
J. Phys. II France 6 (1996) 255-270 FEBRUARY 1996, PAGE 255

Discontinuous Phase Transitions of Membranes: a Monte Carlo
Study

Annette Ammann and Reinhard Lipowsky (*)

Institut fur Festk6rperforschung, Forschungszentrum Jiilich, 52425 Jiilich, Germany

and

Max-Planck-Institut fur Kolloid- und Grellzflichenforschung, Kantstrasse 55,

14513 Teltow-Seehof, Germany

(Received 4 October 1995, received in final form 17 October 1995, accepted 25 October 1995)

PACS.82.70.-y Disperse systems
PACS.64.60.-I General studies of phase transitions

Abstract. Fluid membranes which experience interaction potentials with
a

potential barrier

are
studied by Monte Carlo simulations. For

a symmetric double-well potential, the membranes

are
found to exhibit the same

critical behavior as the 2-dimensional Ising model
even

for
zero

lateral tension. For an
asymmetric adhesion potential with

a
relatively large potential barrier,

the unbound phase is found to nucleate via the formation of membrane 'islands' which implies

a
discontinuous unbinding transition.

1. Introduction

Lipids and other amphiphilic molecules in water form thin bilayer membranes with a thickness

of the order of 4-5 nm
ill. These membranes are rather flexible and undergo thermally-excited

fluctuations which are directly visible in the optical microscope. Many preparation methods

lead to bunches or stacks in which these membranes adhere to one another. Likewise, single
membranes usually form closed vesicles which may adhere to other vesicles or to another surface

such as the container wall.

If these membranes are electrically neutral, their direct interaction consists of repulsive
hydration and attractive van der Waals forces and the corresponding interaction potential
exhibits a single minimum. If the membranes carry electric charges, their direct interac-

tion also depends on the electrostatic forces and may then exhibit an attractive potential
well at small separations and a repulsive potential barrier at intermediate separations of the

membranes [2-4].
As the temperature is increased, the shape fluctuations act to reduce the strength of the

potential barrier. For tensionless membranes, one eventually reaches a characteristic temper-

ature T
=

Tu at which the membranes unbind from one another. It has been recently argued
by scaling arguments that this unbinding (or adhesion) transition is continuous for sufficiently
weak barriers but discontinuous for sufficiently strong ones [5]. This implies that interacting

membranes cannot 'tunnel' through strong barriers but are trapped by these barriers as the
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unbinding temperature is approached from below. The latter prediction does not agree with

the results of functional renormalization [6] which imply that fluid membranes behave as I-

dimensional strings in two dimensions which can 'tunnel' through any barrier (provided the

barrier is short-ranged as will be assumed here).
In order to check the validity of the scaling arguments, we have performed extensive Monte

Carlo simulations as will be described in the following. First, a membrane which is subject
to a symmetric double-well potential is considered. In this case, the membrane is found to

exhibit the same critical properties as the 2-dimensional Ising model. This implies that the

membrane undergoes a discontinuous phase transition as a symmetry-breaking field is varied

at low temperature. Secondly, an asymmetric adhesion potential with a potential barrier will

be studied. In the latter case, the nucleation and growth of membrane 'islands' can be directly
observed which implies a discontinuous unbinding transition.

2. Theoretical Description and Boltzmann Weight

The shape of a fluid membrane which has zero shear modulus and is taken to be essentially
incompressible is governed by its bending rigidity, ~t

[7-9]. We will focus on lipid bilayers
which usually have a bending rigidity large compared to the thermal energy, T (here and

below, temperature T is measured in energy units, I-e-, the Boltzmann factor kB has been

absorbed into T). In this case, the persistence length of the membrane [10] is very large and

the membrane surface exhibits orientational order on the accessible length scales.

Now, consider such an oriented membrane close to a planar reference surface. The separa-

tion of the membrane from this surface is described by the displacement field I(xi,~2). The

configuration energy (or effective Hamiltonian) of this displacement field is given by [11]

7illl
=

/
d~~ljl~(V~l)~ + jL(Vl)~ + V(I)I (1)

where L > 0 represents the lateral tension and Vii) the interaction potential arising, e-g- from

other membranes or from external forces. In the following, we will study several potentials
Vii) which exhibit a potential barrier.

The statistical weight for a certain configuration is given by the Boltzmann factor

mJ

exp[-7i(1) /T] and the free energy F of the system is

F
=

-T In[
/ D(I)e~~l~l/~]. (2)

where f D(I) denotes a path integral over all I-configurations. In the thermodynamic limit of

large L, the free energy behaves as

F m
FL~. (3)

The form of the correction terms depends on the boundary conditions. We will use periodic
boundary conditions in the x-direction; in this case, the correction terms are expected to be

exponentially small in L.

3. Symmetric Double Well Potential

First, we will consider a membrane which is placed in the symmetric double-well potential as

given by
V(I)

=

Al~ + Bl~ + Hi. (4)
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For H
=

0 and A < 0, this potential is symmetric with respect to I
-

-I and exhibits two

degenerate minima. The critical behavior discussed below applies to all other potentials which

are symmetric and have two degenerate minima separated by a barrier; another example is

provided by the interaction potential felt by a membrane between two adhesive walls. For finite

lateral tension L > 0, the large scale properties of the membrane are governed by this tension

and the model as given by ii) and (4) is equivalent to the effective Hamiltonian (the so-called

'#4-theory') used for a bulk critical point in two dimensions. It is well-known that the latter

model belongs to the same universality class as the 2-dimensional Ising model [12,13].
Thus, the phase diagram of the model as given by ii) and (4) with L > 0 can be deduced from

the phase diagram for the 2-dimensional Ising model as was mentioned in reference [14]. There

is a critical point for H
=

0 and A
=

A~ < 0 at which the system undergoes a continuous phase
transition. For A < A~ and H

=
0, the symmetry I

-
-I is spontaneously broken, and the

membrane under tension is located in one of the two degenerate minima of Vii). In addition,
the system undergoes a discontinuous phase transition for A < A~ when the symmetry breaking
field H is varied through H

=
0.

3.I. ISLAND EXCITATIONS. What happens for zero lateral tension L
=

0? In this case, the

membrane is again located in one of the two degenerate minima at zero temperature T
=

0.

At small but finite T > 0, it ~&,ill exhibit thermally-excited islands, compare Figures 7 and 10

below.

The excess free energy of one island arises from the edge of this island which consists of

the membrane segments within the potential barrier. For an island of lateral size Ljj, one

has the edge energy AEe
mJ

aoLjj where the line tension ao is proportional to the height of

the potential barrier. The edge entropy, on the other hand, is dominated by the different

shapes of the edge and thus, can be estimated as ASe
mJ

In(3~"/~")
mJ

Ljj, if the edge is

viewed as a random walk with three possibilities at each step. Thus, for small T, the excess

free energy, AFe
=

AEe TASe, is positive and the membrane fluctuations experiences an

effective barrier [5].
The above stability argument implies that the symmetry is spontaneously broken at small

T but will be restored at a critical temperature T
=

T~ at which the excess free energy AFe
vanishes and the system undergoes a continuous phase transition. This critical point will be

studied below by Monte Carlo simulations. In order to extract the critical behavior, we will

first discuss the dependence of this behavior on the finite system size.

3.2. FINITE SIZE SCALING AT CONTINUOUS PHASE TRANSITIONS. In computer simula-

tions, one has to study finite membrane segments of lateral size L. It is then convenient to

define the spatially averaged quantity

I
e

/
d~a~l(x) /L~ is)

since the probability distribution P(I) for this quantity can be directly determined in the

simulations. The same procedure has been used in order to study the phase transition in bulk

systems, see [is,16].
The expectation values off

are directly related to the order parameter and the corresponding
susceptibility of the phase transition considered here. The order parameter is given by the mean

location t of the membrane. In the thermodynamic limit L
= co, one has

i e (ii
=

oF/oHj
~~o

j6)
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where F is the free energy per unit area as defined in (3). The corresponding susceptibility

per unit area is obtained via

I " -L~~T~j (H=o
"

L~~d~F/dH~(H=o
=

(i~) (I)~ (7)

in the limit of large L. Note that we have included the additional prefactor T in the definition

of (.
In order to obtain a state of the membrane for which the symmetry is spontaneously broken

and which is characterized by a nonzero value of (I), the thermodynamic limit must be taken

before one considers the limit of zero 'field' H. This is, however, not possible in a computer
simulation. Thus, there is always a nonzero probability for the membrane to 'tunnel' between

the two degenerate states for the symmetric double well potential: the expectation value (I) is

necessarily zero if one averages over time scales which are large compared to the corresponding
tunneling time. On the other hand, if one averages over time scales which are small compared

to this tunneling time, the expectation value (I) has a nonzero value which should approach,
for large L, the thermodynamic value as given by (6).

As long as the membrane does not tunnel between the two degenerate states, the expectation
value (I) is well estimated by

C°

/Mc % ((iii
m

/ dip([) I. (8)
o

Likewise, for these time scales, the susceptibility ( can be approximated by

(MC +
(PI (lit)~. 19)

Close to a critical point, the finite system size L represents a scaling field as has been shown

in the context of bulk critical phenomena [17,18]. In the present context, the singular part of

the fi.ee energy density is expected to have the scaling property

FIAT, H, L)
=

b~~F(bV~AT, bVi~H, b~~L). (10)

with ihT e T Tc where the scaling indices yt and yh determine the critical exponents in the

thermodynamic limit L
= co.

Indeed, in this limit, the correlation length ( diverges as

( -J1/(T -Tc(" with v =
I/yt. Ill)

Likewise, the mean location t which plays the role of the order parameter decays as

/
-J

(T Tc(° with fl
=

(2 yh)/Yt. (12)

and the susceptibility diverges as

(
mJ

I /(T Tc(~ with ~/ =
(2yh 2) /yt. (13)

as follows from (6), (7) and (10) with L
= oo. The three critical exponents v, fl and ~ satisfy

the scaling relation ~/ =
2(v fl) (which is restricted to systems with djj =

2 dimensions).

If one uses the definition oft
=

(I) as given by (6) even for finite L (and ignores the fact that

(I)
=

0 in this case), the finite size scaling form (10) for the free energy implies a corresponding

scaling form for (I). This scaling form should also hold for tmc
"

((I() since both expectation
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values (I) and ((I() can be obtained from the same probability distribution P(I),
compare (8).

Thus, one expects that

iNic
"

i~~~" lli(L/i)
"

L~"" *ilL~~"~T). l14)

It then follows from the definition of flmc as given by (9) that

flmc
=

L~~°/"4l~(L~/"AT)
=

L~/"~~4l~(L~/"AT) (is)

where the scaling relation ~/ =
2(v- fl) has been used. In the following, the measured quantities

tmc and (Mc are again denoted by t and ( in order to simplify the notation.

3.3. CUMULANTS OF THE SPATIALLY AVERAGED ORDER PARAMETER. If the lateral size

L is large compared to the correlation length (, the spatially averaged order parameter as

defined in (5) represents a summation over a large number of essentially uncorrelated and thus

independent displacement fields I(x). It then follows from the central limit theorem that I

should be governed by a probability distribution P(I) which is essentially Gaussian.

For T > T~, this distribution has a single maximum at
=

0 and thus can be written as

P(I)
cf

exp[-L~P/2x] (16)

with N m [27rx/L~]~/~ This functional form implies that fl m (i~)
=

x/L~, compare (7). For

T < T~, on the other hand, the symmetry is spontaneously broken with (I)
=

t
"

+lo for

L
= co, and the distribution P(I)

can be approximated by the superposition of two Gaussians:

P(I)
m

j (expj-L~ ii lo )~/2xj + expj-L~ ii
+ lo )~/2xj) j17)

Note that fl m
x/L~

as defined by (7) contains an explicit factor T.

In order to determine the location of the critical point, it will be convenient to study the

cumulants

C~ +
(Pl/(lill~ l18)

and

C4 +
(i~l/(Pl~ l191

Using the Gaussian distributions as given by (16) and (17), these cumulants can be calculated

in closed form.

For T < T~, the superposition of two Gaussian distributions as given by (17) leads to

((I()
=

(2x/7rL~)~/~ exp[-L~l( /2x] + loerf[Lio/fi], (20)

where erf[y] denotes the error function [19],

(PI
=

Ii + L~li/x)x/L~, 121)

and

(i~)
=

(3 + 6L~l( lx + L~l( /x~)x~/L~. (22)

The corresponding expressions for T > T~ as calculated ~&>ith the single Gaussian (16) are easily
obtained from (20)-(22) by setting lo

"
0.
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It now follows that the cumulant C2 as defined in (18) behaves, in the limit of large L, as

C2 ~S
I(/[loerf(Llo/fi)]~ ml for T<T~

(23)

=
7r/2 cf 1.57. for T > T~

Likewise, the cumulant C4 has the asymptotic behavior

C4 " for T < T~
(24)

=
3 for T > T~

for large L. This different behavior for T < T~ and T > T~ will be used below in order to

determine the location of the critical temperature T~ as has been previously done in the context

of bulk systems [13, 15, 20].

3.4. MONTE CARLO SIMULATION. In the Monte Carlo work, the membrane is discretized

on a square lattice with lattice sites i =
I,..

,

IL la)~ and lattice constant a.
The discretized

Laplace operator is then given by

V((
=

(,j+i + (,j-i + (-i,j + (+i,j 4(,j. (25)

In order to obtain a fully vectorized code, the lattice has been divided into five independent

sublattices.

It is convenient to introduce the dimensionless displacement field
z e lla and the dimen-

sionless potential

U(z) e
a~V(az) IT

=
(a~A/T)z~ + (a~B/T)z~ + (a~H/T)z. (26)

The Boltzmann weight is now given by exp[-7i(z) /T] with the configuration energy

~ilzl/T
=

~l)(~/T)lvizz)~ + U(z~)1 127)

The data discussed here have been obtained for the parameter values ~t
IT

=
0.32, a~B IT

=
10,

and H
=

0 as a function of the reduced temperature variable

T e
a~A IT (28)

and of the system size L.

In order to get acceptable errors for the measured quantities, between 107 and 10~ Monte-

Carlo steps per lattice site ~vere necessary. The sublattice sizes n~ which have been studied were

n~ "
3,4,6, 8,10,14 and 20, ~vhich correspond to the total number of lattice sites IL la)~

=

5n)
=

45, 80,180, 320, 500, 980, and 2000. In all Monte Carlo runs, the mean location /, the

susceptibility ( and the two cumulants C2 and C4 as defined in (18) and (19) have been

measured.

These two cumulants provide a rather convenient method by which one can determine the

locus of the critical point. Indeed, each cumulant approaches two different constants for small

and for large T as given by (23) and (24). These values apply to the limit in which the system

size L is large compared to the correlation length (. Close to the critical temperature T
=

Tr,

this limit cannot be observed in the simulations and one measures intermediate values for C2

and C4. The corresponding data are displayed in Figures I and 2.
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Fig. 1. The 4th and the 2nd cumulant C4 and C2 of the spatially averaged order parameter as a

function of the reduced temperature T
for different values of the linear system size Lla

=

v$ns.

C4
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Fig. 2. The 4th and the 2nd cumulant C4 and C2 in the vicinity of the phase transition: The

intersection points of the curves for large lattice sizes lead to the estimate Tc =
12.275 ~ 0.025 for the

critical temperature.

In these figures, the cumulants C2 and C4 are plotted as a function of the reduced temper-
ature variable

T
for different values of the sublattice size n~. Inspection of these figures shows

that the data are consistent with the analytic expressions in (23) and (24): (I) The fourth

order cumulant C4 approaches the constant value C4
CS 1 for large negative T or small T and

is smaller than the large T value C4
"

3 for small T; and (it) The second order cumulant C2
approaches the constant value C2 ~S I for large negative T or small T and is smaller than the

large T value C4
" ~

/2 m 1.57 for small
T.

At intermediate temperatures, the curves corresponding to different system sizes intersect.

The location of these intersection points provides an estimate for the critical temperature
T

=
T~. Extrapolation to large ns or L la

=

fins gives the estimate T~ =
-12.275 + 0.025 for

the critical value of the reduced temperature variable
T.

In Figure 3, the mean location / and the susceptibility per unit area fl are plotted as a

function of
T

for different values of the sublattice size n~. These data are now analyzed using
the finite size scaling forms for / and fl as given by (14) and (15).
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Fig. 3. (a) Mean location tla and 16) Susceptibility per unit area ( la~
as a

function of the reduced

temperature T for different values of the linear system s12e Lla
=

j$n~.

-o 4

In(lla)
(

=
0.115 ± 0.01

-0 5 ~,

'

~ ~
In (Ua) ~

Fig. 4. Double-logarithmic plot of the
mean

location ila
as a function of the linear system size

L la. The value Tc =
-12.275 for the critical temperature leads to the estimate fl/u

=
0.115 ~ 0.01 for

the ratio of the critical exponents fl and
u.

It follows from (14) that the mean location / should scale at AT
=

0 or T = T~ as t
mJ

L~~/"

with the finite system size L. This behavior is shown in Figure 4 in which t at r = r~ is

plotted double-logarithmically as a function of the system size L for three different values

of T~. Using the best estimate T~ m -12.275, the slope of the interpolating curve gives the

estimate fl/v
=

0.115 + 0.01.

The data for the susceptibility per unit area, (~ as shown in Figure 3b, exhibit a maximum

at a certain temperature Tmax or ATmax. If one uses the finite size scaling form (15) for (,

one finds from 0(/OAT
=

0 at AT
=

ATmax that L~/"ATmax
=

const. This implies the

scaling behavior ATmax
mJ

(Tma, T~) mJ

L~~/" and, thus, (m~x
mJ

L~/"~~ The two quantities

(max and ATmax e Tmax T~ are plotted in Figures 5a and 5b, respectively, where the estimate

T~ cf -12.275 has been used for the data in Figure 5b. The slope of the two interpolating
curves

in these double-logarithmic plots gives the estimates j Iv
cf 1.76 + 0.02 and I Iv

cf 1.05 + 0.1,



N°2 PHASE TRANSITIONS OF MEMBRANES 263

-3

i~~ (a) j~~~~~~ (b)
'n(A~)

~ ~

_~ ~

( =l.76 ± 0.02 ~=l .05± 0.I

I

-3 4

~ ~ ln(Ua)~ ~ ~ ln(Ua)~

Fig. 5. (a) The maximum of the susceptibility per unit area
imaxla~, and (b) The reduced temper~

ature difference ATmax
= (Tma~ Tc) are shown in a

double-logarithmic plot as a function of the system

size L la. The slope of the interpolation curves leads to the critical exponent ratios ~/ Iv
=

1.76 + 0.02

and I Iv
=

1.05 ~ 01.

~~ o oe

lla(Ua) (a) i ~~~j-tv (b)

° ~
~~

o 06

06 0

002

0
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~~~
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Fig. 6. (a) The rescaled membrane location tla(Lla)fl/~ and (b) The rescaled susceptibility
(flla~)(Lla)~~~/~

are plotted as a function of the rescaled temperature (T Tc)(Lla)~/~ for dif-

ferent system sizes Lla using the value Tc =
-12.275 for the critical temperature and the values

~y =
7/4, fl

=
1/8 and

v =
I for the critical exponents.

respectively. In this way, one obtains the numerical estimates

v =
0.95 ~ 0.I, ~f =

1.67 ~ 0.2 and fl
=

0.ll + 0.02 (29)

for the three critical exponents v, ~f, and fl. The scaling relation ~f =
2(v fl) is fulfilled within

the accuracy of the data.

The consistency of the numerical estimates for the critical temperature and the critical

exponents can be checked if one plots the rescaled quantities tL%" and (L~~~/"
as a function of

the rescaled temperature deviation L~/" AT
mJ

IL la) ~/" IT -T~)
as shown in Figure 6. Inspection

of these figures shows that the data for different values of L almost collapse onto one curve.

Within the accuracy of the simulations, the values of the critical exponents as found here

are identical with the corresponding values for the 2-dimensional Ising model which are given
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by v =
I, ~f =

7/4, and fl
=

1/8 [12, 21]. Thus, the critical point studied here for a tensionless

membrane in a symmetric double-well potential should belong to the same universality class

as the critical point in the 2-diniensional Ising model.

As discussed above, it is rather obvious that the same universality class applies to a mem-

brane under lateral tension (or to an interface). Thus, close to the critical point, the renor-

malization of the fluctuating field generates a square-gradient or tension term
mJ

(Vl)~ even

if it is originally absent. This is related to the fact that the phase transition occurs in the

presence of a confining potential which breaks the rotational symmetry of the bending energy..
In contrast, this symmetry is restored at an unbinding transition as considered in the next

section since the unbound state does not feel any potential. Thus, the unbinding transition of

a tensionless membrane [22] does not belong to the same universality class as the unbinding
transition of a membrane under lateral tension (which is similar to a wetting transition).

4. Asymmetric Interaction Potential

The interaction potential Vii) of t~vo membranes at separation I is very asymmetric: it contains

a hard wall interaction with V(I)
= co for < 0, but decays to zero for large I. As mentioned,

tile interaction potential of charged membranes often exhibits an attractive potential ~&>ell at

small separation and a repulsive potential barrier at intermediate separations of the membranes.

Such a potential will be considered in the following section.

The adhesion potential which will be studied by Monte Carlo simulations corresponds to a

truncated double ~&>ell potential, and is given by

V(I)
=

Via + Ail lba)~ + Eli lba)~ for I < L

(30)

=
0 for > L

with A < 0, 0 < Vba < (A(~/48 and

L e lba +
fill ~j~/~ (31)

The barrier is located at I
=

iba with l~(iba)
"

Vba. In terms of the dimensionless displacement
field

z =
la, one has the dimensionless potential

U(z)
=

Uba + T(z zba)~ + b(z zba)~ for
z < z~

132)

=
0 for

z > z~

with T < 0. The asymmetric interaction potential as given by (30) exhibits a narrow potential
well for

=
lm;n < lba and an 'infinitely broad'well for > lba.

4.I. ISLAND EXCITATIONS AND UNBINDING TRANSITION. Now, consider a membrane

which is bound to the adhesion potential, I-e-, which is located within the potential well at

small I, and which exhibits an island excitation of lateral size Ljj. The membrane segment of

the island is located outside of the potential barrier. The excess free energy of this island is

given by

AF m
AFL~ + aLjj. (33)

The first term
mJ L(j depends on the difference AF between the free energy of the bound and the

unbound state: for the bound and unbound state, one has AF > 0 and AF < 0, respectively.
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The unbinding transition occurs at AF
=

0. The second term
mJ Ljj represents the (large

scale) edge energy of the island where the line tension a is positive as long as the membrane

feels an effective potential barrier. As discussed in reference [5j, the unbinding transition is

continuous if
a < 0 but discontinuous if a > 0 at the transition determined by AF

=
0. Thus,

a sufficiently large potential barrier Vba which implies a positive line tension a will lead to a

discontinuous unbinding transition.

For the interaction potential as given by (30), the free energy difference AF can be estimated

as follows. In the unbound state, the interaction potential vanishes and the entropy loss per

unit area of the Ljj-segment is of order T/L( [23, 24]. In the bound state, the interaction

potential is

V~~ e V(lm;n)
=

Vba (A(~ /48 (34)

and the free energy contained in the harmonic fluctuations is
mJ

Tfi@. The latter estimate

follows from the usual relation [10,22j (jj
mJ

(~t/v2)~R with v2 + (0~V/01~) at
=

lm;n for the

longitudinal correlation length (jj. This leads to

AF cf V~~ + cT/@. (35)

At the unbinding transition, one has AF
=

0 which implies V~~ < 0 as one expects intuitively.

4.2. DECAY OF METASTABLE STATES VIA THE NUCLEATION OF ISLANDS. Now, consider

the case of a discontinuous unbinding transition at the transition temperature T
=

Tu for

which the (large-scale) line tension a > 0, and assume that the transition is approached from

the bound state with AF > 0. This bound state becomes metastable beyond the transition

point where AF < 0. It then decays via the nucleation of islands which consist of membrane

segments located on the other side of the potential barrier. In this case, one has the island free

energy

AF m
(AF(L~ + aLjj m fi IT Tu)L~ + aLjj (36)

where the free energy density AF has been expanded up to first power in IT Tu). One may

now use classical nucleation theory [25-27] and determine the properties of the critical nuclei

or islands from the maximum of AF as a function of Ljj. In this way, one obtains the size

L(j =
a/2( fi( IT Tu) and the free energy AF*

=
a~/4( fi((T Tu) of these critical islands.

The probability to excite one such island by thermal fluctuations for a system with L~ degrees
of freedom is proportional to IL /Lj)~ exp[-AF* /T].

Therefore, the nucleation time tnu for a single critical island should scale as

tnu
-J (L(j /L)~ e~~*/~

=
IL( /L)~ e~°SC/1~°~~°U) (37)

with the temperature scale Ts~ e a~/4( fi IT. After one critical island has been nucleated, it

will grow and will start to pull the whole membrane segment over the barrier. Obviously, the

corresponding spreading time tsp will increase with the size L of the membrane segment. The

decay of the metastable state will be governed by the nucleation of a single island as long as

tnu » tsp. In the latter case, one has

td Cf tnu
'~

L~~ e~~/~~ ~~, (38)

and the decay time of the metastable state should scale as td
-J

L~~ and as In(td)
-J

1/(T Tu)
close to the discontinuous unbinding transition.
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As the size L of the membrane segment increases, the nucleation time tnu IL) decreases and

the spreading time t~p(L) increases. Thus, one may define a crossover size L
=

L~ for which

tnu(L~)
cf t~p(L~). If L exceeds L~, the decay of the metastable state will involve the nucleation

of several critical islands. For large L » L,, the number density of these critical island should

be of the order of I /L] and the decay time td should behave as

td Cf tnu(L~)
mJ

Lj~ e~'L/~~~~°Ul (39)

and, thus, should become independent of the system size L.

The decay of metastable states via the nucleation of many critical islands has been previously
studied in the context of Ising models [28, 29]. It has been found in these studies that the radius

of a supracritical island in t~&.o dimensions (or a supracritital droplet in three dimensions)
increases linearly with time. If one assumes that this growth law is also applicable to the

situation studied here, one obtains the spreading time tsp(L)
mJ

L which implies the crossover

relation Lj~ exp[Ts~ /(T Tu)]
mJ

L~ and, thus, the decay time td
-J

L.
mJ

exp[Tsc /3(T Tu)].

4.3. NIONTE CARLO SIMULATION. Now, the nucleation of islands through an intermediate

potential barrier will be studied by Monte Carlo simulations for the interaction potential U(c)

as given by (32). For all simulations discussed in the following, the potential parameter b
=

I

and the reduced bending rigidity ~t
IT

=
0.32 were chosen. For the latter choice of parameters,

the symmetric double-well potential has its critical point at r = rc =
-2.335 + 0.01 (as

determined by additional simulations not discussed here).
If the membrane is initially located within the potential well of the asymmetric adhesion

potential, it experiences a potential barrier of height AU
=

Liba Li~~
=

r~/4b. We know

from the simulations for the symmetric double well that the membrane cannot tunnel through
such a potential barrier provided T~ /4b > Tj /4b. In addition~ the estimate (35) for the excess

free energy AF implies that L~w~ mJ
Vw~ is negative at the transition temperature T

=
Tu and

that ~hU(T
=

Tu)
=

Uba U,,.~ > Uba. Therefore, the parameter choice Uba > Tj /4b leads to

AU(T
=

Tu) > Tj /4b and, thus, ensures that the membrane is trapped at the transition point.
The Monte Carlo data discussed here have been obtained for the choice Uba

=

2.6~ /4b
=

1.69

~vhich satisfies Uba > Tj /4b for b
=

since Tc m -2.3 in this case as mentioned. If one no~&> varies

the reduced temperature variable T, the membrane should undergo a discontinuous unbinding
transition at T = Tu < Tc. The data discussed below lead to the estimate Tu 1 -3.2.

If the transition is discontinuous, the bound state still exists as a metastable state for
T ( Tu.

One may then observe the nucleation of islands towards the unbound state which represents the

stable phase for
T > Tu. On the other hand, the parametrization of the interaction potential

as given by (32) is only valid for Uba < T~ /4b: for Uba
"

T~ /4b the potential well at small
z

has the value U(zm,n)
=

0 and z~ has the limiting value z~ = cba +
fi@. For the choice

b
=

I and Uba
"

2.6~/4, this constraint is equivalent to T < -@S
"

-2.6. Therefore.

the nucleation of islands has been studied for T-values which lie in the interval Tu 1 -3.2 <

T < -@S
"

-2.6. Note that these T-values also satisfy
T < Tc m -2.33 where Tc is the

value of the critical temperature for the corresponding double-well potential. Therefore. the

membrane should experience an effective potential barrier for all of these T-values-

In the Monte Carlo simulations, the membrane ~&>as initially placed in the potential well

with constant displacement field z = zm;n. The membrane then adapts to this potential ~&,ell

and acquires some roughness. For the chosen parameters, this relaxation process is relatively
fast, and the corresponding relaxation time tr is of the order of10~ Monte Carlo steps per

lattice site. The decay time t~i of this metastable state is identified with the time after i~>hich

the spatially averaged order parameter I
=

£~ z~ IN satisfies I > zba which implies that the

membrane has moved through the barrier. For the parameter values considered here, this time
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ti t~

t~

Fig. 7. Example for the growth of
a

membrane island through the barrier of an asymmetric inter-

action potential: snapshots
are

taken after ti
"

2.75 x 10~, t2
"

3.25 x
10~ and t3

"
4 x

10~ MC-steps
for temperature T =

-2.95 and the linear sublattice size ns =
50.

td 18 of the order of10~ -10~ Monte Carlo 8tep8 per lattice site and, thus, is much larger
than the relaxation time tr. In practice, td was obtained from an average over 20 Monte

Carlo runs. In order to extend the range of L-values, sublattices with a linear dimension

ns =
3,4, 6,10, 30, and 50 have been studied which correspond to the total number of lattice

sites N
=

(Lla)~
=

45, 80,180, 500, 4500, and 12500.

An example for the nucleation of an island is displayed in Figure 7. First, a small hump
extends across the barrier which subsequently spreads both in the lateral and in the perpendic-

ular direction. In Figure 8, the quantity if In(td) where td represents the measured decay time

is plotted as a function of the reduced temperature variable T
for several values of the sublattice

size n~. According to the relation (37), this quantity should vanish as
(T Tu)

mJ
(T Tu).

Extrapolating the data displayed in Figure 8 towards the T-axis, one obtains the estimate

Tu =
-3.23 + 0.02. The data obtained for lattice sizes N

=
45 and N

=
80 (I.e. n~ =

3 and

ns =
4) have not been displayed in Figure 8 since, in these cases, the size L[j of the critical nu-

cleus is comparable to or exceeds the size L of the whole membrane segment, and the estimate

for the decay time as given by (37) does not apply, see below.
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1/In(t~
ns"

al

o 05

o
~~ ~ ~~ ~~ ~

'C

Fig. 8. Decay time td of the metastable state as a
function of the reduced temperature T

for different

values of the linear sublattice size ns. Note that larger values of
T

correspond to smaller values of td

and thus to a
faster decay. Extrapolation to 1/In(td)

#
0 gives the estimate Tu =

-3.23 ~ 0.02 for the

unbinding temperature.

2°
""~,__
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",,
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~
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2.95 ,,,

a

'~,,_
20
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In(Ua) In(Ua)

Fig. 9. Double-logarithmic plots of (a) the decay time td and (b) the rescaled decay time td(Lla)~

as a
function of the linear dimension Lla for different values of the negative reduced temperature -T.

For comparison, the dashed straight line denoted by g which corresponds to td
-J

I/L~ has also been

included.

In Figure 9, the measured decay time td is shown as a function of the system size. Lla.
for several values of

T.
According to the relation (37), one expects td

-J

1/L~. Inspection of

Figure 9 shows that the data are consistent with the expected L-dependence for intermediate

values of L.

For small L, there are strong deviations from this L-dependence for those T-values ~vhich

are closest to the transition temperature T = Tu. In fact, in the latter case, the decay time td

increases with increasing L. This behavior represents a finite size effect since the size Ljj of

the critical nucleus now
satisfies Lj > L. In this case, one has to move the whole membrane

segment over the potential barrier which corresponds to the activation free energy AF m
~hVL~

(with riI'
=

TALila~ and thus to a decay time td
+~

exp[AVL~ /T] which grows with L.
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~l ~2

t~

Fig. 10. Growth of several islands for the temperature r =
-2.7 and the linear sublattice size

ns =
50. The three snapshots are taken after ti

"
1.5 x 10~, t2

"
2 x

10~ and t3
"

2.5 x
lo~ MC steps.

On the other hand, for large L and for relatively large values of T Tu, the decay time td

decreases more slowly than
mJ

I/L~,
see Figure 9. This is expected as soon as the metastable

state decays via the nucleation of several critical islands, compare the estimate (39). One

example for the time evolution of the membrane in such a situation is shown in Figure 10.
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