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Abstract. Polymers attached to one side of a
fluid membrane induce

a spontaneous cur-

vature Msp of the membrane and change its elastic constants. For an ideal polymer in the

mushroom regime, we
determine Msp and the elastic constants K

and KG by an
explicit calcu-

lation of the entropy gain of
a

polymer anchored onto a
curved surface. For anchored polymers

in the brush regime, a scaling picture is used to determine Msp which increases monotonically
with the coverage

f. For small and large f,
one has Map

+~

N~f~~/~ and Map
+~

N~/~r~~/~~,
respectively. Both in the mushroom and in the brush regime, the polymers increase the bending
rigidity, whereas the Gaussian bending rigidity is decreased.

1. Introduction

In biological systems, lipid bilayers are often "decorated" by a large number of macromolecules.

The plasma membrane of animal cells, for instance, contains different membrane-spanning

proteins. On the extracellular side, these proteins are coupled to a polymer brush called the

glycocalix; on the intracellular side, to a network of filaments referred to as cytoskeleton [1].
Inspired by these biological structures, simplified model systems of polymers attached to lipid
bilayers have been studied experimentally [2-4j. In these experiments it was observed that

anchoring polymers to vesicles of fluid membranes induced dramatic changes in the vesicle

shape [2j. Polymer-decorated vesicles also have an important application in medicine: coating
vesicles with long flexible polymers increases their performance as drug delivery systems [5j.

Polymers can be anchored onto membranes in several ways: by a lipid anchor, where a water-

soluble polymer is covalently bound to a lipid molecule [4, 5j and by hydrophobic sidegroups of

the polymer which protrude into the bilayer [2,3j. Likewise, one could study block copolymers

consisting of long hydrophilic blocks and short hydrophobic anchor parts. In the following, we

will focus on the simplest polymer architecture which is provided by linear polymers with a

single anchor at one end which may consist of a lipid molecule embedded in one monolayer or

another hydrophobic segment spanning the whole bilayer.
Lipid bilayers exhibit several two-dimensional phases which differ in their elastic properties.

Their most flexible state corresponds to the fluid phase and is governed by the bending energy
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of the membrane. Contrary to a solid substrate, such a membrane can respond and adapt to

the interactions with the polymers. We will consider anchored polymers which are effectively
repelled from the membrane surface. The configurational entropy of the polymer chain depends

on the shape of this surface and increases if the membrane bends away from it. Therefore,
the anchored polymer tends to exert fluctuation or entropic forces onto the membrane and

the bilayer attains a "spontaneous" curvature induced by the interactions with the anchored

polymer [6j.
In general, the polymers will be attached to both sides, I.e., to both monolayers of the lipid

bilayer. In practice, the anchor concentration in each monolayer can be varied by changing
the polymer concentration in the adjacent solution and by changing the time over which the

monolayer is exposed to this solution. The polymer coverage arising from this exposure of each

monolayer depends both on the number of attached anchors and on the chain length of the

anchored polymers. We will focus on the monodisperse case, I.e., all polymers are assumed to

have the same chain length.
If both monolayers exhibit a different polymer coverage, the decorated bilayer will be in an

asymmetric state. In the limit of small curvatures, the polymer-induced curvature of such a

state can be simply obtained by adding up the contributions arising from the two decorated

monolayers. Therefore, it is sufficient to calculate the polymer-induced curvature for the ex-

treme case in which all polymers are anchored to one side of the bilayer. This approach was

used in reference [6j and will be extended below. Furthermore, the polymer-induced curvature

of the bilayer vanishes only in the completely symmetric case for which the polymer coverage

is identical on both monolayers. The latter situation has also been considered in reference [7].
In the low concentration regime, I.e., for low polymer coverage or low anchor concentration,

the anchored polymers form isolated mushrooms. For such a mushroom, the overall loss of

entropy arising from the impenetrable membrane surface is only a few T (here and below,
temperature is measured in energy units, I.e., the Boltzmann constant kB is contained in

T). The anchoring energy AEan, on the other hand, is typically of the order of many T:

e.g., for a lipid anchor with two hydrocarbon chains and nc carbon atoms per chain, one

has AEan t -1.7ncT at room temperature T
=

Troom [6]. Thus, in this mushroom regime,
the free energy difference bfpo between the anchored and the freely suspended polymer state

(which plays the role of an activation barrier) is large compared to T and the mean lifetime

tan
rw

exp((bfpo( IT) of the anchored state is large compared to molecular time scales. In the

following, we will focus on time scales which are smaller than tan and will thus consider an

ensemble in which the number of anchored polymers is fixed.

The mushroom regime extends up to the overlap coverage Tov at which the membrane

becomes completely covered by anchored polymers. For P > Pov, one enters the semi-dilute

brush regime in which the polymers experience an additional loss of entropy arising from the

steric confinement by the neighbouring chains. Polymer brushes on flat and curved interfaces

have -been theoretically studied by scaling arguments [8-11] and by mean-field calculations

[12,13]; a recent review is given in [14]. Below, we will extend the scaling approach and

compare it with the corresponding mean-field calculation.

As the polymer coverage increases beyond the overlap coverage, the entropy loss arising
from the steric confinement within the brush increases and the excess

free energy bfp~ of the

anchored polymer relative to the freely suspended state decreases. As soon as bfp~ becomes

comparable to T, the lifetime tan becomes comparable to molecular time scales and one may

no longer ignore the exchange of polymers with the solution. The ?elation bfp~ m T defines

a limiting polymer coverage Pmax. It can be shown that rmax increases roughly linearly with

the anchoring energy [6].
In general, the dissolved polymers may form dimers, trimers or more complex micelles.
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Indeed, a dimer consisting of two polymers for which the two lipid anchors are in close contact

should have a lower free energy than the two 8ingle polymers since the reduction in hydrophobic

energy will be typically larger than the entropy loss of the polymer chains. Thus, in a two-

component mixture of bilayer-forming lipids and polymers with lipid anchors, the formation

of micelles may compete with the formation of bilayers as soon as the volume concentration of

the polymers is sufficiently large. The phase diagrams arising from this competition has been

recently studied both theoretically [15] and experimentally [16] (~ ). In the present study, the

volume concentration of the polymeric component is always taken to be so small that the lipids
assemble into bilayers.

We first consider a single ideal polymer anchored onto a curved membrane segment, see

Section 2. We calculate the excess free energy of the system relative to a flat configuration
of the membrane in an expansion in the curvatures. To do this, we determine the entropy

difference relative to a flat surface (I) of a polymer fixed with one end onto a sphere and (it) of

a polymer attached to a cylindrical surface. In both cases, the entropy difference is calculated

up to second order in the reciprocal radius. In this way, we determine the effective elastic

constants and the spontaneous curvature of the compound system. We find that the bending
rigidity ~ of the membrane is increased by the presence of the polymer, whereas the Gaussian

bending rigidity ~G is decreased.

In Section 3, we consider a membrane decorated by a polymer brush. Extending the scaling
theory for polymer brushes on spherical and cylindrical surfaces, we deduce again the sponta-

neous mean curvature of the membrane and the effective bending rigidities. It turns out, that

the spontaneous curvature exhibits different scaling behaviours for relatively low and relatively
high polymer coverage. For small curvatures, the bending rigidity and the Gaussian bending
rigidity are again increased and decreased, respectively.

2. Mushroom Regime

In this section we consider a single ideal polymer anchored at one end onto a curved membrane

segment. The interaction between the polymer segments and the membrane is taken to be a

pure hard wall interaction except for the anchor point.

In the following, we calculate the effective elastic constants and the spontaneous mean cur-

vature of the decorated membrane. The polymer mushroom should influence the properties of

the membrane on an area
of the size of the cross-section of the polymer coil. The resulting

effective elastic constants are therefore valid on a length scale comparable to the linear size of

the polymer mushroom.

The curvature of the membrane segment is described by the mean curvature M e
)(1/Ri +

1/R2) and the Gaussian curvature G e
1/RiR2, where RI dud R2 are the principal curvature

radii. In the following, we analyze the excess entropy of the polymer anchored to a curved

surface relative to the polymer anchored to a flat substrate

ASp~ e Sp~(M, G) Sp~(0, 0) (1)

in an expansion in the curvatures. The size of the polymer mushroom is estimated by the

mean end-to-end distance llpo rs apoNv of the polymer in solution, where N is the number of

statistical segments of the chain and ape the segment length, such that the full contour length
of the polymer is equal to apoN. For an ideal chain, the exponent v =

1/2.

(~) The aggregation into micelles has also been studied for aqueous solutions of polymers and surfac-

tants, see, e-g. (17].
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The excess entropy Aspo should be a function of the dimensionless variables Rpom and

R(~G. Expanding the excess entropy around the flat surface in the curvature radii up to

second order yields [6]

Aspo(M, G)
=

biRpom + b2(Rpom)~ + b3R(~G + (2)

In general, the excess entropy also depends on the ratio tan /Rpo where tan represents the

distance of the anchor segment to the membrane. Therefore, the expansion (2) should be valid

in the scaling limit of small tan /Rpo.
In order to determine the coefficients bi, b2, b3 of the expansion as given by (2) we are going

to calculate Aspo(M,G) for spherical and cylindrical geometries, where the curvatures are

M
=

1/R, G
=

1/R~ and M
=

1/2R, G
=

0, respectively.
Consider the restricted partition function ZN (ran, r) of a polymer on a lattice with q nearest

neighbours. The restricted partition function is the sum over all configurations starting at ran

and ending at r. In the continuum limit, the reduced weight

GN(ran, r) e
ZN(ran,r)/q~ (3)

of an ideal polymer in zero external potential, obeys the diffusion equation

(~ D Ar) GN(ran, r)
=

0 (4)
dN

together with the initial condition

GN=0(ran, rj
#

I(r ran) (5)

The diffusion coefficient is

D
" £l(~/q (6)

[18]. The partition function Z is then given by the integration of the restricted partition
function ZN(r~n, r)

over all possible positions of the free end of the polymer

z
=

q~W (7)

with the total weight

W e dr GN(ran, r) (8)

Finally, the excess entropy Aspo(M,G) is given by Aspo
=

In(Z/Zhs), where Zhs is the

partition function for a flat surface. In order to determine the coefficients in the expansion of

the excess entropy (2), we calculate in the following (I) the partition function for a polymer
anchored to a plane, (it) the excess entropy of a polymer anchored to a sphere and (iii) the

excess entropy of a polymer anchored to a cylinder.

2.I. POLYMER ANCHORED oN A PLANE. To proceed, consider a polymer anchored at

ran =
(tan, 0, 0) above the plane z =

0. Then, the solution of equation (4) has the form [19]

g (~ ~) (~g~~)~3/2 ~~((~-tan)~+Y~+Z~j/4t ~~((~+tan)~+Y~+Z~j/4t (g)
t an'

with t e DN. Notice that the polymer size is Rpo
=

apoN~/~
=

/fl. Integration over the

possible positions r of the second end point leads to [20]

Whs
#

erfj/tan/(2Rp~jj (lo)

=

flj~ +tl((tan/Rpo)~)
,

(ll)

where erf[x] denotes the error
function [21].
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2.2. POLYMER oN A SPHERE. Consider a polymer anchored at a distance tan outside

a sphere of radius R. The corresponding diffusion problem with a source at ran e Iran
=

R + tan, ban
=

0, #an
=

0) is solved by

cc

Gt(ran, r)
=

~j Gt,n(ran, r) Pn(cos
@)

,

(12)

n=0

where Pn(z)
are Legendre polynomials [21]. The contribution corresponding to n =

o is given
by [19]

~~'° ~~~~' ~~ 4~rra~r@ ~
~~~~~~~~~~~ ~~~~~~ ~~~~~~~ ~~~~

with I e r R

Integration over the position of the second end point yields

W
=

4~r /~dr r~ Gt,o (ran, r) (14)
R

~

tan /R + erfllan / (24)1
~~ ~~

1 + tan /R

For the ratio of the partition functions, one finally obtains [6]

In the limit tan/R < 1, this leads to

Z/Zhs
* 1+ fi Rp~/R (17)

Notice that there are no terms of order (Rpo/R)~.
For the spherical geometry, the excess entropy up to second order in the mean curvature

M
=

1/R then reads

Aspo
=

fiRpom (~r/2q)(Rpom)~ + tJ((Rp~M)~) (18)

This result is confirmed by an analogous calculation for a polymer anchored at a distance tan

inside a sphere. In this case, the reduced weight Gt (ran, r) is again of the form (12) with [19]

Gt,0 (~an, ~)
21TR~

~Tan
)~~~

~
~

~~~ ~~~~~~~~~~~~~ ~~

~~ ~
k~/R

,

k=1,2,. ~

Here, Jv(z)
are Bessel functions of the first kind [21]. Integration and expansion imply

Z/Zhs G3 1- fiRpoR~~ (21)

Again, there are no
tJ((Rpo/R)~) terms. In the case of a spherical segment bending towards

the polymer, the mean curvature is given by M
=

-I/R and therefore (21) and (Ii)
are

equivalent.
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Fig. 1. Scaling picture of
a

polymer brush on a
sphere of radius R. The distance between the

anchor points is fan. The blob size scales
as

(~(r)
=

(anr/R with the distance
r

from the sphere center.

The brush height is denoted hs.

3. Brush Regime

When the mean distance between the anchor molecules is smaller than the radius of the polymer
coil, the polymers overlap and form a so-called polymer brush. As in the previous section, we

focus on the spontaneous curvature and the elastic properties of an asymmetric membrane,
I-e- a membrane covered by a polymer brush on one side. For the description of the polymer
brush we extend the scaling picture for polymers grafted on spheres [10] and cylinders ill].

After presenting the scaling picture in which each chain is treated as a string of blobs (Sect.
3.I), we consider the spontaneous curvature of the decorated membrane (Sect. 3.2). We then

analyze the limit of small curvatures (Sect. 3.3) and of large curvatures (Sect. 3.4). These two

regimes correspond to relatively low and relatively high polymer coverage of the membrane,
respectively. For both regimes, we determine the spontaneous curvature and the effective

elastic constants of the decorated membrane. We compare our results with those derived using

a mean-field theory for polymer brushes on
curved surfaces [13].

The coverage is given by T a N/Apo, where Apo is the area per anchored polymer which

defines the grafting distance fan via Apo e
()~. The overlap coverage is rev

=
N~-2~la(~. The

maximum value of the coverage is reached in the dense limit, Tde
"

Nla(~ (if one assumes that

the anchoring energy is very large). It is then convenient to introduce the reduced coverage f

defined by f
e

r/rde
=

(ape/(an)2 which is the (dimensionless) number of polymers per unit

area. Likewise, the anchor concentration is given by (aan/(an)2 where aan is the lateral size of

the lipid anchor.

In this section we are mainly interested in polymer brushes under good solvent conditions.

Within the Flory approximation, the corresponding exponent u has the numerical value
u ci 3/5

which represents a rather good estimate.

3.1. SCALING PICTURE. Within the blob picture for
a polymer brush introduced by Alexan-

der [8] and de Gennes [9] for a flat surface, one can describe a polymer brush on a sphere or a

cylinder as consisting of concentric layers of blobs. In Figure I this picture is illustrated for a

sphere. If X polymers are grafted onto the surface, then each layer contains X blobs of equal



N°10 ELASTIC PROPERTIES OF POLYMER-DECORATED MEMBRANES 1473

size fir), where r is the distance from the center of the sphere or the axis of the cylinder.
The size of the blobs in each layer increases with the distance from the grafting surface. The

surface area of each such layer is given by Sir) m
X((r)2.

For a sphere of radius R, Sir)
=

4~rr~ and X
=

4~rR2/()~ which leads to the blob size

is jr)
=

rant/R
,

142)

see also Figure 1. For a cylindrical surface of radius R, we have S(r)
r- r and X

r-

R/()~ and

therefore

(~(r)
=

(an(r/R)~/~ (43)

Each blob contains Ni(r)
=

(((r)tape)~/~ segments. The height ofthe brush h(R) is implicitly

given by
R+h

N
=

dr Ni(r)/((r) (44)

The free energy per polymer is proportional to the number of blobs,

J~p~ =
T /~~~ dr i /ijr) j45)

Within this scaling picture, the height of a brush on a flat surface ho is given by

ho
"

N a)(~ ()j~/~
=

Nf(~~"/~~ap~ (46)

The corresponding free energy reads

Fp~,o
"

Tf~/~holap~ (47)

In the following, we consider the gain in brush free energy per polymer on a curved surface

relative to a flat surface at fixed polymer coverage, AFp~ + Fp~ Fp~,o.
For the sphere, the scaling picture leads to the brush height

h~(R)
=

R
1

+
~° j

(48)
UR

~

The free energy gain is given by

AFp~,s
=

Fp~,o/sjho/R) 149)

with /~jx)
=

(VIZ) (nil + XIV) 1 j50)

For the cylinder, one finds

h~(R)
=

R

(1
+

~~ ~ ~~ ~° ~~~~~~~ 11(51)
2U R

and

AFp~,~
=

Fp~,o fc(ho/2R) (52)

with f~ ix)
= ((l +

~
~z)

~~~~~~ j
(53)

X U
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In principle, the expressions for Ni, N, and Fp~ could contain additional dimensionless coef-

ficients. However, these coefficients will only affect the length scale ho and the energy scale

Fp~,o but will not change the relations (48-53).
We now want to argue that the same scaling picture may also be applied to a brush anchored

to the inside of a sphere or cylinder (provided the innermost blob is larger than ap~). Within

the blob picture, each chain anchored at the curved surface has essentially the same free energy

as a chain which is confined within a truncated cone (each chain also undergoes a random walk

parallel to the surface but this does not affect the arrangement of the blobs ). The radius of this

cone varies between fir
=

R) e ii at the membrane surface and fir
=

R+h) e (2 at the other

surface oi the brush. For a brush which is anchored inside a sphere or cylinder, such a cone has

ii + fan > (2 + ((r
=

R h) but the free energy arising from such a confinement may still be

obtained within the blob picture. Alternatively, one may start from a brush which is anchored

oittside a sphere or cylinder and then cover it by
a second membrane. If one now anchors

the free ends of the polymers at this second surface and uproots the original anchors, one is

left with a brush which is anchored to the inside of the second membrane surface. Since this

process changes the chain conformation only in the boundary layers of blobs, the free energy of

the brush should remain essentially unchanged. Indeed, it is not difficult to show that the free

energy Fp~,s
=

Fp~,o Ifs (ho /R) + I) with f~ as given by (50), for example, remains unchanged if

one makes the replacement M
=

1/R
-

M'
=

-1/(R + h) and fan
-

([~
=

(2
"

fan Ii + h/R).
Now consider a brush which is anchored inside a sphere or a cylinder. In order to apply the

blob picture, the inner blob must be larger than the ape. This condition implies hs(R) $ R(1-
ap~/(an) and h~(R) $ R(I (ap~/(an)~). The corresponding free energies are given by (49)
and (52), where R has to be replaced by j-R). The above conditions imply that, for spherical
and cylindrical surfaces, I ho/uR > 0 and I iii + u)ho)/(2uR) > 0, respectively.

Notice that the above scaling picture implies a segment concentration profile c(r)
r-

ii r)~~/~
for good solvent conditions. The radial decay oi the concentration ior a sphere and a cylinder
is therefore given by c~(r)

r-

r~~/3 and c~(r)
r-

r~~/~, respectively. Numerical self-consistent

field calculations [23] confirmed the -4/3 behaviour for the spherical geometry but led to a

c~(r)
r-

r~~/~ decay for the cylindrical case. The origin of the latter discrepancy remains to be

~larified.
The free energy gain of the polymer brush AFp~ is again balanced by the bending energy

of a membrane segment. Here, the corresponding membrane segment is of the size of the area

per anchored polymer Ap~
=

a(~f~~ The bending energy then reads

AEm~
=

2~f~~(ap~m)~+~Gf~~a)~G (54)

up to second order in the principal curvatures. The next term is of order (am~m)3, where am~

represents the thickness of the bilayer. Thus, the above expression for AEm~ implicitly assumes

that M < llam~. For a phospholipid bilayer, one has am~ m 4 nm.

The total free energy change per polymer on the decorated membrane is now given by

AT
=

AEm~(M. G) + Afpo,,(R)
,

(55)

where
= s and I

= c for spherical and cylindrical geometries, respectively.

3.2. SPONTANEOUS CURVATURE. For a cylinder, the Gaussian curvature G
=

0 and the

mean curvature M
=

1/2R. Thus, Afpo,~ depends only on M and the spontaneous mean

curvature AI~p can be obtained by minimizing ~IF~ with respect to AI. This leads to the

implicit equation
° ~~~

+
41~/T)N3r-3/2vz

=
o 156)
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Fig. 2. Spontaneous curvature Msp of
a

membrane decorated by a polymer brush. The spontaneous

curvature is rescaled by the height ho of the brush
on a

flat surface. The figure shows the solution

of equation (56) under good solvent conditions (u
=

3/5)
as a

function of the parameter combination

(T/~)N~r~/~ where
~

is the bending rigidity of the membrane, N the number of segments of the

polymer, and f the reduced coverage.

1.o

am M~p

oi
;

0.01

~ ~~

' K / T
=

10

°'°°~

v =
3/5

o.oooi

o.oooi o.ooi o.oi o-i i.o

l~v f

Fig. 3. Spontaneous curvature ap~msp
as a

function of the reduced coverage r under good solvent

conditions and for fixed values of
~

and N. ap~ is the size of
a

polymer segment. The polymers are

in the brush regime when the coverage is larger than the overlap coverage
f~v. Notice that at high

coverage, the spontaneous radius 1/Msp becomes comparable to the length of a
polymer segment.

for the spontaneous curvature

z e hoAl~p (57)

Figure 2 shows ho Msp as a function of (T/~)N~f~/~~
as obtained numerically from equation

(56) for
u =

3/5. Notice that at overlap coverage rev
=

N~2~, the parameter that controls

equation (56) becomes (T/~)N~r(/~~
=

TIN. In Figure 3, apomsp is shown as a
function of

the reduced coverage for N
=

10~ and ~ =
10T.
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The free energy gain Afpo,; of the polymer depends on the radius only through the parameter

ho /R
r-

ham. Thus, we will now study the limit of small and large ham by appropriate

expansions of Afpo,;.
Within an expansion for ham < 1 or ham » I, the spontaneous curvature of the deco-

rated membrane is determined consistently, if the resulting spontaneous curvature also satisfies

hom~p < 1 or ho M~p » 1. The regimes ho M~p < 1 and ho M~p » 1 correspond to low and high

values of the parameter (T/~)N3f3/2~, respectively, as shown in Figure 2. The "crossover"

value homsp
=

1 is reached ior (T/~)N3t3/~~
d 20 or the coverage

t~
= c

j~/T)2/5 t~~ ion
v =

3/5 (58)

with c d 3. For lipid bilayers with ~/T t 10, one has t~
m

8tov. Thereiore, the small

curvature expansion (ho /R < 1) is appropriate to determine M~p for low polymer coverage of

the order of fov. On the other hand, the high curvatpre expansion (ho /R » 1) corresponds to

high coverage, f~v < r $ 1.

3.3. SMALL CURVATURE EXPANSION. First, let us determine the spontaneous curvature

and the effective elastic constants by expanding the free energy gain of the polymer brush

AFp~,;, as given by (49) and (52), up to second order in ho /R, just as we did for the mushroom

regime. For spherical and cylindrical geometries, this leads to

~'~°'~ '~°'° Iv ~
~2

~~~ ~ ~'~~~°~~~~~l~~~~

respectively. Both expressions for the free energy gain, as given by (59) and (60), show a

minimum as a function of I/R, whereas the original expressions (49) and (52) decrease monc-

tonically. For the cylindrical case, the second-order expression for AFp~,c exhibits a minimum

at ho/2R
=

3u/(2u + 4). Therefore, the expansion must break down for ho/2R S 3u/(2u + 4).
The free energy gain (60) for a cylindrical surface leads to the spontaneous curvature

homsp
=

(1/2U) [4(l~/T)N~~t~~/~~ + (U + 2)/(3U~)j
~~

(61)

For f iS fov, hom~p < I is indeed fulfilled. If one ignores the constant in the denominator,

the spontaneous curvature is given by apom~p ci
(8u)~~(T/~c)N2 f12+~)/2~ which scales as

apom~p
r-

N2 t~~/~ for
u =

3/5 (62)

Combining expression (59) for the sphere (M
=

1/R, G
=

M2) and expression (60) for the

cylinder (M
=

1/2R, G
=

0) with the general expansion of the excess free energy up to second

order in the curvatures,

Afpo(M, G)
=

ii ham + 12 (ham)~ + 13 h(G
,

(63)

yields

Afpo(M, G)
=

Fpo
o (- ~

hom +
j (ham)~ l (Gj

(64)
2U 6U 6U
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Comparing the total excess free energy of the compound system by
=

Afpo + AEm~ to the

bending energy of a bare membrane (54) leads to the effective bending constants

~c~~ = ~ +
~ N~ t~/~~ T (65)

and ~CG,eR " ~CG-
N~f~/~"T (66)

As in the case of isolated polymer mushrooms, see
(35) and (36), the bending rigidity is

increased by the anchored polymers whereas the Gaussian bending rigidity is decreased.

Using the effective bending rigidity (65), the spontaneous curvature (61) can be written in

the form

apom~p
=

(1/8u)N~ fl~+~)/~~ T/~~~ (67)

This equation should hold for f iS fov
=

N~~~ At overlap coverage it leads to

apomsp,ov
=

li/8v)lapoN")~~lT/~GeR) 168)

At overlap coverage and under good solvent conditions iv
=

3/5), the equations (65) and

(66) yield ~c~~ =
~+ (65/108)T and ~G,eR " ~CG

(5/18)T for the effective elastic constants. For

a typical experimental situation IN
=

10~, ~ =
10T,ape

=
1/3nm,

u =
3/5), the relation (68)

gives M~p,~v ct (10~ nm)~~
as a rough estimate for the polymer induced spontaneous curvature

at overlap coverage. On the other hand, the typical size of a large vesicle is Rv~ ct 10 pm.

The equilibrium shape of a vesicle is primarily determined by the reduied
curvature M~pRv~,

which in this case would be of the order of10. Inspection of the phase diagram of the 50-called

spontaneous curvature model, which has been determined in references [24, 25], clearly shows

that such a large value of M~pRv~ has a strong influence on the shape of the vesicle.

In order to compare these results with those of Section 2, we consider ideal chain behaviour

iv
=

1/2) at overlap coverage, leading to ~c~~ m ~c + 0.8T and ~CG,eR " ~G (1/3)T. At

overlap coverage, the brush consists of polymer mushrooms which touch each other, so that

the results (35) and (36) can be applied. The appropriate area A of the membrane segment

to be included in the energy balance is here the area per polymer A
=

a)~N~~
=

R)~. This

implies cA "
1, as used for the numerical values given in (35) and (36). In this limiting regime,

the two approaches therefore lead to contributions of the same order. Likewise, at overlap
concentration both approaches give an induced spontaneous curvature of the same form, see

(38) and (68), the overall prefactor being again of the same order.

Milner and Witten [13] calculated the free energy gain of a polymer brush on a curved surface

in an expansion in 1/R within a mean-field theory. Using their results for the case of moderately
high coverage and not-too-good solvent, one obtains the spontaneous curvature ap~m~p

r-

N~t~T/~c and the effective elastic constants ~~~ = ~ + (9/64)(12 /~r~)~/3 N3r?/3T and ~CG,eR "

~CG
(3/35)(12/~r~)~/~ N3f?/3T. Notice that the corrections to the elastic constants are of

the same sign a5 those within the scaling theory. The dependence on
f,

on the other hand, is

slightly different: within the mean-field theory and the scaling theory one has ~c~~ ~c r-

f~/~

and
r-

t5/2, respectively, where the latter relation follows from (65) with u =
3/5. The small

difference
r-

f~/~ is due to correlation effects that are neglected in the mean-field theory.
Our results for membranes with polymers anchored to one side are easily extended to sym-

metrically decorated membranes. For one polymer brush anchored on each side of a cylindrical
surface with reduced coverage f, the free energy gain relative to the flat surface is given by

AFp~,~,2
" +~~~~Fp~,o(hom)~ for hom<1 (69)

u
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Appendix

Ideal Polymer on a Cylinder

The total weight W of an ideal polymer anchored outside a cylindrical surface at ran e (ran
=

R + tan, @an =
0, zan =

0) is obtained from

m

W
=

2~r dr
r

Gt,o(ran, r) (A.1)

with Gt,o(ran,r) given by (23).
In the limit tan/R < I this reduces to W m (tan/R)I with

1 e

/
dr

/
da r

e~"~(~/~~J Fin, r) (A.2)i~
~

and Fiar) = a~~°~°~°~~(li)I(ljl~~~°~~°~°~~ iA.3)

with Co(z,y)
as defined in (24). Notice that the order of the integrations in (A.2) cannot be

changed, since the integral over r
of the inner function diverges.

We are interested in an expansion of I for small

z +
vilR

=
R~~/j/R) jA.4)

For the inner integral in (A.2) this is obtained by an expansion of Fin, r) around o = oJ,

Fin, r)
= a l~ r~~/~ sin((r I)ce) + r~~/~ cos((r I)o)(r 1)

7r 47r

+tJ(ce~~ sin((r 1)ce)) (A.5)

The a-integration then leads to

~~°~~°'~~~~~~
°~~~~ ~~~ ~~ ~~ ~~~~~~~ ~

~~~
~~ ~~ ~~~~~~

+tJ(erf[- jr 1)/2z]) (A.6)

Finally, this yields

~ /~~ ~ ~ ~~~~ ~~'~~

For an expansion of Aspo up to second order in M, the coefficient of the third term in (A.7)
is also required. This coefficient c3 can be expressed as

1 d2
c3 " j @(xI) (A.8)

~
~=0

Therefore, we consider

)(XI)
=

-fix
/

dr
/

da ro~e~°~~~fla, r) + 4x~
/

dr
/

da ra~ e~°~~~fla, r)
,

lA.9)
~

i~
~

i~
~

where
we again expand Fin, r) around o = oJ. The o-integration leads again to integrals of

the type fdr fir, x)e~~~@~~, which in turn can be evaluated for small x expanding fir, x) for

small
r.

This implies

~~~~~ 2~i ~ ~~ ~ ~~~~~ ~~'~~~
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and
1

(A.11)~~ 4fi

Together with IA-I)
we therefore obtain

~
~i /~ ~ 4~i ~ ~~~~~~~ ~~'~~~
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