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Abstract. - Polymers which are attached to a fluid membrane by a single anchor exhibit a dilute
mushroom regime and a semi-dilute brush regime. Scaling arguments and explicit calculations
for ideal polymers show that the membrane is bent by the anchored polymer: For smooth bends,
an anchored mushroom with linear size R, induces a spontaneous curvature of order = T'/xR,,,
where T and x are the temperature and the bending rigidity, respectively; for sharp cone-like
bends, it induces a bending angle = T/2nx. A brush with mean anchor separation &,, leads to a
curvature of order = (Ry, /&4 )" T/KE

Polymers at surfaces and interfaces have been studied for a long time both experimentally
and theoretically. In these studies, the surface was usually governed by its interfacial tension
and thus was rather rigid. Essentially tensionless and very flexible surfaces are provided by
membranes such as lipid bilayers in their fluid state [1]. Indeed, several experiments have
been reported recently which indicate that anchored polymers can have a strong effect on the
shape of such membranes [2,3].

Polymers can be anchored to membranes in several ways: 1) by lipid anchors, i.e. the
polymer is covalently bound to the head group of a lipid molecule [4,5]; ii) by hydrophobic
sidegroups of the polymers which are inserted into the bilayer [2,3]; and iii)) by membrane-
spanning hydrophobic domains of the polymer, which is the typical situation for membrane-
bound proteins.

In order to be specific, I will focus on linear polymers with a single lipid anchor at one end.
Apart from this anchor, the monomers of the polymer are repelled from the membrane
surface. Such a situation must be distinguished 1) from polymer adsorption where the whole
polymer is attracted towards the membrane [6] and ii) from polymers embedded within the
membrane [7]. Furthermore, in contrast to polymers grafted to solid surfaces, polymers
anchored at a fluid membrane can diffuse laterally along the membrane surface.

Concentration regimes. — The polymer coverageI’ of the membrane surface (i.e. the
number of monomers of anchored polymers per unit area) may be controlled by varying the
time over which this surface is exposed to the polymer solution. In the dilute regime, i.e. as
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long as the mean separation &,, of the anchored polymers is large compared to their linear
size Ry, one has well-separated polymer mushrooms.

The linear size Ry, of an anchored polymer consisting of N’monomers can be estimated by
the mean end-to-end distance of its freely suspended state which behaves as E,, = aN" for
large N. The length scale a is the persistence length which is taken to be of the order of the
monomer size (thus, the polymers are assumed to be quite flexible and effects of their
bending rigidity will be ignored). The exponent v=1/3 1/2 and = 3/5for collapsed, ideal,
and self-avoiding chains, corresponding to bad, § and good solvent conditions, respectively,
see, e.g., ref. [8].

The anchoring free energy of a single mushroom consists 1) of the energy gained by
inserting the anchor into the bilayer membrane and ii) of the entropy lost by constraining the
chain by the membrane surface. A self-avoiding chain anchored at a flat surface suffers the
entropy loss —T Ady, = T(y — y1)In(N), with y — y, = 0.5 where the critical exponents y
and y; refer to the infinite and the semi-infinite space, respectively, see, e.g., ref. [9] (here
and below, the temperature is measured in energy units, i.e. the Boltzmann constant kgis
contained in T).

The entropy loss must be overcome by the anchoring energy AE,,. For lipid anchors with
two hydrocarbon chains containing %, carbon atoms, the anchoring energy AE,, = — 1.7n T
as follows from the critical monomer concentration of phospholipids [10]. For dipalmitoyl
phosphatidyl choline (DPPC) with %, = 16, for example, one has AE,, = — 27 T. On the other
hand, a rather long chain with N = 10° monomers leads to the entropy loss —T' A}, = 5.8 T
Thus, the free energy AE,, — T'AdJ}, is still large compared to 7, and one may ignore the
chemical equilibrium between freely suspended and anchored polymers.

The mushroom regime applies up to the overlap coverage I'=N/RE at which the
membrane becomes completely covered by anchored polymers. For I'> I'y one enters the
semi-dilute brush regime which has been studied in the context of polymers grafted at rigid
surfaces [11,12]. In this regime, each polymer experiences an additional loss of entropy
arising from the confinement by the neighbouring chains. This brush regime extends up to
another limiting concentration I',,, at which the overall loss of entropy of the chain becomes
comparable with the anchoring energy, and the polymers are frequently exchanged between
the membrane and the solution (where the polymers may aggregate into micelles).

Mushroom regime: smooth bends. — Now consider a polymer mushroom on a curved
membrane segment (') with mean curvature M = (1/2)(1/R; + 1/R,) and Gaussian curva-
ture G = 1/R; R,, where R;and Rjare the principal curvature radii. Compared to the flat
surface with M = G = 0, the configurational entropy of the polymer will change. In general,
this excess entropy will depend on the polymer size Ry, and on the length scale I,, which
describes the distance of the anchored polymer end from the surface. However, in
the limit of small lon/Rpo, dimensional analysis implies that the excess entropy
A (M, G) = Jyy (M, G) — J3, (0, 0) depends only on Ry, M and R&,G for self-avoiding and
ideal chains. Because of the asymmetry of the decorated membrane, one must then have

AL];)O (My G) = Q(RpoM’ Rgo G) = cstoM (1)

(") In order to estimate the curvature of the membrane segment as induced by the polymer, it is
assumed that this segment can adapt freely to the forces arising from the polymer. In general, the
segment belongs to a larger membrane which experiences additional forces or constraints; one example
are polymers attached to a vesicle with constraints on membrane area and vesicle volume as will be
considered in future work.
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Fig. 1. - Polymer mushroom anchored at membrane segments of different shapes.

to first order in the curvature radii. The coefficient ¢, is positive if the membrane curves
away from the polymer, see fig. I.

The entropy gain induced by the curvature of the surface is balanced by the increase in
bending energy A& of the membrane. For a symmetric bilayer segment which forms a
spherical cap of area .¢ = nRE, the bending energy is given by

AG, (M) = j da %K(ZM)Z = 2nkR2 M2, )

where x denotes the bending rigidity of the membrane. Minimizing the free energy
AT = AEp. (M) — T Adp, (M), one obtains the spontaneous mean curvature

M =M, = c,T/4nxR,, ~ T/kaN". (3)

Thus, the induced curvature is larger for smaller polymer size R,,: if one starts with good-
solvent conditions with v =38/5 and changes the temperature towards ésolvent conditions
with v =1/2, the curvature will increase. Further changes in the temperature will then lead
to bad-solvent conditions in which the polymer size becomes even smaller and the spontan-
eous curvature should continue to grow.

The scaling arguments leading to (3) can be confirmed by explicit calculations for ideal
chains. Thus, consider the partition function g~ Z(r,, |r, N)of all chain configurations for
which the two ends of the chain are at the positions r,, and r. The parameter g describes the
number of ways in which one may add a single monomer to a given chain segment (¢ = 6 for a
simple cubic lattice). The total statistical weight is defined by

Z = J'er(ran |r, N). (4)

In the continuum limit, the reduced partition function Z satisfies a Schrodinger-type
equation [13,8]. In the present context, the external potential experienced by the monomers
of the chain is given by repulsive hard-wall interactions with the membrane surface. As a
consequence, the Schrodinger-type equation becomes equivalent to the diffusion equation
with absorbing boundaries which has been studied in much detail [14].

Let us first consider an ideal chain anchored at distance ,, from aflat surface. In this case,
the total statistical weight within the half-space accessible to the polymer is given by [15]

Zhs = erf(\/al"m /2RP0) =V q/ﬂlan /Rpo - NMI/Z ’ (5)
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where erf(x) denotes the error function [16], and the asymptotic equality holds for small
lan / Rpo

Next, consider a spherical membrane surface with mean curvature M =1/R The
polymer sits outside of this sphere and is anchored at distance ,, from its surface. Extending
the results of ref. [14], one finds after some computation the total statistical weight

Z = [erf (Vqlan /2Rpo) + ln M1/[1 + Iy M1. (6)

If one combines (6) and (5), the excess entropy Ady, (M) =1In(Z/Z,) for an ideal chain is
obtained as

1 )
Ay (M) = ¢, Rpo M — Ecsz (R MY with ¢ =V=r/q (7)

for small M. Minimizing the excess free energy AF = A&, (M) — T Ad,, (M), with A&, as
given by (2) then leads to the spontaneous mean curvature My, = ¢, T/47x o Ry as in (3) with
the increased bending rigidity x . = x + ¢ZT/4x. The latter expression for . will be
changed if one includes the bending modulus k¢ of the Gaussian curvature [17] which has
been ignored here.

Mushroom regime: sharp bends. — So far, 1 have tacitly assumed that the membrane
segment is bent in a smooth way. However, the anchor represents a point-like defect in the
bilayer, and it is thus reasonable to consider other shapes of the curved membrane which
involve sharp bends. Thus, let us assume that the membrane segment forms a cone with the
polymer anchor at distance l,, from its apex, see fig. 1. In polar coordinates, the surface of
the cone is given by 6 = 6, = 7/2 + ¢, where ¢ is the bending angle with respect to the flat
surface.

The corresponding diffusion problem has also been studied [14]. Expanding the reduced
partition function in powers of ly, /Ry, one finds Z = ¢(m)(ly, /Rpo )™, With m = My, The
parameter My, is the smallest solution of the implicit equation Py, (cosb.,) = 0, where Py, (x)
is a Legendre polynomial [16]. For small bending angle ¢ My, =1—¢ and ¢(Mpyy,) =

~Vq/=(2/Vq)*, and the excess entropy
Ay =In(Z [/ Zhs) = $In (R [lan) - ®)

For a cone with area ¢ = 7R}, the bending energy A&y, = mx[sin®¢/cos¢]In(Ry, /an) =
=~ my? In (Rp, /sy ) for small ¢, where a,, denotes the lateral size of the anchor. For a lipid
anchor with a,, =1I,,, the excess free energy AF = In(Ry, [l )mrd?® — T¢] leads to the
spontaneous bending angle

Yo = T/27 . )

The corresponding decrease of the free energy of the membrane segment is given by
AF =~ — (T? [4mx) In (Rpg [lon)

For self-avoiding chains, no calculation for a cone seems to be available. One may,
however, use the analogy between polymer statistics and critical phenomena [8] in order to
conclude that the total statistical weight Z, of the cone behaves as Z, ~ N7~ !, where
i) v1=17v1(0,) is a smooth function of the cone angle 6., and ii) y;(0., = 7/2) = 0.7 as
appropriate for the planar surface. This implies the excess entropy Ady, = (3y1/3¢)In (N)
for small bending angles ¢ = 6., — 7/2. It seems feasible to obtain the function y; (6., ) from
an expansion around d =4 dimensions (as has been explicitly performed for a wedge
geometry, see [18]).
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If the anchor forms a defect, one may also consider a catenoid deformation as shown in
fig. 1, which does not cost any bending energy. For a membrane segment of area. ¢ = =R},
the height of the catenoid surface is = a,,In(Ry, /a,,). Using the total statistical weight 7,
for the half-space as given by (5) with I, = @z In (R, /a,,), one obtains the bound 17 =
= —TAd}, > —TIn[In(R,, /a,,)] for the excess free energy of the catenoid. Therefore, for
large By, the free energy of the catenoid is larger than the free energy of the cone, and a
cone-like shape is more favourable.

Brush regime. — As soon as the polymer coverage (= monomers per area) exceeds the
overlap coverage I'y = N/R},, the polymers start to squeeze one another and thus to further
reduce their entropy. For good-solvent conditions, each anchored polymer within such a
brush can be viewed as a string of blobs: for a flat surface, the extension of these blobs is
given by the mean separation &,, of the anchors [11]; for a curved surface, this extension
grows with the distance from the surface [12].

For a spherical membrane segment with mean curvature M = 1/R, scaling arguments
lead, in the limit of small M, to the brush height z ~ N(a/&,,)*" ¢,, and to the excess free
energy AF, ~ T(h/E0)[(1/RM)In(1 + M) — 1] ~ —Th*M/£,,. If this excess free energy
is balanced against the bending energy of the curved membrane, one now obtains the

spontaneous mean curvature
My, ~ (Rpy [/ T/KEw,  with  v=3/5 (10)

For sharp cone-like bends, the free-energy balance leads to the spontaneous bending angle
Gop ~ (T/k)(Ryo [€40)*" (where the logarithmic factor In(£,,/a) has been ignored). The
average curvature (M) = ¢, /£., arising from these sharp bends is of the same order as the
spontaneous mean curvature (10).

As the coverage I' is increased, the excess free energy A%, of each chain becomes
eventually comparable to the anchoring energy A&,, = — Ae,, T. For a flat membrane, one
has AZ, ~ TN(a/E.,)"" which leads to the minimal value £, = Ry, /Aes, of the anchor
separation and to the maximal value I'y,, = I'y AeZy of the polymer coverage. For DPPC
anchors with Ae,, = 27, the minimal anchor separation is = R,, /7 and the maximal coverage
is =52TI,. If the dissolved and the anchored polymers are in chemical equilibrium, the
decorated membranes should exhibit the spontaneous curvature induced by this maximal
coverage.

Open ends. — The work described above may be extended in several ways. First, the
polymeric architecture within the dilute mushroom regime may be varied: the chains may be
attached by two or several anchors as in ref. [2,3]; they may be comb-like, star-like or
randomly branched (a star polymer with b ideal arms, for example, which is anchored at its
centre has an excess entropy which is again given by (3) and (9) but with T replaced by bT);
they may be crosslinked and thus form small gel balls. Secondly, the shape fluctuations or
undulations of the membranes are also affected by the anchored polymers: in the brush
regime, the effective bending rigidity of the membrane should be increased by the presence
of the polymer brush; in the mushroom regime, on the other hand, the anchored polymers act
like local curvature defects [19] which tend to decrease the bending rigidity (*). Finally, the
effective interaction between the mushrooms need not be repulsive but can be attractive.

(*) Ifthe polymers are attached to both sides of the membrane with equal probability, this reduction
of the bending rigidity is ~ pT', where p is the area fraction covered by the polymer.
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This happens, e.g., in bad-solvent conditions or in the presence of crosslinkers. The anchored
mushrooms then tend to form clusters or domains even below the overlap coverage. The
formation of intramembrane domains generically leads to domain-induced budding [20] which
could explain some of the experimental observations in ref. [2,3].

* %k %k

I thank CH. HIERGEIST for stimulating interactions.
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