are separated by
an energy barrier. For the parameter values considered here, the energy barrier
is typically large compared to the thermal energy ' T . In this case, the domain
continues to grow in the incomplete bud state up to the limiting size L = L0 at
which the energy barrier disappears and this state becomes unstable. The simple
model considered here leads to [12]

L0 = 8ξ/
[
1 +

(
4ξ|Csp|

)2/3
]3/2

(42)

with ξ = κ/Σe as before. Thus, as soon as the domain has grown up to L = L0, it
must undergo a budding process.

6.2.5. Domain-induced budding of vesicles
The same type of shape instability is found from a systematic minimization procedure
for the energy of closed vesicles composed of two types of domains, α and β [60].
This energy consists (i) of the bending energies F (α)

SC and F (β)
SC of the α and the

β domains, respectively, and (ii) of the edge energy F (αβ)
e of the (αβ) domain

boundaries:

F =

∮
dAα

1

2
κα(2H − 2 Cαsp)2 +

∮
dAβ

1

2
κβ(2H − 2 Cβsp)2 +

∮
d`Σe (43)
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as appropriate for a surface consisting of α and β domains where the last integral
represents the line integrals along the domain boundaries.

The total energy F is minimized for given values of the domain areas Aα and Aβ ,
of the pressure difference P or of the enclosed volume V , and of the line tension
Σe. The area ratio

x ≡ Aβ/
(
Aα +Aβ

)
(44)

with 0 6 x 6 1 is a measure for the size of the domain and again plays the role of
a control parameter for budding.

The minimization of the energy functional does not determine the boundary con-
ditions at the domain boundary completely. This freedom corresponds to different
ways to model the domain boundary. Two extreme cases are (i) that the domains α
and β can meet at any angle with no difference in energy, and (ii) that the surface
has to be smooth at the domain boundary. The most physical assumption seems
to be case (ii), for which both domains meet with the same angle. This boundary
condition has been used in ref. [60].

6.2.6. Equilibrium shapes of vesicles with two domains
First, assume that the vesicle contains two large domains, α and β, the size of which
does no longer change with time. This corresponds to the final state after the phase
separation process has been completed. On long timescales, water can permeate
through the membrane which leads to zero pressure difference, P = 0, provided the
aqueous solution does not contain large molecules which lead to an osmotic pressure.

The equilibrium shapes of such a vesicle are shown in fig. 17. For simplicity, the
α and the β domain are taken to have identical bending rigidities, κα = κβ , and to
have no spontaneous curvature, i.e. Cαsp = Cβsp = 0.

As shown in fig. 18, the corresponding phase diagram exhibits a line Dbud of
discontinuous budding transitions and a line Lcb of limit shapes with an infinitesimal

Fig. 17. Vesicle shapes as a function of the relative domain area x for reduced line tension σe = 7.
Dbud denotes a discontinuous transition between an incomplete and a complete bud. The shapes are
axisymmetric; the α and the β domain correspond to the broken and the full contour, respectively [60].
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Fig. 18. Phase diagram for domain-induced budding of a vesicle for pressure P = 0 across the membrane
as a function of the reduced line tension σe and the relative domain area x. The vesicle undergoes a
discontinuous budding transition along the line Dbud, and attains a limit shape at Lcb with an infinitesimal

neck connecting the bud to the vesicle. The dashed trajectory corresponds to fig. 17 [60].

neck. The dashed line in fig. 18 corresponds to a vesicle with reduced line tension
σe = 7 where

σe ≡ ΣeR0/κ
β = R0/ξ. (45)

The corresponding energy and equilibrium shapes are shown in fig. 17 as a function
of x. In practice, the infinitesimal neck should have a diameter which is of the order
of the membrane thickness, a ' 5 nm. The energy required to break such a neck is
2πaΣe and the time for thermally-activated fission is ∼ exp(2πaΣe/T ).

If the vesicle membrane is composed of a phospholipid-cholesterol mixture, the
invagination length seems to be ξ ' 400 nm as mentioned above, and the sequence
of shape transformations shown in fig. 17 would then correspond to the vesicle size
R0 = 7ξ ' 2.8 µm which is directly accessible to optical microscopy.
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6.2.7. Growth of nucleated domain
Secondly, consider a vesicle with reduced volume v = 3V/4πR3

0 < 1 which has been
prepared by a quench from the one-phase region of the bilayer into the nucleation
regime of its two-phase coexistence region. After such a quench, the bilayer remains
in its homogeneous phase, say α, until a domain of the minority phase, say β, has
been nucleated. The β domain will then grow by diffusion-limited aggregation within
the α matrix and the relative surface area x = Aβ/A will increase in time.

For each value of x, one may determine the shape of lowest energy. In fig. 19,
the corresponding phase diagram is shown for a prolate vesicle with v = 0.8 as a
function of x and of the reduced line tension σe for domains with identical bending
rigidities and zero spontaneous curvature.

As x is increased, the prolate vesicle undergoes a discontinuous budding transition
denoted by Dbud provided σe > σe,c ' 9.7. As x is further increased, the bud closes
its neck and forms a limit shape at Lcb. Comparison of fig. 19 and fig. 18 shows

Fig. 19. Phase diagram of domain-induced budding of a prolate vesicle with constant enclosed volume
v = 0.8 as a function of the reduced line tension σe and the relative domain area x. The line Dbud of

discontinuous budding transitions ends in the critical point C [60].



Morphology of vesicles 443

Fig. 20. Equilibrium shapes for different values of the relative domain area x and reduced line tension
σe = 12. The incomplete bud represents a metastable state up to x = 0.032 where it becomes unstable

and decays into the complete bud [60].

that the volume constraint truncates the line of discontinuous budding transitions
at a critical point (x,σe) = (xc,σe,c) ' (0.5, 9.7) at which the budding transition is
continuous. For σe < σe,c, there is no sharp budding transition. For σe < σe,sp ' 7.4,
no limit shape with infinitesimal neck can be attained and no budding occurs. The
shape transformation of the prolate vesicle with σe = R0/ξ = 12 is shown in fig. [20].

6.2.8. Generalized neck condition
The complete bud can have a neck with a finite diameter. This neck diameter
decreases further with the growth of the domain until the neck closes completely
as the limit shape Lcb has been attained. In the absence of the volume constraint,
this limit shape consists of two spheres, one α and one β sphere, separated by an
infinitesimal neck which contains the domain boundary. These limit shapes can be
characterized by the generalized neck condition [60]

κα/Rα + κβ/Rβ = καCαsp + κβCβsp +
1

2
Σe. (46)

Here, 1/Rα and 1/Rβ are the curvatures of the two domains at the point where they
meet to form the ideal neck. If Cαsp = Cβsp, κα = κβ and Σe = 0, one recovers the
ideal neck (or kissing) condition 1/Rα + 1/Rβ = 2Csp for the homogeneous case as
given by (17). For domains with identical bending rigidities and zero spontaneous
curvature, the neck condition 1/Rα + 1/Rβ = Σe/(2κ) shows that the line tension
Σe plays a role very similar to the spontaneous curvature. The neck condition (46)
completely determines the lines Lcb of limit shapes in the phase diagram.
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6.3. Curvature-induced lateral phase segregation

6.3.1. Coupling between composition and shape
Even if there is no genuine phase separation in the flat membrane, the shape trans-
formation of the closed vesicle can induce phase segregation within the mem-
brane [13]. Suppose an initially spherical vesicle is subject to a temperature in-
crease. This change necessarily leads to deviations from the spherical shape and,
thus, to a position-dependent curvature which induces a position-dependent compo-
sition. For a quantitative description, we introduce the composition (area fractions)
of lipid A in the individual monolayers xi

A(= 1 − xi
B) (i = in, out) and deviations

δxi
A(s1, s2) ≡ xi

A(s1, s2) − x̄A, from the mean value x̄A. If this local deviation is
different in the two monolayers, a local spontaneous curvature is induced according
to

C0(s) = λ
(
δxout

A (s)− δxinA (s)
)

+ C0 ≡ λφ(s) + C0, (47)

where the phenomenological coupling constant λ has the dimensions of an inverse
length [106]. For a rough estimate of its magnitude, assume that the lipid A has a
cone-like shape with a radius of curvature RA while lipid B has a cylindrical shape.
The coupling constant λ is then of the order of 1/RA. Since RA is determined by
typical molecular dimensions, we will use λ = 1/10 nm for a conservative estimate.
We also allow for a systematic spontaneous curvature C0 which arises if the mean
compositions x̄i

A are different in the two monolayers.

6.3.2. Energy of a two-component vesicle
The bending energy, F1, of the two-component vesicle is then chosen as a general-
ization of the bending energy of a single-component vesicle as given by (11). This
leads to [13]

F1 = (κ/2)
∮

dA
[
2H(s1, s2)− C0

(
φ(s1, s2)

)]2
+
[
πκ̄/

(
8Ad2)](∆A−∆A0)2.

(48)

We have assumed for simplicity that neither the bending rigidities κ and κ̄ nor the
area of the vesicle, A, and area-difference ∆A0 depend on the composition.

Since the membrane does not show genuine phase separation, there is a free
energy associated with the deviation of the composition from its mean value. For
small deviations, this energy can be written in the form

F2 = (κ/2)ε
∮

dA
[
φ2 + (ξc∇φ)2]. (49)

Here, ξc is the correlation length for composition fluctuations, ∇ is the covariant gra-
dient operator and ε is a molecular energy, estimated below, divided by the bending
rigidity.
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Since the typical length-scale for shape variations of large vesicles is in the
micrometer-range, while the typical correlation length ξc will be of the order of
nanometers, the gradient term in F2 will be, in general, much smaller than the
φ2-term and, thus, can be ignored. Under the constraint

∮
dAφ = 0, the total energy,

F ≡ F1 + F2, then becomes minimal for a composition profile φ(s1, s2) given by

φ(s1, s2) =
2λ

λ2 + ε

[
H(s1, s2)−∆A/(4dA)

]
, (50)

which shows that the local composition follows the deviation of the mean curvature
H(s1, s2) from its average value ∆A/(4dA). After inserting (50) into F , the total
energy can be written as

F =
κ

2δ

{∮
dA (2H)2 +

[
πκ̄eff/

(
4κAd2)](∆A−∆A0,eff )2 + const

}
. (51)

This expression is the standard form of the bending energy of a single-component
vesicle in the area-difference-elasticity model in which the three model parameters
have been renormalized. First, the effective bending rigidity is κ/δ where

δ ≡ 1 + λ2/ε > 1 (52)

measures the effective strength of the curvature to composition coupling. Thus,
the bending rigidity decreases for a two-component system, as has been previously
derived [106]. Secondly, the non-local term becomes more relevant for stronger
couplings since the non-local bending rigidity is renormalized according to

κ̄eff ≡ κ̄+ (δ − 1)(1 + 1/π)κ > κ̄. (53)

Finally, the renormalized equilibrium area difference is

∆A0,eff ≡ (κ/κ̄eff)
(
2C0dA0/π + κ̄∆A0/κ

)
. (54)

Once this mapping has been obtained, both the knowledge of the phase diagram
of the area-difference-elasticity model and shape calculations within this model can
be used to obtain results for the two-component system. As an illustrative example,
consider the thermal evolution of an initially spherical vesicle (with a homogeneous
composition profile φ(s) = 0) with increasing temperature, see fig. 21 taken from
ref. [13]. With increasing temperature, the reduced volume decreases and the shape
becomes more prolate. The inhomogeneous curvature then induces a non-trivial
composition profile along the contour. In the outer monolayer, the A molecules are
enriched at the poles (if their enhancement in the outer layer leads to a positive spon-
taneous curvature, i.e. if λ > 0) while the B lipids are enriched along the equatorial
region of the vesicle. For smaller v, the up/down asymmetric shapes have lower
energy leading to a discontinuous budding transition. These shapes finally end up at
the vesiculation point. In the vesiculated state, the composition within each sphere
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Fig. 21. Curvature-induced lateral phase segregation. The spherical vesicle changes its shape as the
reduced volume v decreases due to an increase in temperature. The thin curves show the composition φ.
The reduced volume is given by v = 1.0, 0.89, 0.89, 0.86, and 0.82 from left to right. At v = 0.89,
the symmetric and the asymmetric shape have the same energy, indicating a discontinuous budding

transition. The vesiculation line is reached with the last shape [13].

becomes homogeneous again with all the variation of the composition occurring in
the neck. Thus, the shape change, i.e. in this case budding and vesiculation, leads
to phase segregation.

6.3.3. Magnitude of curvature-induced phase segregation
A crude estimate for the magnitude of the curvature-induced phase segregation can be
obtained as follows [13]. As explained above, a typical value for the coupling λ might
be λ ' 0.1/ nm. For the free energy density coefficient ε, one estimates ε ' τT/κa2

where a is a molecular length a ' 1 nm. The reduced temperature τ ≡ (T − TC)/TC
is the distance to the A-B critical point which separates the one-phase region from
the two-phase coexistence region of the lipid mixture. For a mixture of DEPC and
DPPE, this critical point is at Tc ' 340K according to ref. [111]. For a vesicle at
a temperature of 10 centigrades above Tc, τ ' 0.03 which leads with T/κ ' 1/25
to φ ' 20(H −∆A/(4dA)) nm. With (H −∆A/(4dA0)) ' 1/R0, where R0 is the
radius of the vesicle, the typical variation in the composition becomes of the order
of 1% for vesicles with a radius R0 ' 1 µm but 10% for R0 ' 100 nm. The smaller
the vesicles are the larger becomes the phase segregation.

Very close to the critical point, the argument given above that the correlation
length is small compared with the size of the vesicle is no longer valid. In fact,
using ξ ' a/τν , where a ' 1 nm and ν = 1 is the critical exponent of the two-
dimensional Ising model, one obtains τ∗ ' a/R as a crossover temperature. For
τ . τ∗, the gradient term in F2 can no longer be neglected.

7. Adhesion

7.1. Contact potential and contact curvature

A vesicle near a wall or substrate experiences various forces, such as electrostatic,
Van der Waals and hydration forces. The typical range of these forces is several
nanometers which is small compared to the size of a large vesicle which is of the
order of several microns. Thus, in a first step, the microscopic interaction potential
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may be replaced by a contact potential with strength W if we are mainly interested
in the gross features of such a vesicle bound to the wall [20].

There are several experimental methods by which one can infer information about
the effective interaction Veff(l) between two membranes or between a membrane
and another surface which are separated by a thin liquid film of thickness l. These
methods include X-ray diffraction on oriented multilayers [124], the surface force
apparatus [125], micropipet aspiration [126], and video microscopy of dilute sys-
tems [127]. The contact potential W is then identified with Veff(l0) where l0 is the
mean separation of the membrane in the absence of an external pressure, see chap-
ter 11 in this volume. The value of W ' Veff(l0) depends on the strength of the
shape fluctuations which can be reduced by lateral tension or by immobilizing the
membranes on solid surfaces. Therefore, the different experimental methods give,
in general, different values for W which are in the range between 10−4–1 mJ/m2.
For rough estimates in this section, we will use the value of 1 mJ/m2 for strong
adhesion, and the value of 10−4 mJ/m2 for weak adhesion.

If the vesicle and the wall have the contact area A∗, the vesicle gains the adhesion
energy

Fa = −WA∗ (55)

which must be added to the curvature energy. The balance between the gain in
adhesion energy and the cost in curvature energy for a bound vesicle gives rise
to several interesting phenomena [20]. A first manifestation of this balance is a
condition for the contact curvature 1/R∗1 which is determined by [20]

1/R∗1 = (2W/κ)1/2. (56)

The contact angle is necessarily π since any sharp bent would have an infinite
curvature energy. This implies that the membrane is only curved in one direction and
1/R∗2 = 0 along the line of contact. Therefore, the same boundary condition (56) also
holds for a cylindrical geometry for which it also applies to polymerized membranes
or solid-like sheets [128].

The universal condition (56) for the contact curvature holds irrespective of the size
of the vesicle and the non-local energy contribution. Thus, a measurement of 1/R∗1
yields a value of the contact potential once the bending rigidity κ is known. The
range of contact curvatures to be expected from this relation spans 1/R∗1 ' 1/10 nm
for strong adhesion (using κ = 10−19 J) and 1/R∗1 ' 1 µm−1 for weak adhesion.
The latter value clearly is accessible by light microscopy. In fact, a measurement
of the contact curvature has recently been performed using reflection interference
contrast microscopy [24].

7.2. Adhesion transition

7.2.1. Bound shapes
Solving the shape equations for axisymmetric shapes with the boundary condi-
tion (56) leads to a variety of bound shapes which can be arranged in a phase diagram
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as in the case of free vesicles. The basic physics behind the competition between
adhesion and curvature energy becomes already evident in the simplest non-trivial
ensemble, which contains only the local bending energy with C0 = 0, the adhesion
energy and a constraint on the total area. This corresponds to a situation where the
volume can adjust freely. With decreasing strength of the contact potential W , the
area of contact A∗ also decreases and vanishes for W = Wa, with

Wa = 2κ/R2. (57)

At this value, the bound shape resembles the free shape corresponding to the same
constraint which is a sphere except for the fact that the contact curvature 1/R∗1 = 2/R
is twice the curvature of the sphere. However, the contact mean curvature H∗ ≡
(1/R∗1 + 1/R∗2)/2 = 1/R is equal to the mean curvature of the sphere. For W < Wa,
an attractive potential does not lead to a bound shape with finite area of contact.
Thus, the vesicle undergoes a continuous adhesion transition at W = Wa [20].

A somewhat more complex situation arises when, in addition, the enclosed volume
is also kept constant. The phase diagram becomes two-dimensional and depends on
v and the reduced potential strength

w ≡WR2/κ. (58)

Fig. 22. Schematic phase diagram with free and bound shapes at constant area and volume. The
heavy lines show the adhesion transition at W = Wa, which can be discontinuous (Dpro

a ,Dob
a and Dsto

a )
or continuous (Csto

a ). In the dashed region, non-axisymmetric bound shapes are relevant. The dashed
straight lines across the shapes denotes the axis of symmetry [21].
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This phase diagram is shown in fig. 22 together with some bound shapes [21,
129, 130]. Its main characteristic is the line of adhesion transitions wa(v) which
separates bound from free states.

The four-dimensional phase diagram for adhesion including the full area-difference-
elasticity energy has not yet been studied. In analogy to the free case, one expects
that the non-local energy favours continuous adhesion transitions and the occurrence
of non-axisymmetric shapes.

7.2.2. Possible experimental verification
Two very different approaches are conceivable in order to observe the adhesion
transition experimentally. (i) Changing the temperature will affect both the reduced
volume and the scaled adhesion potential w = WR2/κ via the area expansion. A
temperature decrease also decreases w and increases v. Therefore, a bound vesicle
may become free upon cooling provided its initial state at the higher temperature is
already sufficiently close to the adhesion transition. Likewise, osmotic deflation or
inflation which does not affect w can induce a crossing of the adhesion transition
in the phase diagram. (ii) A more indirect but quite elegant confirmation of the
theory described above could make use of the characteristic size-dependence of the
adhesion transition as expressed in eq. (57). This relation implies that, for fixed W ,
in an ensemble of vesicles only those vesicles with R > Ra ≡ (2κ/Wa)1/2 are bound
to the substrate.

7.2.3. Non-axisymmetric shapes
For adhesion, non-axisymmetric shapes are more relevant than in the case of free
vesicles, since the axisymmetry of free prolates is broken if these shapes adhere
with their long axis parallel to the substrate. Such a bound shape can no longer be
obtained by solving the axisymmetric shape equations. However, some insight into
the relevance of non-axisymmetric bound shapes can be obtained as follows [21].
The critical value Wa for the continuous adhesion transition for the stomatocytes and
the oblates (not appearing in the phase diagram) obeys the condition that for small A∗,
the contact mean curvature of the bound shape, H∗ ≡ (1/R∗1 + 1/R∗2)/2 = 1/2R∗1,
becomes identical to the mean curvature Hf of the corresponding free shape at
the point of contact. Using (57) this condition locates the continuous adhesion
transition at

Wa = 2κH2
f . (59)

For a sphere, one has Hf = 1/R and one recovers the relation (57).
If the condition (59) is also valid for a (hypothetical) continuous transition of the

prolates and dumbbells (with their axis of symmetry parallel to the wall), one finds
that non-axisymmetric bound prolates show up as lowest energy states in the phase
diagram, as indicated in fig. 22. It remains to be seen whether the adhesion transition
to these states is continuous at Wa = 2κH2

f (where Hf is the mean curvature at the
equator of the prolate) or discontinuous at Wa < 2κH2

f and how far this region
of non-axisymmetric bound shapes extends in the phase diagram. With increasing
W , these non-axisymmetric states should then undergo a transition to axisymmetric
bound shapes.
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7.2.4. Beyond the contact potential
Further insight into the character of the adhesion transition arises from two ramifi-
cations of the simple picture presented so far. First, consider the influence of the
small but finite range of the potential [131, 132]. We assume that the potential can
be characterized by a depth W and a range Z0. It turns out that the free state dis-
cussed above for W <Wa, corresponds for such a potential to a pinned state where
the vesicle adheres to the wall but keeps its free shape [21, 132]. The energy gain
associated with such a pinned state is

∆F ∼ −WRZ0, (60)

for small Z0/R. Second, we have to compare this energy with the thermal energy
∼ T to decide whether it is sufficient to pin the vesicle to the substrate. This
comparison leads to a transition between the pinned state and the free state at

Wp ∼ T/(RZ0) for Z0 � R . Rc ≡ (κ/T )Z0. (61)

The length scale Rc arises from the consistency requirement that W < Wa, which
was assumed when using the estimate (60) for ∆F . The breakdown of this relation
for R > Rc indicates that large vesicles will not enter the pinned regime because the
energy gain ∆F of such a pinned state would be smaller than the thermal energy T .
These large vesicles unbind at values of the potential depth W for which the analysis
at T = 0 predicts bound vesicles with a finite contact area. The critical strength for
the unbinding of these large vesicles is bounded above by the critical strength

Wu ∼ T
2/
(
κZ2

0

)
, (62)

for the unbinding of open almost planar membranes [133, 134]. If the enclosed
volume does not change during the adhesion process, an effective tension builds up
which will decrease the value of the critical strength for unbinding. A refined theory
of the unbinding of large vesicles which takes into account the fluctuations in the
presence of constraints has yet to be worked out. The estimates given in this section
for the adhesion transition of vesicles lead to three different regimes as shown and
described in fig. 23 taken from ref. [21].

The crossover length Rc which separates the two qualitatively different regimes
of unbinding can be estimated as follows. With the typical values Z0 = 4 nm
and κ/T = 25, we find Rc = 0.1 µm which is just below optical resolution. It
might, however, be shifted to larger values using multi-lamellar vesicles because κ
is proportional to the number of bilayers.

7.3. Effective contact angle for strong adhesion

The adhesion transition takes place for R = Ra = (waκ/W )1/2, where wa is a
numerical coefficient of O(1) which depends on the constraints. For large vesicles
with R � Ra, i.e. for strong adhesion W � Wa, the shape of the bound vesicle
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Fig. 23. Schematic phase diagram for adhesion in a potential with finite range Z0 � R and strength
W at finite temperature T . Depending on the length scales R and Rc, two different regimes must be
distinguished for the unbinding: Small vesicles with R < Rc first undergo the curvature driven transition
from a bound state with finite contact area to the pinned state with the nearly free shape for W 'Wa.
These small vesicles then unbind via thermal activation at W ' Wp. Large vesicles with R > Rc,
cannot enter the regime of pinned states since they unbind via shape fluctuations in the contact zone at

W 'Wu [21].

approaches a simple limit shape. If only the area is constrained, this limit shape is
a pancake with an energy

F ≈ −2πWR2 + 2πg(2κW )1/2R (63)

with the dimensionless coefficient g ' 2.8 [129]. If in addition the volume is
constrained, the vesicle becomes a spherical cap for strong adhesion as shown in
fig. 24. In both cases, an effective contact angle Ψeff can be defined which obeys a
Young–Dupré equation [20]

W = Σ(1 + cosΨeff). (64)

For the pancake, one has Ψeff = 0.

Fig. 24. Bound shape for strong adhesion with effective contact angle Ψeff . The shape resembles a
spherical cap except close to the line of contact [20].
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The quantity Σ in (64) is the (numerical) value of the Lagrange multiplier for the
area constraint. It also obeys the relation Σ = ∂F/∂A at constant V . Although it is
tempting to identify Σ with a lateral tension, this is not justified a priori since we
are dealing so far with an incompressible membrane of fixed area. However, it can
be shown for free vesicles as well as for bound vesicles, that the strength of most
of the fluctuations around a mean shape does not depend on whether a constraint on
area and enclosed volume is imposed or whether the energy terms ΣA and PV are
added to the bending energy [135].

For strong adhesion, the energetic competition which determines the conformation
does not involve the balance between curvature energy and the adhesion energy
but rather the balance between the adhesion energy and an elastic stretching of the
membrane. This elastic energy reads

Fk ≡ (k/2)(A−A0)2/A0 (65)

where k is the area compressibility modulus of the order of 102 mJ/m2. Such an
extended model leads to the same shape equations as the model with a hard area
constraint. Even the boundary condition (56) remains unchanged. The phase dia-
gram, however, changes due to the additional energy. Balancing the adhesion energy
with the stretching term leads to the adhesion-induced stretching of the order of

(A−A0)/A0 'W/k. (66)

The relative area expansion (A − A0)/A0 thus becomes 0.01 for strong adhesion.
Identifying k(A− A0)/A0 with an elastic tension Σel, we find the relation Σel ∼ W
for strong adhesion. As soon as W exceeds the lysis tension which is of the order
of 1–5 mJ/m2, the bound vesicle ruptures.

7.4. Adhesion-induced fusion and rupture

So far, an isolated vesicle at a wall has been considered. If more and more bound
vesicles cover the wall, they will come into contact and may fuse. For free vesicles,
fusion of two vesicles with equal area A ≡ 4πR2 (but no constraint on the volume)
leads to a gain in energy ∆Ffv = 8πκ+ 4πκG. If two bound vesicles fuse, the gain
in energy is always larger and satisfies ∆Fbv > g̃πκ+ 4πκG with g̃ ' 8.3 [129]. For
large R, this energy gain behaves as ∆Fbv ≈ 4πg(

√
2− 1)(κW )1/2R, where (63) has

been used. Thus, adhesion favors fusion.
As the size of the fused vesicle increases, its shape becomes more like the shape

of a pancake. If the elastic tension exceeds the threshold for lysis, the pancake
ruptures and becomes an open bound disc. The threshold for lysis typically occurs
for (A−A0)/A0 ' 0.03. From (66) one then derives that the adhesion potential has
to be stronger than 0.03k for adhesion induced rupture to happen. Note, however
that this argument provides only an upper limit on the adhesion energy required
for rupture since it neglects the fact that in the pancake conformation rupture may
happen more easily along the strongly curved rim.
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After the bound vesicle has ruptured, its conformation becomes an open disc. Such
a bound disc has an energy [129]

Fbd = −4πWR2 + 4πΣeR, (67)

where Σe is the edge tension along the circumference of the bound disk. A com-
parison of the energy (67) with the energy (63) of a pancake shows that for R �
Rbd ≡ Σe/W the bound disc always has lower energy (irrespective of the value of
the other parameters). For phospholipid bilayers, we find with the typical value
Σe = 5 × 10−20 J/nm the length scale Rbd = 50 nm for strong adhesion and
Rbd = 500 µm for weak adhesion.

A recent experiment has shown that a lamellar structure can form at the air-water
interface of a vesicle suspension [136]. The energetic considerations discussed above
immediately lead to a scenario where vesicles adhere to the wall, fuse at the wall
and rupture. Finally, the open discs will also fuse, thus forming a bilayer parallel to
the wall. The same experiment has also revealed that the activation barriers involved
in these processes depend sensitively on temperature.

8. Non-fluid membranes: the red blood cell

In this article, we have focused on lipid bilayers in their fluid state. The fluidity
allows a simple description of the membranes in terms of two-dimensional surfaces
governed by bending elasticity.

Biomembranes always contain a lipid bilayer which is believed to be fluid but, in
addition, these membranes also contain attached polymer networks. One example is
provided by the plasma membrane of red blood cells which has stimulated much of
the early research on membranes but still presents many open problems. We close
this article by pointing out the differences between the red blood cell and the artificial
vesicles described so far. These remarks are included here in order to emphasize that
there remain significant challenges for our understanding of biological membranes
in spite of the progress which we have recently made for lipid bilayers.

The plasma membrane of the red-blood-cell has a rather complex architecture [1].
Apart from the lipid bilayer, it contains a network of spectrin tetramers linked to-
gether at junctional complexes which forms a quasi-hexagonal structure. The spectrin
network and its junctional complexes are attached to the bilayer by integral mem-
brane proteins. The average mesh size of the spectrin network is 70 nm while the
maximal extension of a spectrin tetramer is 200 nm.

The spectrin network can be isolated by dissolving the lipid with detergents. The
spectrin net then no longer has the typical biconcave shape of the red blood cell
but rather becomes nearly spherical. Its morphological and elastic properties can be
studied if the skeletons are suspended with optical tweezers in a flow chamber [137].
Likewise, X-ray diffraction as well as light scattering [138] probe the structural
properties of this network which can then be compared with theoretical work on
‘solid’ or ‘tethered’ membranes [139, 140].
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These two-dimensional membranes have similar elastic properties as bilayer mem-
branes in their gel state or bilayers composed of polymerized lipids. Due to the
fixed connectivity within the membranes, these systems can sustain shear deforma-
tions. Moreover, since bending typically involves stretching and shearing of the
membrane, the in-plane displacements, i.e. phonons, are coupled to the bending
modes [128]. This coupling leads to an increase of the effective bending rigidity for
long-wavelength bending modes. Solid or polymerized membranes are thus stiffer
than fluid ones as can be seen in the microscope: if vesicles are cooled below the
chain-melting transition, their flickering is substantially reduced.

For the compound red blood cell membrane, the presence of the network poses a
conceptual problem for the calculation of shapes since it is not yet clear to which
extent the network contributes to the stability of the shape. In fact, we have seen
even for lipid vesicles that a discocyte shape minimizes the curvature energy in an
appropriate range of the reduced volume. Thus, in the absence of external contact
forces, the shape of the red blood cell could be primarily controlled by the osmotic
conditions while the cytosceleton is used to recover this shape after deformations
of the cell shape. On the other hand, it is known that dissolving the network from
the bilayer results in spontaneous budding of small vesicles. Thus, it seems that the
network is relevant in stabilizing the red blood cell lipid membrane with its specific
composition [141].

Evidence for a presumably subtle interplay between network and bilayer also arises
from measurements of the elastic properties of the red blood cell membrane and, in
particular, from its shear modulus which seems to be strongly scale-dependent. On
large scales, deformation in the micropipet [142] as well as deformation induced
by an electric field [143] yield a shear modulus µ ' 6 × 10−3 mJ/m2. In the
analysis of the thickness fluctuations by flicker spectroscopy, which probe smaller
scales, however, the resistance to shear is with µ ' 3 × 10−4 mJ/m2 more than
one order of magnitudes smaller [144]. An attractive hypothesis to explain these
findings assumes that for small deformations the spectrin remains ‘bound’ to the
bilayer whereas the crosslinks and the anchoring break up or reorganize dynamically
when large deformations are applied for a sufficiently long time as in the micropipet
experiment [145].

In general, the flickering of a compound membrane such as the plasma membrane
of red blood cells should exhibit a crossover scale L∗ [146, 147]. For wavelengths
L < L∗, the shape fluctuations are fluid-like whereas the finite shear modulus of
the network only affects the fluctuations of wavelengths L > L∗. The crossover
length has been estimated both from the nonlinear elastic terms for almost planar
membranes [146] and from the linear theory of closed vesicles [147]. In the latter
case, one obtains L∗ ' R2κ/Y where R denotes the radius of curvature of the rest
shape and the parameter Y ' 4µ denotes the Young modulus. Using the latest
estimates of µ, this leads to L∗ ' 0.1–0.2 µm which is somewhat larger than the
meshsize of the network. This estimate is consistent with the naive expectation that
the shape fluctuations of the red blood cell are governed by the bending rigidity
below this meshsize.

A comprehensive theoretical model for the red blood cell membrane has not yet
emerged. Steps in such a direction are provided by a continuum theory in which the
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Fig. 25. Dual network model for red blood cell membrane. The grey tethers and beads represent the
fluid membrane. Their connectivity is changing dynamically. The white tethers represent spectrin bonds

whose connectivity is fixed [150].

network is modeled as an ionic gel [148, 149] as well as by recent computer simula-
tions. As an example of the latter method, fig. 25 shows a dual model in which the
lipid bilayer as well as the spectrin net are treated at the same time [150]. The analy-
sis has shown a sensitive dependence of the shear modulus on the maximal extension
of the spectrin tethers which was one of the model parameters. Recently, a more
refined modelling of the spectrin as a polymer chain attached to the bilayer led to
reasonable agreement with experimental data [151]. Whether computer simulations
of more sophisticated membrane structures, more advanced elasticity continuum the-
ories or a combination of both will finally be most useful in order to understand the
red blood cell membrane remains to be seen.

A. Derivation of the area-difference-elasticity model

The area-difference-elasticity energy can be derived by first introducing two densities
φ± for the two monolayers. Since we want to keep a single surface for the description
of the vesicle shape, we have to define the densities relative to this surface which is
the neutral surface of the bilayer. The elasticity, however, acts in the neutral surface
of each of the two monolayers, see fig. 26. The densities φ± within these neutral
surfaces can be projected onto the neutral surface of the bilayer. The value of these
projected densities φ±proj depends on the local mean curvature of the bilayer neutral
surface through

φ± ≈ φ±proj(1∓ 2dH) (68)
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Fig. 26. Schematic geometry of a bilayer membrane. The circles with tails represent the lipid
molecules. The dashed lines are the neutral surfaces of the monolayers, on which the densities φ± are
defined. The dark solid line is the midsurface of the bilayer, on which the projected densities φ±proj and

the scaled projected densities ρ± are defined.

with the convention that H is positive for a sphere.
Consequently, the local elastic energy density of each monolayer reads(

k(m)/2
)(
φ±/φ0 − 1

)2
≈
(
k(m)/2

)(
ρ± ∓ 2dH

)2

where ρ± ≡ (φ±proj/φ0 − 1) is the scaled deviation of the projected density from its
equilibrium value φ0 for a flat membrane. Here, k(m) is the compression modulus
for the monolayers. Adding these energies to the local bending energy (3), one ends
up with the local energy [88]

f =
κ

2
(2H)2 +

k(m)

2

[(
ρ+ − 2dH

)2
+
(
ρ− + 2dH

)2]
, (69)

where we assume for simplicity a symmetric bilayer. The coupling between the
monolayers densities and the shape becomes evident if the the average density (de-
viation) ρ̄ ≡ (ρ+ + ρ−)/2 and the density difference (deviation) ρ ≡ (ρ+− ρ−)/2 are
introduced in (69). This leads to the local energy

f =
κ

2
(2H)2 + k(m)[ρ̄2 + (ρ− 2dH)2]. (70)

Since the average density ρ̄ does not couple to the shape, a homogeneous distribu-
tion with the average value of the density given by the equilibrium value φ0, i.e.
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ρ̄ = 0, minimizes this elastic energy, thus determining the area of the vesicle through
the total number of molecules, as in section 2.2. The density difference, ρ(s1, s2),
however, becomes inhomogeneous because it adapts locally to the shape through

ρ(s1, s2) = 2d
[
H(s1, s2)−M/A

]
+
(
N+ −N−

)
/(2φ0A). (71)

This relation can be derived by introducing a Lagrange multiplier for the constraint∮
dAρ =

(
N+ −N−

)
/(2φ0),

where N+ and N− are the number of molecules in the outer and inner monolayer,
respectively, and then minimizing (70) with respect to ρ(s1, s2). The geometrical
quantity M ≡

∮
dA H denotes the total mean curvature. Insertion of this density

distribution into (70) and integrating over the vesicle surface leads to the energy (11)
given in section 2.3 if the elastic term for the total area is omitted.

References
1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts and J.D. Watson, 1989, Molecular Biology of

the Cell, 2nd edition (Garland, New York).
2. Canham, P.B., 1970, The minimum energy of bending as a possible explanation of the biconcave

shape of the human red blood cell, J. Theoret. Biol. 26, 61–81.
3. Helfrich, W., 1973, Elastic properties of lipid bilayers: Theory and possible experiments, Z. Natur-

forsch. 28c, 693–703.
4. Deuling H.J. and W. Helfrich, 1976, The curvature elasticity of fluid membranes: A catalogue of

vesicle shapes, J. Physique 37, 1335–1345.
5. Evans, E.A., 1974, Bending resistance and chemically induced moments in membrane bilayers,

Biophys. J. 14, 923–931.
6. Svetina, S. and B. Zeks, 1989, Membrane bending energy and shape determination of phospholipid

vesicles and red blood cells, Eur. Biophys. J. 17, 101–111.
7. Berndl, K., J. Käs, R. Lipowsky, E. Sackmann and U. Seifert, 1990, Shape transformations of giant

vesicles: Extreme sensitivity to bilayer asymmetry, Europhys. Lett. 13, 659–664.
8. Miao, L., B. Fourcade, M. Rao, M. Wortis and R.K.P. Zia, 1991, Equilibrium budding and vesic-

ulation in the curvature model of fluid lipid vesicles, Phys. Rev. A 43, 6843–6856.
9. Seifert, U., K. Berndl and R. Lipowsky, 1991, Shape transformations of vesicles: Phase diagrams

for spontaneous-curvature and bilayer-coupling models, Phys. Rev. A 44, 1182–1202.
10. Sackmann, E., H.-P. Duwe and H. Engelhardt, 1986, Membrane bending elasticity and its role for

shape fluctuations and shape transformations of cells and vesicles, Faraday Discuss. Chem. Soc.
81, 281–290.

11. Käs, J. and E. Sackmann, 1991, Shape transitions and shape stability of giant phospholipid vesicles
in pure water induced by area-to-volume changes, Biophys. J. 60, 825–844.

12. Lipowsky, R., 1992, Budding of membranes induced by intramembrane domains, J. Phys. II France
2, 1825–1840.

13. Seifert, U., 1993, Curvature-induced lateral phase segregation in two-component vesicles, Phys.
Rev. Lett. 70, 1335–1338.
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