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Abstract. – Polymers which are anchored to membranes exert bending moments onto these
membranes. It is shown by general scaling arguments and explicit calculations for ideal chains
i) that the polymer-induced “spontaneous” curvature Msp has the scaling form Ωsp(εNφ)/Nν ,
where N and ε are the chain length and the distance from the adsorption-desorption transition,
respectively, and ii) that Msp changes its sign close to this transition. Thus, if the polymer
and the membrane experience effectively attractive and repulsive interactions, the membrane is
bent towards and away from the polymer, respectively.

Membranes consisting of layers of amphiphilic molecules are rather flexible and thus can be
easily deformed (for recent reviews, see [1]). If such a membrane has two different sides or faces,
it should prefer a curved rather than a planar state and, thus, should exhibit a spontaneous
curvature. The latter quantity which has been introduced some time ago for monolayers [2]
and bilayers [3] is both appealing from an intuitive point of view and is conjugate to the total
mean curvature which is one of the basic measures of integral geometry [4], [5]. However,
for a given physical system, the magnitude of the spontaneous curvature is rather difficult to
estimate since it depends, in general, on many molecular parameters.

In this letter, we continue to explore the possibility to control the spontaneous curvature
of a fluid membrane by decorating it with anchored polymers. Indeed, it has been previously
shown that an anchored polymer which is repelled from the membrane surface exerts entropic
or fluctuation-induced forces which act to bend the membrane away from it [6], [7]. It will be
shown below that the opposite effect occurs if the membrane experiences attractive interactions
with the polymer: the membrane now bends towards the polymer in order to maximize the
number of contact points. In fact, in the limit of long chains, the sign of the polymer-induced
curvature is found to change close to the adsorption-desorption transition. Therefore, anchored
polymers close to such a transition provide a kind of “curvature switch”.

We will focus on the dilute regime which consists of separate polymer “mushrooms” and
“pancakes” for the desorbed and adsorbed state, respectively. This regime, which is governed
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by the behavior of single chains, applies up to the overlap concentration at which the parallel
extension of the anchored polymers becomes comparable to the separation of their anchors.
For larger coverage, one has i) squeezed brushes for the strongly desorbed case as discussed
in ref. [7], and ii) interpenetrating pancakes for the strongly adsorbed case as studied by
mean-field theory in ref. [8]. The results of these latter studies are consistent with the general
trend obtained below: the polymer-induced curvature is positive for desorption but negative
for adsorption.

To proceed, let us consider a linear polymer chain which consists of N monomers (or
statistical segments) of size apo and which is anchored with one of its ends to the surface
of a membrane. The forces between the anchored polymer and the surface are described by
the interaction potential V (r) which is the potential energy per monomer at position r. Apart
from the repulsive hard-wall potential arising from the impenetrable membrane surface, this
interaction potential contains a short-ranged attractive part characterized by a potential well
of depth U < 0 and range lv. If the potential well is sufficiently attractive, the polymer will
be adsorbed onto the membrane.

The adsorption of single chains onto planar surfaces has been studied in some detail, see,
e.g., ref. [9]-[12]. The adsorbed chain forms a pancake which is characterized by its thickness
L⊥ and its lateral extension L‖ with L‖ À L⊥ for large N . For an ideal chain, the free-
energy difference δFhs between the adsorbed pancake and the unbound polymer state can be
estimated as

δFhs/L
2
‖ ' T/L2

⊥ + (U/a2
po + T/l2v)Pb , (1)

where dimensionless coefficients of order one have been ignored (the subscript “hs” means “half
space”). The first term in (1) gives the excess free energy arising from the entropy loss of the
ideal chain. The second term gives the binding free energy within the short-ranged potential.
The strength U < 0 is reduced by the entropic loss ∼ T/l2v within the potential well. The
factor Pb, which describes the probability of a monomer to be bound inside this potential, can
be obtained in a simple way, if one assumes that the adsorbed film has constant (monomer)
density [9]. Indeed, the latter assumption implies that this probability is given by the partial
volume ' L2

‖lv of the pancake, which is located within the potential well, divided by the total
volume ' L2

‖L⊥ of the pancake and, thus, by Pb ' lv/L⊥.
The thickness L⊥ of the adsorbed polymer can now be obtained by minimization of δFhs.

It is convenient to introduce the dimensionless variable u ≡ (lv/apo)2U/T which measures the
overall strength of the attractive potential. The free energy δFhs has a minimum as a function
of L⊥ as long as u < u∗ ≡ −1. The value of L⊥ as determined from this minimum is given by
L⊥ = 2lv/|ε| with the critical parameter ε ≡ (u− u∗)/|u∗|. Thus, in the limit of large N , the
pancake thickness L⊥ diverges as the transition point at ε = 0 is approached from below.

It is not difficult to extend this scaling picture to curved surfaces if one assumes again
i) that L‖ À L⊥ and ii) that the monomer density within the pancake is constant. Similar
assumptions have previously been used for polymer adsorption on colloidal particles [13]. For
a spherical surface with mean curvature M and for L⊥ > lv, one then obtains the probability

Pb ≈ (lv/L⊥)(1− (L⊥ − lv)M) for L⊥ > lv (2)

to leading order in M . Note that M = 1/R > 0 and M = −1/R < 0, if the polymer is
adsorbed outside and inside of the sphere, respectively.

Minimization of (1) with Pb as given by (2) now leads to the excess free energy δF/L2
‖ ≈

δFhs/L
2
‖ + T (2|ε| − ε2)M/2lv to leading order in M . In the large-scale limit with L⊥/lv =
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2/|ε| À 1, one then obtains

∆Fpo ≡ δF − δFhs ≈ 2T (L2
‖/L⊥)M for small M . (3)

Since ∆Fpo ∼ M , the adsorbed polymer prefers M < 0 and thus to be inside of the curved
surface.

The form as given by (3) can be generalized if one assumes i) that ∆Fpo has a well-defined
limit for small potential range lv and ii) that the microscopic length scale apo enters ∆Fpo

only via the mesoscopic scales L‖ and L⊥. For a curved surface of mean curvature M and
Gaussian curvature G, these assumptions lead to

∆Fpo/T = f(L‖/L⊥, L‖M,L‖G)
≈ f1(L‖/L⊥)L‖M + f2(L‖/L⊥)(L‖M)2 + f3(L‖/L⊥)L2

‖G ,
(4)

for small curvatures, which defines three scaling functions f1, f2, and f3.
The length scales L‖ and L⊥, which appear in the small-curvature expansion in (4), are

those corresponding to the planar surface with M = 0. These latter quantities scale as
L‖,⊥ = apoN

νΩ‖,⊥(εNφ) [10]. For ideal chains or chains in a θ-solvent, the size exponent
ν and the crossover exponent φ which enter these scaling forms have the values ν = 1/2
and φ = 1/2, respectively. In addition, the scaling function Ω‖ = 1 for ideal chains, since
L‖ = apoN

1/2 for any value of ε. For self-avoiding chains, one has ν ' 3/5 and φ ' 0.6 [12].
For the adsorbed state with ε < 0, the polymer pancake may be considered as a bound

chain of blobs [14], [11]. Each blob with linear size ' L⊥ contains Nbl ' (L⊥/apo)1/ν

monomers. The blob chain undergoes a self-avoiding random walk in two dimensions which
implies L‖ ' L⊥(N/Nbl)ν2 = L⊥N

ν2(apo/L⊥)ν2/ν . The critical exponent ν2 has the value
ν2 = 1/2 and ν2 = 3/4 for ideal and self-avoiding chains, respectively.

If the scaling forms L‖,⊥ = apoN
νΩ‖,⊥(εNφ) are inserted into (4), the excess free energy

can be rewritten as

∆Fpo/T ≈ Ω1(y)L‖M +Ω2(y)(L‖M)2 +Ω3(y)L2
‖G , (5)

with y ≡ εNφ. In the following, we will focus on the properties of the scaling function Ω1

which governs the polymer-induced spontaneous curvature.
For the adsorbed state with ε < 0, the excess free energy ∆Fpo must be extensive for

large N , which implies ∆Fpo ∼ N ∼ L
1/ν2

‖ . Using the scaling properties of ideal chains, one
then recovers the functional dependence as given by (3), which implies that Ω1(y) > 0 for
y = εNφ < 0. The desorbed polymer state, on the other hand, corresponds to y = εNφ > 0.
It has previously been shown that Ω1(y) < 0 for the strongly desorbed state corresponding to
large positive y [6], [7]. Therefore, the function Ω1(y) must change its sign at a certain value
y = εNφ = y0.

The free-energy gain ∆Fpo of the anchored polymer is balanced by the increase in the
bending energy ∆Eme of the membrane segment affected by the polymer, which is given by
∆Eme = 2cAκ(L‖M)2 + cAκGL

2
‖G, since the area of this segment is A = cAL

2
‖ with cA of

order one. The total excess free energy of the membrane/polymer system is now given by
∆F ≡ ∆Eme + ∆Fpo, which leads to the polymer-induced spontaneous curvature

Msp = −TΩ1(εNφ)/4cAκL‖ = −(T/4cAκ)Ωsp(εNφ)/apoN
ν (6)

with Ωsp(y) ≡ Ω1(y)/Ω‖(y). In this estimate, we have ignored the change of the bending
rigidity κ arising from the Ω2-term in (5). It is shown elsewhere that this change is of order
T both for desorbed [7] and for adsorbed [15] chains.
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Since the length scale L‖ is always positive, the relation (6) implies that the polymer-induced
spontaneous curvature changes its sign at εNφ = y0 with Ω1(y0) = 0. As shown below,
y0 = 0 for ideal chains if one considers the simplest model with a curvature-independent
extrapolation length. Thus, in this case, the curvature switches directly at the adsorption
transition. However, even for y0 6= 0, the curvature switch at ε = ε0 ≡ y0/N

φ will be close to
the adsorption transition for long chains since ε0 goes to zero for large N .

For the case of ideal chains with crossover exponent φ = 1/2, the function Ωsp(y) = Ω1(y)
with y = εN1/2 can be derived explicitly as shown next. If an ideal chain is anchored at position
ran and has its other end at position r, the partition function is of the form qNZ(ran|r, N),
where q describes the number of ways in which one may add a monomer to the chain (q = 6
for a simple cubic lattice). The reduced partition function Z satisfies the Schrödinger-type
equation [16], [17] [

∂

∂t
−∇2

r + V (r)/DT
]
Z(ran|r, t) = 0 for t > 0 , (7)

with t ≡ Na2
po/q, D ≡ a2

po/q, and the “initial condition” Z(ran|r, t = 0) = δ(3)(ran − r) ,.
In the presence of the membrane surface with area A, the polymer can explore the volume

V. The short-ranged interaction potential V (r) in front of the surface will be replaced by the
boundary condition

n̂ · ∇rZ(ran|r, t) = Z(ran|r, t)/lex (8)

for r at the surface where the normal vector n̂ points into the volume V. In general, the
extrapolation length lex may depend on the curvature of the surface [18] and will then behave
as lex ≈ l0(1 + l1M) for small M , where l1 depends on the details of the molecular forces. For
a planar surface, the inverse extrapolation length 1/l0 is proportional to the critical parameter
ε which measures the distance from the adsorption transition of the ideal chain [12]; negative
and positive values of 1/l0 correspond to adsorbed and desorbed chains, respectively.

In the following, we will focus on the statistical weight:

Z(ran|t) ≡
∫

dr Z(ran|r, t) (9)

with Z(ran|t = 0) = 1. Direct integration of the differential equation (7) (with V replaced by
the boundary condition (8)) leads to the relation

Z(ran|t) = 1− (1/lex)
∮
A

dr
∫ t

0

dt′ Z(ran|r, t′) , (10)

where
∮

dr represents the integral over the membrane surface. This relation implies Z(ran|t) =
1 for 1/lex = 0 and arbitrary t ≥ 0. Therefore, the excess free energies δF = −T lnZ and
∆Fpo = δF−δFhs must vanish at 1/lex = 0 irrespective of the shape of the membrane surface.
Since ∆Fpo is identically zero for 1/lex = 0 , all terms of the small-curvature expansions as
given by (4) and (5) must also vanish.

For a spherical surface segment with mean curvature M , one can explicitly calculate the
statistical weight Z for a polymer anchored at distance lan from this surface. Extending the
results of ref. [19], one then arrives, in the limit of small lan, at the closed expression

Z(lan = 0|t) = A1 +A2 exp[t(M + 1/lex)2] erfc[
√
t(M + 1/lex)] (11)

with A1 ≡ M/(M + 1/lex), A2 ≡ 1/(1 + Mlex), and the complementary error function
erfc(y). It now follows that ∆Fpo = −T ln(Z/Zhs) ≈ TΩ1(

√
t/l0)L‖M for small M with
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L‖ =
√
qt = apoN

1/2 and the scaling function

Ω1(y) =
[
1− 2λy2 +

−1 + 2λy/
√
π

exp[y2]erfc(y)

]
/
√
qy , (12)

which depends on the scaling variable y ≡
√
t/l0 = apoN

1/2/
√
ql0 ∼ εN1/2 and on the

parameter λ ≡ 1 − l1/l0. In the limit of small l1, in which the extrapolation length becomes
curvature-independent, the function Ω1(y) vanishes at y = y0 = 0, and one has Ω1(y) > 0 and
Ω1(y) < 0 for the adsorbed and desorbed state, respectively.

If the anchor of the polymer represents a strong perturbation of the local membrane
structure, the membrane segment which is affected by the polymer may be deformed into a
shape with a point-like defect. One possibility is that the membrane segment forms a cone-like
shape with the polymer anchored to the apex of the cone. The surface of the cone is defined by
the angle ψco which measures the deflection from the planar surface. For ψco < 0 and ψco > 0,
the polymer is anchored inside and outside of the cone, respectively. For this geometry, one
obtains the excess free energy

∆Fpo/T ≈ (2/
√
πq)

(
cosψco

1 + sinψco
− 1
)
apoN

1/2/lex (13)

up to first order in 1/lex. Since the prefactor is proportional to −ψco for small ψco, one finds
again that the anchored polymer prefers to sit inside and outside of the cone if it is adsorbed
and desorbed, respectively.

In summary, we have shown that the curvature induced by anchored polymers changes its
sign close to the adsorption-desorption transition and exhibits a scaling form as derived from
rather general arguments and explicitly calculated for ideal chains. The anchored polymers also
induce contributions to the bending rigidities of the membrane as determined in ref. [7] for the
desorbed case. Close to the adsorption transition, these excess rigidities again scale with the
chain length N and with the distance from the transition, as will be discussed elsewhere [15].

After the completion of this work, we received a preprint by Eisenriegler, Hanke and
Dietrich [20] about polymers interacting with spherical and rod-like particles: for ideal chains,
these authors derive a statistical weight, which is equivalent to (11), and obtain results for
generalized cylinder surfaces, which are consistent with our general relation (10). These
authors also find that a flexible surface in contact with a dilute solution of non-anchored
polymers prefers to bend towards the solution if the surface repels the polymers. This disagrees
with the results of Podgornik [21] who found, for reasons we do not understand, that the surface
bends away from the non-attached polymers. Another issue addressed in [20] is the adsorption
transition on cylindrical surfaces, a situation which is equivalent to the one studied in ref. [22].

REFERENCES

[1] Lipowsky R. and Sackmann E. (Editors), The Structure and Dynamics of Membranes, Vol. 1
of Handbook of Biological Physics (North Holland, Amsterdam) 1995.

[2] Bancroft W. and Tucker C., J. Phys. Chem., 31 (1927) 1681.

[3] Helfrich W., Z. Naturforsch. C, 28 (1973) 693.

[4] Hadwiger H., Vorlesungen über Inhalt, Oberfläche und Isoperimetrie (Springer, Berlin) 1957.
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