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Abstract. - Stacks of non-intersecting fluid membranes which are governed by bending rigidity 
and lateral tension and hold together by an external pressure are studied theoretically using 
Monte Carlo simulations. Thermal shape fluctuations give rise to an effective repulsion between 
the individual membranes, which depends sensitively on the relative strength of bending rigidity 
and lateral tension. For tensionless stacks, the strength of this repulsion is by a factor of two 
smaller than previously estimated and does not depend on the number of membranes in the stack 
within the numerical accuracy. For a pair of two membranes, the universal scaling form of this 
repulsion is determined for varying ratios of the bending rigidity and the surface tension. 

The effective or renormalized interaction between bilayer membranes in a lamellar stack 
or bunch is determined by the interplay between direct molecular forces and fluctuation 
forces due to thermal excitations [l]. Direct forces for amphiphilic sheets separated by layers 
of solvent comprise the hard-wall repulsion at zero separation, preventing the membranes 
from crossing each other, the omnipresent van der Waals attraction, and electrostatic 
interactions. An external pressure can be applied by various means, including mechanical, 
osmotic, and vapor-pressure techniques [2], and acts as an additional potential which is 
linearly proportional to the separation between the membranes. For fluid membranes, the 
dominant excitations are usually bending modes only. In many experimental situations, 
however, a lateral tension is present in addition[3]. 

In this letter, we determine the strength of the effective repulsion VF~ due to shape 
fluctuations which are controlled by bending rigidity and surface tension in the presence of 
hard-wall interactions only ('). This is achieved by determining the mean separation 8 
between membranes which are bound by an external pressure, from which the fluctuation 
strength is deduced. For the case of zero lateral tension, the fluctuation potential is given 
by 

(s) Present address: Department of Physics FM-15, University of Washington, Seattle WA 98195, 
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(l) For two interacting membranes, the free energy F per unit area and the mean separation e are 
related via aF(P)/aP = E: Inverting this relation to obtain P = P(t) ,  the Legendre-transformed free-energy 
density (which is the fluctuation potential) is given by V,(t) = F(P(t))  - Pt ,  with -aV,(e)/ae = P. 
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for large separations e between neighbouring membranes with K being the bending modulus. 
Our Monte Carlo (MC) data lead to cF1= 3 x 2  /256, which is half of one of the estimates due to 
Helfrich[4]. Numerically, cF1 does not seem to depend on the number of membranes, as 
explicitly checked for stacks of two to four membranes. Therefore, as far as this fluctuation 
potential is concerned, stacks of membranes which do not experience short-ranged attractive 
forces can be regarded as assemblies of independent pairs of membranes. Consequently, the 
influence of an additional lateral tension is studied below for a single pair of membranes, for 
which we obtain the general form of the fluctuation repulsion. In the limit of small tension, 
this general form reduces to  (1) for small l. 

To proceed, consider the effective Hamiltonian for a stack of N membranes under external 
pressure P, as given by 

%{ 11, . . . , ZN} = 

where the displacement field Zn(x) parametrizes the shape of the n-th membrane. The 
hard-wall interaction is implicitly embodied by the constraint Zl < 6 < . . . C ZN. In all what 
follows we only consider i) the symmetric case with identical bending moduli K K ,  and 
surface tensions U = Q, for n = 1, ..., N ,  and ii) the asymmetric case with K K ,  and Q E U, 

for n = 2, ..., N and K~ = g1 = W .  In the latter case, the first membrane acts as a flat 
substrate. After discretization of the coordinate x with lattice constant all and using the 
dimensionless continuous height variables x, = 1, f l T / a l l ,  the resultant parameters are the 
resealed pressure p = Pa,? /fl and the dimensionless crossover parameter w all m. In 
the MC simulations we typically did 107MC steps using square lattices with up to 12500 
sites [5]. Because of the enormous numerical effort, our studies were restricted to N d 4. 

We first consider tensionless stacks, for which w = 0; figure la) shows the mean 
separation e=  (6 - Z1) - (62) ( x 2  - q ) ,  the roughness f 1  
E ((6~') - ( S Z ) ~ ) ~ / ~ ,  and the parallel correlation length fI1 = exp [2x((VSz)')] [61 for the case of 
two identical membranes as a function of the pressure p .  The data are consistent with the 
ratio l / f  = G, = 6 [7]. The observed behavior - p as denoted by the straight lines, 
follows from minimizing the superposition of the pressure interaction and the fluctuation 
repulsion, Pe + V,l(&), leading to e= (2cF1 T ' / K P ) ~ / ~  (see (l)). For the other length scales, one 
in addition uses the scaling law e- f l  - ~ l l u l l ~ .  From the fit to the separation t' we 
estimate cF1 = 0.116 ? 0.002, which is very close to 3x2/256 and thus exactly half the value 
proposed originally [4] and deduced experimentally by X-ray scattering on lamellar phases in 
oil-water-surfactant mixtures, [8] a discrepancy still unresolved (2). The value of cm has also 
been estimated, in the limit of large N ,  using functional renormalization[9], leading to 

Another geometry which has been studied by MC simulations are N identical membranes 
confined between two rigid walls [lo, 111. The separation between these walls was taken to 
be ( N  + 1) ( so  that the mean separation of all nearest-neighbor surfaces is close to R The 
excess free-energy density V;?) (e )  per membrane was determined via the internal energy 
density leading to cb;) = 0.080, CAY) = 0.093, CA!) = 0.097 for N = 1, 3 and 5 membranes [lo]. 
Extrapolation to large N gave the estimate c; = 0.106 which is somewhat smaller than our 
value obtained in the pressure ensemble. The latter value should be more reliable, however, 
since it is independent of N and thus involves no extrapolation procedure. 

(((6 - Zl - 1)2))1/2 - ( S Z ' ) ~ / ~  

cF1 Cz 0.0810. 

(2) Additional short-ranged interactions do not change the fluctuation amplitude cF1 in the 
asymptotic limit Sl + m , as long as they are not attractive enough to bind the membranes; exactly at 
the critical strength of these interactions, cF1 is decreased by a factor of 12 [7]. 
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Figure lb)  gives the ratio of the separation in a symmetric stack of three membranes 
(averaged over the two difference coordinates) and a stack of two membranes. This ratio 
reaches unity for p S within the numerical error, which is the pressure range for which 
the data scale accurately, see fig. la). In fig. IC) we include data for a symmetric stack of four 
membranes, where we have to differentiate between the inner separation ( 6 x 1 )  3 ( 6 x 2 )  and 
the outer separation ( 6 x o )  3 (6x1 + 6 x 3 ) / 2 .  The ratio between the separation for N = 3 and 
the outer separation for N = 4 is close to unity already for rather high pressures; the ratio of 
the inner and the outer separations for N = 4 approaches unity within the numerical error for 
p S as in fig. lb). It is clear from the data that the estimate of cF1 for N = 3 and 4 agrees 
with the value obtained for N = 2 within the numerical accuracy; there is a small trend to a 
lower cF1 as N increases (open circles in fig. lb )  and c)), which is, however, exceeded by the 
numerical error for p S Thus, based on the accessible range of length scales and the 
limited number of membranes considered, the asymptotic form of the fluctuation repulsion 
does not depend on the number of membranes, and the relative displacement fields in a stack 
decouple for small pressure (3). 

This result can be further substantiated by considering asymmetric stacks. In fig. 2a) we 
show data for a stack of two membranes on a flat substrate. Again, all lengths scale 
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Fig. 1. - MC results for tensionless, symmetric stacks as a function of rescaled pressure p ;  vertical lines 
denote numerical errors. a) Mean separation (62) (01, roughness (o), and parallel correlation length 
E , ,  (U) for two membranes, N = 2. b) Ratio of mean separations for stacks of three and two membranes. 
c) Ratio of the mean separations of three membranes and the outer separations (82,) of four membranes (0) 
and ratio of the inner and outer separations ( 6 q )  and (6zo) in a stack of four membranes (0). 

(3) The independence of the displacement fields in a stack, or the quasi-separability, breaks down if 
one chooses the pressure between the pairs of membranes to be different, as appropriate for quaternary 
systems, where consecutive spacings between the amphiphilic sheets can be different. 
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asymptotically as - p -1/3. The ratios of the two displacement fields are given in fig. 2b) for 
the separations and the parallel correlation lengths, which approach z1l3 and 2-'16, 
respectively, as denoted by the broken lines. Treating the two membrane pairs as 
independent, it follows that the relative displacement field of the membrane/flat substrate 
pair is governed by a bending modulus which is twice as large as that for the relative 
displacement field of two identical membranes. Using the above-given scaling forms for land 
Ell, one obtains the ratios 2lI3 and 2-'16. In fig. 2c) the results for the asymmetric system of 
three membranes on a flat substrate are shown; here we average over the two displacement 
fields between the upper three membranes, since they turn out to be equivalent (within the 
numerical error). The remaining two sets of data show the same behavior as the data in 
f ig .2~) .  For asymmetric stacks, the different displacement fields again decouple and are 
each described by a fluctuation amplitude cF1 which agrees with the estimate for symmetric 
stacks. This behavior is very different from that of stacks of membranes which are bound by 
short-ranged attractive forces between the membranes; in the latter case, a flat substrate 
affects the whole stack and leads to a sequence of unbinding transitions [5]. 

For the investigation of the effects of non-vanishing lateral tension Q, it should thus be 
sufficient to treat a single symmetric pair of membranes. The scaling of the fluctuation 
repulsion can be obtained by considering one hump of the relative displacement field (which is 
governed by the effective rigidity K = ~ / 2  and the effective tension = 0/2) with linear size 
Ell and replacing the confining potential by the low-momentum cut-off qmin = c-/tll. The 
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Fig. 2. - MC results for tensionless, asymmetric stacks. a) Separate data for the upper and the lower 
displacement fields in a stack of two membranes on a flat substrate; the symbols have the same meaning as 
in fig. la). b) Same data now plotted as ratios of the two distinct displacement fields for the separations (62) 
(0) and the parallel correlation lengths Ell (0). c) Data for a stack of three membranes on a flat substrate; the 
two sets of data correspond to the lowest displacement field adjacent to the substrate and an average over 
the upper two displacement fields; the symbols have the same meaning as in fig. la). 
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Fig. 3. - Scaling plots for six sets of data carried out at different values of w - $&; the data points 
on the left and on the right correspond to large and to small values of w ,  respectively. a) The straight 
line denotes 2 - 5 -lI3, as realized in the bending-dominated regime. b) The straight line denotes 
ẑ  - In (5z^1'4), as observed in the tension-dominated regime. 

corresponding roughness f L  is then given by 

with the crossover length I, P d m .  The prime at  the integral indicates that the 
integration is restricted to qmin c q c qmax, where the high-momentum cut-off is qmax = 
= cm,/a,,. Using VF, = bT/ f i ,  which is a representation of the equipartition theorem, and 
inverting (31, one obtains v F 1  as a function of t; 

For large w, the fluctuations are dominated by the lateral tension on all scales. In this 
case, the roughness and the mean separation satisfy the scaling relstion 2(t; I = P/Z, + 
+ In (l/Z, )/4 [12], and the fluctuation-induced interaction behaves as 

(4) 

with the parameter-independent coefficient bo - b( c,, /c- )2 (note that the same behavior is 
found for complete wetting in three dimensions). 

For small w, one must distinguish a rigidity-dominated regime with F L  <<&, and a 
tension-dominated regime with € >> 1, [l]. In the rigidity-dominated regime, one has the 
scaling relation P = GI t; and the fluctuation-induced interaction VFl (t; ) reduces to the 
form as given by (1) with cF1 /2  = bGf /4xcih. In the tension-dominated regime, one recovers 
the functional form as in (4) but with the prefactor bo T / a f  replaced by (b0/c2=) TQ/K. 

The general scaling form of VF1 (0, which contains both (1) and (4) as limiting cases, can be 
written as 

v F l ( P >  = (boT/al?)exp[- ~/z,Iu, /O"~ , 

VFl ( e )  w 2  la'' T@(P W T ) ,  (5)  + w 2  
which yields, after minimization of the expression Vm ( P )  + P4 the scaling form for the separation 
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where the prime denotes a derivative with respect to Z, and X and 5 are resealed separation 
and pressure variables. 

We carried out six different simulation series for the model as given by (1) with N = 2 and 
w 2  = 0. 002, 0.02, ..., 200. Figure 3a) shows a double-log scaling plot of Z as a function 
of 5, where the expected behavior in the rigidity-dominated regime, p^ - x ^ - 3  from (11, is 
denoted by a straight line. For the dimensionless coefficient e,, we obtain the estimate 
e,, = 3.0 2 0.1 leading to bo = 1.3, which determines the amplitude of the fluctuation- 
induced repulsion VFl in the tension-dominated regime. For mean spacings larger than a 
crossover value, lateral tension strongly reduces the strength of VFl as compared to the 
tension-free case and changes the functional dependence of the spacing on the pressure. In 
fig. 3b) the same data are shown in a different plot with the expected behavior for the 
tension-dominated regime, In ( p ^ )  - X - In (Z)/4 from (4), again denoted by a straight line. In 
each of the regimes, the data are accurately described by the asymptotic forms of the 
fluctuation potential as given by (1) and (4); the crossover length is given by X *  = 2, which is 
denoted by broken lines, the corresponding crossover pressure is 5* = 0.1. Typical lateral 
tensions in multilamellar structures range from o = lo-' to J/m2 [3], and are strictly 
bounded above by the tension of rupture, which is = J/m2. The characteristic 
membrane spacing at which the system crosses over from the rigidity-dominated regime, at 
small spacings, to the tension-dominated regime, at large separations, is thus given by 1 * = 

= Z *  = 2-2000 nm at room temperatures, which does not depend on the pressure or the 
bending modulus and lies within the range of observable layer spacings [2,8]. Even the effect 
of a small lateral tension should therefore be experimentally observable for large 
separations. The crossover pressure is given by P* = (5 * /e:,) v m  = 10-7-102 J/m3, 
where IC = 10-19J for lipid bilayers has been used. In an experiment where the layer spacing 
is not fured, such low pressures can be produced by osmotic stress techniques, which cover 
the pressure range of up to 106J/m3[2]. 
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