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Abstract. — The adhesion of membranes is often governed by an interaction potential which
exhibits a potential barrier at intermediate membrane separations. At low temperatures, the
membranes are trapped by the barrier. As the temperature is increased, thermally-excited
shape fluctuations act to reduce the strength of this barrier until the membranes undergo an
unbinding transition. This transition is discontinuous and continuous for strong and for weak
potential barriers, respectively. Thus, the membranes can tunnel through weak barriers but
remain trapped by strong ones. A simple criterion in terms of the parameters of the interaction
potential is derived by which one can distinguish these two regimes.

1. Introduction: membranes versus strings.

The membranes considered here are lipid bilayers in water. Each bilayer consists of two mono-
layers which are arranged in such a way that the hydrocarbon chains of the lipids are in close
contact whereas the hydrophilic head groups of the molecules point towards the water on both
sides of the bilayer. Several preparation methods are available in order to obtain bilayers which
contain essentially one type of lipid or a mixture of a few different lipid species. In addition,
bilayers containing a large number of different lipids represent the basic structural element of
all biomembranes [1].

Bilayer membranes often form bunches or stacks in which the membranes adhere to one
another. Likewise, single membranes usually form closed vesicles which may adhere to other
vesicles or to another surface such as the container wall. The adhesion of these membranes is
governed by the interplay of direct interactions arising from the molecular forces and entropic
or fluctuation-induced interactions arising from the thermally excited shape fluctuations of
these membranes. On scales which are large compared to the bilayer thickness, which is 4-5
nm, typical shape fluctuations are bending modes {2, 3] which are directly visible in the light
microscope.
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The bending fluctuations act to renormalize the interaction of the membranes. This has
been studied, in some detail, for interaction potentials which exhibit a single minimum or
potential well. An example is provided by electrically neutral membranes. In this case, the
direct interaction between rigid membranes consists of repulsive hydration and attractive van
der Waals forces. With increasing temperature, the bending fluctuations may overcome the
attractive van der Waals forces and lead to unbinding transitions between a bound state at low
temperature and an unbound state at high temperature [4, 5]. These transitions have been
experimentally observed for bunches of sugarlipid bilayers [6].

If the membranes carry electric charges, their direct interaction also depends on the elec-
trostatic forces and may then exhibit an attractive potential well at small separations and
a repulsive potential barrier at intermediate separations of the membranes. Such a form of
the direct interaction is predicted by the classical theory of Derjaguin, Landau, Verwey and
Overbeek [7, 8] and has been measured for two immobilized phospholipid bilayers with the
surface force apparatus [9]. It is intuitively clear that the membranes may also undergo an
unbinding transition in the presence of such a potential barrier. It is less obvious, however, if
the transition through the barrier is continuous or discontinuous.

If one ignores the effect of the bending fluctuations, the potential barrier implies a discon-
tinuous transition in which the mean separation of the membranes jumps from a small value
as determined by the short-ranged potential well to infinity. In the presence of an external
pressure, this leads to the coexistence of two different states of the membranes corresponding
to two different separations and thus to the coexistence of two different lamellar phases [10].

However, the bending fluctuations of flexible membranes are expected to have a rather
strong effect on the unbinding process. Indeed, it has been realized some time ago that, for
fluid membranes, these shape fluctuations have scaling properties which are rather similar to
those of 1-dimensional strings governed by a finite tension [11]. More recently, this analogy has
been used in order to study the swelling behavior of bunches of fluid membranes and bundles of
strings: the numerical work clearly shows that the critical behavior of these membrane bunches
and string bundles is indeed quite analogous [12] as long as the interaction potential exhibits
a single minimum (and thus no barrier).

For 1-dimensional strings in two dimensions, one has a complete classification of all univer-
sality classes for unbinding [13]. Here and below, I will focus on the strong fluctuation regime,
i.e., on those interaction potentials which are sufficiently short-ranged and decay faster than
~ 1/1? for large separation ! of the strings. In this case, the strings can tunnel through any
potential barrier and the unbinding transition of these strings is always continuous.

As mentioned in reference (5], functional renormalization group (RG) calculations originally
indicated that fluid membranes can also tunnel through a potential barrier provided this barrier
is sufficiently small. This latter result was obtained by explicit RG transformations of the
interaction potential for rescaling factor b = 2. In addition, a systematic study of the RG
transformation in the infinitesimal rescaling limit seemed to imply that fluid membranes can
also tunnel through any such barrier {14, 15). However, this is not consistent with the simple
stability arguments described below which predict discontinuous transitions for sufficiently
strong potential barriers. These arguments have been recently confirmed by extensive Monte
Carlo simulations as will be described elsewhere [16].

One should note that the membranes considered here consist of molecules which are essen-
tially insoluble in water. For example, when phospholipids with two identical chains contain-
ing 2N, carbon atoms are dissolved in water at room temperature, the mole fraction of these
molecules is ~ exp[—1.7N.| {17]. For N. = 16 as applicable to DPPC (dipalmitoyl phosphatidyl
choline), this implies that there is, on average, less than one lipid molecule per 10 um?® water.
Therefore, the exchange of lipid molecules between the bilayer membrane and the water is very
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Fig. 1. — Direct interactions V (I) with a potential barrier: (a) symmetric potential consisting of two
wells with depth |Uw.| and range {. separated by the barrier of height Uy, and thickness {1,,; and (b)
asymmetric potential consisting of one well between the hard wall at { = 0 and the barrier.

slow, and the corresponding times scales are very long compared to the typical time scales
which are relevant for the phenomena considered here. In such a situation, one may assume
that the membrane has a constant number of molecules.

2. Symmetric double-well potential.

To proceed, consider two fluid membranes with identical bending rigidity x; which interact via
the potential V() and experience the external pressure P. The separation ! of these membranes
is governed by the effective Hamiltonian [4]

H{l} = /dzz {Pl + V() + %m(vzl)z} (1)

with the reduced bending rigidity k = x;/2. Such a model is also appropriate for two adjacent
membranes within a bunch or stack of many membranes, see section 4 below [18].

It is instructive to consider first a symmetric double-well potential V(I) with two degenerate
minima at finite values of [ as shown in figure la. This potential exhibits two attractive square
wells of depth |Uy.] and range I, separated by a short-ranged potential barrier of height Uy,
and thickness l,,.

Let us assume that the membrane is confined within one of these wells and let us see if such
a state is stable with respect to thermal excitations in which a membrane segment is displaced
into the other potential well. Such a conformation corresponds to an island bounded by an
edge where the edge goes through the potential barrier. This line of reasoning is analogous to
the so-called Peierls argument for phase transitions in bulk systems {19]. It has been previously
applied by us to a smooth double well potential as mentioned at the end of reference [14] but we
did not consider its consequences for the nature of the unbinding transition. Similar arguments
have been recently used for wetting transitions in d dimensions [20].

If one considers only the energy of the membrane confined in the well, the barrier height is
given by Upa + |Uwe|- However, the membrane also suffers a loss of entropy by the confinement
which implies an excess free energy per unit area or a fluctuation-induced interaction Vq of
the membrane. For fluid membranes confined to a potential well of width ly., this excess free
energy density is given by Vq(lwe) ~ T2/kl2, which depends on the temperature T and on
the bending rigidity & [3]. Therefore, the free energy density of the confined membrane is
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~|Uwe| + ¢T?/kl%,, and the effective barrier height is given by U = Uy, + |Uwe| — cT?/xl2,
where ¢ is a dimensionless coefficient.

The edge of the island consists of membrane segments which go through the potential barrier
of thickness [,,. Within the barrier, the potential is constant and membrane fluctuations of
wavelength £ have an amplitude £, ~ (T'/x)'/? ¢ as appropriate for fluid membranes. Using
this scaling relation, the edge of the island has an effective width ey ~ (x/T)'/?l,,. The edge
energy per unit length which will be denoted by ¢, can then be estimated as o, ~ Uggae 1
The quantity o, represents the line tension on small scales. This implies that the small-scale
cutoff a. parallel to the edge scales as a = (0,/T)a2, .

For a displaced membrane segment or island of linear size |, one has the edge energy ~ 0,1
and the edge entropy ~ In(3)L//a).. arising from the different shapes of the edge. In the latter
estimate, the edge is viewed as a random walk with three possibilites at each step. This leads
to the excess free energy of the edge as given by

AF, = [610'0 - clen(S)/ae”]L” (2)

with dimensionless coefficients ¢; and c3. The expression within the square brackets repre-
sents an estimate for the line tension o on large scales. This line tension is positive for low
temperatures T' < Ty, where Ty, satisfies the implicit relations

Toa ~ 0o of  Tha ~ (kUETIZ, )2 (3)

as follows from the above expressions for 0, and ae;. For T' < Ty, the membrane fluctuations
experience an effective barrier, the line tension is positive on large scales, and the original state
should be stable. For T > Tj,,, on the other hand, the edge entropy wins and the membrane
feels no effective barrier.

The temperature T}, represents an estimate for the critical temperature 7T, of this system.
For T < Tt, the membrane stays in one of the two wells and thus exhibits two coexisting states
with two different mean values (I} of its displacement field. This implies that, for T < T, the
membrane cannot tunnel through the intermediate potential barrier and thus will undergo a
discontinuous transition between the two states as one varies an external field which breaks
the symmetry between these states. This coexistence curve for T < T, ends in a critical point
at T = T, where the system attains a unique thermodynamic state.

As mentioned, this stability argument is analogous to the so-called Peierls argument for
phase transitions in bulk systems. It is well-known in this latter context that this argument is
reliable as far as the existence of the coexistence curve at low temperatures is concerned but
that it does not necessarily predict the correct behavior close to the critical point.

This critical behavior has been recently studied by Monte Carlo simulations [16]. The Monte
Carlo data give strong evidence that this critical point belongs to the same universality class
as the critical point of the 2-dimensional Ising model. This is quite plausible since the same
type of thermal excitations, namely the islands considered above, restore the symmetry both
for the membrane in the double well potential and for the Ising model. Note that the line
tension in the 2-dimensional Ising model vanishes as ¢ ~ |T — T,| [21] which is, in fact, the
behavior as predicted from (2) with T, = T,p.

For comparison, let us apply the same kind of reasoning to a 1-dimensional string which
moves in a double-well potential in two dimensions. In this latter case, the excitations from
one potential well to the other well correspond to kinks of the string. The excess energy of
such a kink is ~ o, and its excess entropy is ~ In(L;) which leads to the excess free energy
AF, = ci0 — c2T'In(L)) per kink. For finite 7' > 0, the entropy term always dominates,
and this argument leads to the correct prediction that the string always tunnels through the
potential barrier.
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3. Unbinding through a potential barrier.

Next, consider membranes which interact via the potential as shown in figure 1b. This potential
is given by
V(i) = for 1<0
= —|Uyel for 0 <! <ly.e
= Upa for lye <1 < lwe + lpa
=0 for lye +lpa <1

(4)

and is appropriate for the unbinding from a potential well in the presence of a potential barrier.
Assume that the membrane is originally confined within the potential well. A segment of

linear size Ly then has the free energy AFy =~ (—|Uwe| + ¢3T?/ki%.)Ly* where the second

term again represents the loss of entropy. If this segment is thermally excited to overcome the

potential barrier, it will form a “hump” with free energy AF) ~ AF, + ¢4T where the first

term represents the edge free energy as given by (1), and the second term corresponds to the

entropy loss of the Lj-hump which lies in front of the potential barrier (where V(I) = 0).
The excess free energy of the hump is given by AF = AF; — AFy and thus by

AF = (|Uwe| - C3T2/lil3ve)Lﬁ + [cloo - clen(B)/a“e]L” + ey T (5)

Within this approximation, the unbinding transition occurs when the coefficient of the L”2—
term vanishes. In this case, the free energy of the membrane confined in the potential well is
equal to the free energy of the unbound membrane which lies outside of the potential. This
leads to the characteristic temperature

Tue ~ (K|UwellZ.)'/? (6)

which represents an estimate for the unbinding temperature T' = T,.

In order to determine the character of this unbinding transition, one must now ask if the
membrane still feels an effective barrier at T = Ty, i.e., if the line tension o of the island
excitations is still positive at this temperature. At the latter temperature, the effective barrier
height USf = Uy, since there is no loss of entropy for the unbound state of the membrane. It
then follows from (3) that the temperature Ty, is given by Tha ~ (kUbal2,)/? For T < Tha,
the membrane cannot tunnel through the barrier.

Therefore, the membrane will undergo a discontinuous unbinding transition from the poten-
tial well to infinity provided Twe < Tha. For Tywe > Tba, on the other hand, there is no effective
barrier at T = Ty, which implies that the unbinding transition will be continuous. If one
expresses Ty, and Ty in terms of the potential parameters via (3) and (6), one finds that the
unbinding transition should be discontinous for relatively strong potential barriers with

Ubalga >> IUwelleve (7)

but should be continuous for relatively weak potential barriers with Upal2, < |Uwel|l2..

If the unbinding transition through the barrier is continuous, it should belong to the same
universality class as the unbinding transition in the complete absence of a barrier. This ex-
pectation is confirmed by the results of functional renormalization. In this latter approach,
the unbinding transition in the absence of a barrier is governed by a critical fixed point poten-
tial which has a single minimum (and thus no barrier) [4]. When the renormalization group
(RG) transformation (with rescaling factor b = 2) is applied to interaction potentials with a
weak barrier, one finds indeed that such a barrier is reduced under successive iterations of the
RG transformation and that these potentials are also mapped to the vicinity of the critical



1760 JOURNAL DE PHYSIQUE II N°10

fixed point. At these continuous unbinding transitions, the mean separation (I} diverges as
() ~ 1/|T ~ T,|¥ where the critical exponent ¢ has the presumably exact value ¥ = 1 [11].

On the other hand, if the transition through the barrier is discontinuous, the membrane
can be trapped in the bound state even if this state is only metastable. In such a situation,
the first term of the excess free energy AF as given by (5) is negative, and AF exhibits a
maximum as a function of the hump size L which corresponds to the critical droplet for the
nucleation process. The decay of such metastable states has been recently observed in Monte
Carlo simulations [16] and the measured decay times are consistent with classical nucleation
theory [22].

It is straightforward to generalize the above criterion to other types of membranes. In general,
shape fluctuations with wavelength ¢ are characterized by the roughness £, ~ (T'/K)/? §ﬁ
where K represents a scale-independent elastic modulus. One example is provided by poly-
merized membranes which have a roughness exponent ¢ with 1/2 < ¢ < 1 |23, 24]. The
best analytical estimate seems to be ¢ ~ 0.59 [25]. If such a membrane is confined within
a potential well of width [/, its loss of entropy leads to the fluctuation-induced interaction
Va(l) ~ TYHY/C/K/CI2/C [11]. Repeating the above arguments, one now finds that the crite-

rion for a discontinuous transition has the more general form Ubaliic > |Uwe|lvzvéc

Note that these discontinuous transitions for strong barriers must be separated from the
continuous transitions for weak barriers by a multicritical point at Ubaliéc = cmc|Uwe|l‘2N/e<. At
this multicritical point, the membranes should still undergo a continuous transition but the
corresponding exponents should differ from those for interaction potentials without a barrier
(or with a weak barrier). These critical exponents have not been determined so far but the
exponent % for the mean separation should satisfy the inequalities 1/2 < 3 < 1.

In the framework of the functional RG, the multicritical unbinding transition should be
governed by another multicritical fixed point. Such a fixed point has, however, not been found
for the membranes considered here which are characterized by a roughness exponent { > 1/2
{14, 15]. Therefore, the functional RG approach predicts that these membranes do not exhibit
any discontinuous unbinding transitions. In view of the simple and general arguments described
above, this must be considered as a deficiency of the RG approach which remains to be clarified.

4. Coexistence of two lamellar phases.

Bilayer membranes in solution often form stacks or bunches (or multilayers or lamellar states)
in which several membranes adhere to each other. Oriented stacks containing a large number
of such membranes correspond to lyotropic liquid crystals and have been studied for a long
time by X-ray scattering methods, see e.g. {26]. On the other hand, bunches containing only
a relatively small number of membranes are also accessible to experiments: freely suspended
bunches can be directly observed in the light microscope [6] whereas multilayers attached to
an interface can be investigated by surface reflectivity measurements [27, 28]. Likewise, stacks
of bilayers spread on a solid substrate such as a glass slide are often used in order to prepare
lipid vesicles.

The simplest theoretical description is obtained if one focusses on one membrane within
the stack and replaces the two nearest neighbor membranes by two rigid walls. Such a one-
membrane approximation was used by Helfrich in order to estimate the loss of entropy of
the membrane confined in the stack [3]. As mentioned by de Gennes and Taupin [29], this
approximation represents the analogue of the Einstein model for lattice vibrations or phonons
in solids.

In the one-membrane approximation, all fluctuations in which two neighboring membranes
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are displaced in the same direction are suppressed. In the context of phonons, this is a well-
known defect of the Einstein model: it gives an approximate description of optical phonons in
which neighboring atoms move against each other but fails to describe acoustical phonons in
which neighboring atoms move in phase. However, the latter modes are most easily excited
since they become soft in the limit of long wavelengths.

In order to overcome the limitations of the one-membrane approximation, one may focus on
a pair of nearest-neighbor membranes within the stack {4, 5]. These two membranes are taken
to interact with each other and with the two adjacent membranes which are now replaced by
rigid walls. This leads to an effective Hamiltonian for the local separation ! of the membrane
pair which has the same form as given by (1) as has been explicitly derived in reference [18].
Thus, within this two-membrane approximation, the renormalized potential of two membranes
within the stack is identical with the renormalized potential of two isolated membranes.

In many cases, the membrane separations in the stack are constrained by the overall com-
position of the lipid water system. Such a situation corresponds to an effective pressure P
which pushes the membranes closer together. In the presence of a finite pressure P > 0, the
membrane separation is determined by ~dVes(l)/0! = P where Veg(l) represents the fully
renormalized interaction. As explained in the previous section, Vg (1) still has a potential bar-
rier and thus two local minima at finite and at infinite [, respectively, if the unrenormalized
interaction V(I) exhibits a sufficiently strong barrier.

For zero pressure, the equation —0V.g(l)/9! = P = 0 has two solutions at small and at
infinite (I) corresponding to the two coexisting states at the discontinuous unbinding transition.
For small but nonzero P, one still has two solutions corresponding to the coexistence of two
states with small and with large (I), respectively. This coexistence line will end up in a critical
point which must belong to the same universality class as the critical point of the symmetric
double well potential studied above. As mentioned, the Monte Carlo simulations of reference
[16] give strong evidence that this is the universality class of the 2-dimensional Ising model.

The coexistence of two lamellar phases has been experimentally observed in several mixtures
of amphiphilic molecules and solvent, see reference [10]. In general, different amphiphiles such
as double-chained lipids and single-chained surfactants can have rather different solubilities
which can lead to very different time scales for the exchange of molecules between the mem-
branes and the solution. The theory described above is applicable to these systems as long as
the typical shape fluctuations are bending modes and are not governed by the adsorption or
desorption of the amphiphilic molecules from the solution or from the membrane. This should
apply to lipid bilayers but may be more questionable for surfactant membranes.

In summary, simple scaling arguments predict that membranes can form two coexisting
lamellar phases provided their direct interaction exhibits a strong potential barrier which sat-
isfies the criterion as given by (7). On the other hand, flexible membranes are also predicted
to tunnel through weak barriers; therefore, interactions with weak barriers do not lead to the
coexistence of two lamellar states.
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