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Binary Lennard-Jones fluids consisting of ‘‘solvent’’ and ‘‘surfactant’’ molecules are studied as
simplified model systems for amphiphilic molecules in solution. Using Monte Carlo and molecular
dynamics simulations, we observe the self-assembly of the surfactant molecules into bilayer
membranes. These bilayers are fluid since the surfactants exhibit rapid lateral diffusion. We also
measure the interfacial tension and the compressibility modulus of these bilayers. We show that they
exhibit a tensionlessstate and characterize the corresponding stress profile. In this way, we bridge
the gap between previous theoretical studies which were based~i! on discrete models with atomic
resolution and~ii ! on continuum models in which the bilayer membrane is treated as a smooth
surface. ©1998 American Institute of Physics.@S0021-9606~98!50717-9#

I. INTRODUCTION

Solutions of amphiphilic molecules such as lipids in wa-
ter are characterized by a wide range of length scales. These
molecules usually resemble semiflexible rods with a length
of the order of 1–2 nm, which is already large compared to
the atomic size.0.1 nm. In solution, these rodlike mol-
ecules form supramolecular aggregates such as spherical and
cylindrical micelles or bilayers. Spherical micelles have a
diameter which is roughly twice the length of the am-
phiphiles. The thickness of cylindrical micelles is of the
same order but their longitudinal extension is usually much
larger. Likewise, the thickness of bilayers is again about
twice the rod length, i.e., 2–4 nm but their lateral extension
can be many micrometers.

Previous theoretical work on bilayer membranes has
been done on two different types of models. On the one
hand, coarse-grained surface models for these membranes
have been studied in which the membranes are treated as
smooth and continuous surfaces; for recent reviews, see Ref.
1. In these studies, one focuses on the membrane behavior on
length scales which are large compared to the membrane
thickness. Thus, in these continuum models, the bilayer
thickness is treated as a small-scale cutoff and the molecular
structure of the bilayer is not taken into account explicitly.

On the other hand, bilayer models with~almost! atomic
resolution have been studied by extensive computer simula-
tions; see, e.g., Refs. 2–5. Since these simulations require a
huge amount of computing time, they are restricted to rela-
tively small bilayer segments which contain 50–200 am-
phiphilic molecules. For a lipid bilayer, this corresponds to a
membrane area of the order of~3 nm!2–~8 nm!2.

The main goal of the present paper is to bridge the gap
between these two types of models, i.e., between discrete
models with atomic resolution on the one side and con-
tinuum surface models on the other side. In order to do this,

we will study effective molecular models which describe the
membrane behavior onintermediatelength scales, see Sec.
II. Our models are binary Lennard-Jones fluids consisting of
‘‘solvent’’ and ‘‘surfactant’’ molecules. The surfactant con-
sists of a head group and one or two tails which are modeled
by chains of particles interconnected by a harmonic bond
potential. In addition, we incorporate the bending stiffness of
these chains.

Since we do not attempt to incorporate all details on the
atomic or molecular level, we are able to simulatedifferent
cooperative phenomena in thesamemodel system. These
different phenomena include the formation of self-assembled
aggregates, see Sec. III, the fluidity of bilayers characterized
by rapid lateral diffusion but very rare transverse diffusion
~or flip-flop!, see Sec. IV; and the interfacial tension and the
area compressibility of bilayer membranes, see Sec. V. Thus,
within these simplified model systems,both the self-
assembly process of the bilayerand the bilayer properties are
accessible within the same type of simulation. In contrast,
previous simulation studies have focusedeither on the self-
assembly process of the amphiphiles which was usually in-
vestigated by Monte Carlo~MC! simulationsor on the physi-
cal properties of preassembled bilayers as observed via
molecular dynamics~MD! simulations.

Our model systems are characterized by a relatively
small number of parameters. Therefore, we can systemati-
cally vary these parameters and then study how the different
cooperative phenomena are affected by this variation. Two
important parameters are the size and the tail flexibility of
the surfactants. Thus, in the present study, we will consider
three different types of model surfactants which differ in
their size and their tail flexibility and compare their coopera-
tive behavior.

In general, surfactant molecules are characterized, for a
given solvent, by two different segments: a soluble or lyo-
philic segment and an insoluble or lyophobic segment. In the
models studied here, this difference in solubility is describeda!Author to whom correspondence should be addressed.
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by two different pair interactions which act~i! between the
solvent and the lyophilic segment of the surfactant and~ii !
between the solvent and the lyophobic segment. This differ-
ence in the pair interactions drives the self-assembly of the
molecules into micelles and bilayers as described below.
Similar models have been previously studied for ternary
mixtures of oil, water, and surfactant.6–10 A lattice model for
binary systems has been recently studied by MC
simulations.11

For surfactant molecules in aqueous solution, the self-
assembly is believed to be primarily driven byentropiccon-
tributions which arise from the fluctuating network of hydro-
gen bonds within the water.12 In this case, the effective pair
interactions used in our models have an entropic component
and will, thus, depend on temperature. In the present study,
we do not address this dependence since all our model sys-
tems are taken to be at the same fixed temperature.

A conceptually simpler situation occurs for surfactant
molecules in nonpolar solvents. For such systems, the self-
assembly process is believed to be primarilyenthalpic in
origin. One example is provided by solutions of semifluori-
nated alkanes in hydrocarbons13,14 or fluorocarbons15,16 for
which micellelike aggregates have been observed. In the lat-
ter case, the effective interactions between the solvent and
the two different surfactant segments should be essentially
independent of temperature.

In the following, we will use the terminology which is
appropriate to aqueous solutions. In this case, the lyophilic
and lyophobic segments are hydrophilic and hydrophobic,
respectively. One should keep in mind, however, that our
models also apply, in a rather direct way, to surfactant mol-
ecules in nonpolar solvents.

II. DEFINITION OF MODEL SYSTEMS

Our model system is built up from three types of ‘‘par-
ticles’’ which can be hydrophilic or hydrophobic. Each of
these particles represents a group of real atoms, e.g., the
surfactant head group, a water molecule, or some CH2

groups. The three types of particles are hydrophilic solvent
particles, i.e., water particles, hydrophilic surfactant–head
group particles, and hydrophobic tail particles for the tails of
the surfactants.

We considerN such particles in a stretched simulation
box with box widthL i and box heightL' . The volume of
the simulation box is given byL i

2L' and the overall particle
number density byn5N/(L i

2L'). For simplicity, all par-
ticles are taken to be spherical balls and to have the same
massm. The positions of the particlei at time t is given by
the vectorr i5r i(t), which points to the center of mass of the
particle. The relative position of two particles atr5r i and
r5r j is given by the vectorr i j 5r j2r i ; the distance between
these two particles byr i j 5ur i j u.

A. Interaction potentials

The interactions between one hydrophilic and one hy-
drophobic particle is modeled by a repulsive soft core poten-
tial as given by

USC~r ![4eS sSC

r D 9

. ~2.1!

All other interactions are modeled by an attractive Lennard-
Jones potential of the from

ULJ~r ![4eF S s

r D 12

2S s

r D 6G . ~2.2!

These interparticle potentials are shown in Fig. 1. Note that
the minimal value ofULJ is given by2e.

For simplicity, we take all potential energy functions to
have the same cutoff radiusr c52.5s. Likewise the energy
and length scales are taken to be the same for all pairs of
particles. The parametersSC was chosen to besSC

51.05s; for this choice, the hard-core repulsion of the soft
core potential is approximately as strong as the repulsive part
of the Lennard-Jones potential.

In order to avoid discontinuities in the potential energy
and in the force we use the shifted force variant of the po-
tentials, as given by

ŨX~r ![UX~r !2UX~r c!2
]UX

]r U
r 5r c

~r 2r c! ~2.3!

with UX5ULJ or USC.
In our model, head group and tail particles are connected

by a harmonic bond potential

U2~r i ,i 11!5k2~ ur i ,i 11u2s!2 ~2.4!

to form surfactant molecules. The vectorr i ,i 11 denotes the
relative position vector between two neighboring particles
along the surfactant chain, see Fig. 2.

FIG. 1. The interparticle potentialsU* as a function of the dimensionless
distancer * : The lower and upper full curves correspond to the shifted force
Lennard-Jones potential and to the shifted force soft core potential, respec-
tively. For comparison, the unshifted Lennard-Jones potential is also shown
as the dotted line.

FIG. 2. Geometry of the surfactant chain with tilt anglef i between two
neighboring bonds.
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As discussed in Ref. 9, the bond stretching modulusk2

should be chosen in such a way that only up to 2% of all
bonds differ in length by more than 2% from the average
bond lengths. It turns out, however, that the simulations are
not very sensitive to the value ofk2 as long ask2 is of the
order of 103•es22. In our simulations, we setk2

55000es22. In this case, up to 10% of the bonds of a given
configuration differ by more than 2% from the long time
average bond length which is equal tos. Nevertheless, the
average bond lengtĥur i ,i 11u& in any configuration differs
only up to 0.1% from its long time averages.

For some of the simulations, we extend the model to-
ward semiflexible surfactant molecules by adding a bending
potential along the chains of these molecules. This three-
body bending potential is taken to be

U3~r i 21,i ,r i ,i 11!5k3S 12
r i 21,i•r i ,i 11

ur i 21,i ir i ,i 11u D
[k3~12cosf i !, ~2.5!

wherek3 is the bending modulus of the semiflexible tails and
the second equality defines the tilt anglef i between two
neighboring bonds. At temperatureT, the persistence length
Lp of such a semiflexible chain is then given by17 Lp

5k3s/kBT with the Boltzmann constantkB . Assuming that
the persistence length is of the order of the tail length, one
gets a value ofk355.4e. In the simulations, we use either
k355e or k352e. The bending potential as given by Eq.
~2.5! applies to all particles in the surfactant chain except for
the particles at the chain ends.

For more complex surfactants, a spontaneous or pre-
ferred tilt angle f i

sp was added to the bending potential
which then has the form

U35k3@12cos~f i2f i
sp!#

5k3@12~cosf i cosf i
sp1sin f i sin f i

sp!#. ~2.6!

The potential energyF of the whole system is then given by

F~$r i%!5(̂
i j &

ŨX~r i j !1(
c

(
i

U2~r i ,i 11!

1(
c

(
i

8U3~r i ,i 21 ,r i ,i 11!, ~2.7!

where^ i j & andc indicate a summation over all particle pairs
and over all chains, respectively. The summation overi in-
cludes all contributions for a given chainc; if the chain
containsnc particles, it contributes (nc21) U2 terms and
(nc22) U3 terms.

B. Different surfactant molecules

In general, we can investigate many different model sur-
factants which differ in their geometry and their chain flex-
ibility. In the present work, we focus on three different sur-
factants. In order to distinguish these molecules, we will
denote the water particles byw, the head group particles by
h, and the tail particles byt. Capital letters indicate that the
chains are semiflexible. The three types of surfactants are
denoted as~see Fig. 3!:

~i! ht4 surfactants with one head group particle and four
tail particles. The surfactant tails are flexible;

~ii ! HT4 surfactants as in~i! but with semiflexible tails;
and

~iii ! H3(T4)2 surfactants. These surfactants with two tails
are taken as a crude model for lipid molecules. For
these molecules, the preferred bond anglef i is set to
zero except for the two angles displayed in Fig. 3. The
values of the preferred bond angle are taken to be
fa

sp55p/12 and fb
sp5p/6, which leads to head

groups reminiscent of typical lipid molecules.

The simulation data described below were obtained us-
ing a recently developed code.18 All simulations were per-
formed in a stretched cubic simulation box. As mentioned,
we denote the box width byL i and the box height byL' .
The overall particle densityn was set ton52/3s3 in all
simulations. Periodic boundary conditions are applied in all
three directions. Additional technical details are given in Ap-
pendix A.

C. Dimensionless quantities

In standard MD simulations, the fundamental scales of
mass (m), length ~s!, and energy~e! give well-defined
scales for all measurable quantities. The time scale, for ex-
ample, is given bytsc5Ams2/e.

In the following, we will denote dimensionless quantities
by an asterisk, such as, e.g., the dimensionless areaA*
[A/s2. There is one exception to this rule: The dimension-
less timet* is defined viat* [t/Dt whereDt5tsc/2000 is
the size of the discrete time step, see Appendix A.

Because we do not associate particles directly with real
atoms in our simulation, we have some freedom in the inter-
pretation of measurable quantities. In previous simulations
with atomic resolution, the Lennard-Jones lengths was cho-
sen in such a way that a chain segment of length.s con-
tained three to four CH2 groups. In our model, the Lennard-
Jones length is chosen to be identical with the bond length,
i.e, with the distance between nearest-neighbor particles
along the chain. Therefore, one tail particle in our model
corresponds to three to four CH2 groups.

This correspondence implies that the mass of one par-
ticle in our simulation lies between the mass of one water
molecule and the mass of four CH2 groups, i.e., 18 g/mol

FIG. 3. Three types of surfactants used in this study. The white particles
@(h) or (H)# represent the head group, the black particles@(t) or (T)# the
tail.
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<NAvm<56 g/mol whereNAv denotes the Avogadro num-
ber. Likewise, we take the Lennard-Jones lengths and en-
ergy e to be of the same order as in Ref. 2 for pairs of CH2

groups and/or CH3 groups and/or water molecules, which
implies 0.31 nm<s<0.374 nm and 0.42 kJ mol21<NAve
<1.20 kJ mol21.

In the following we will use the valuess51/3 nm,
NAve52 kJ/mol, andNAvm536 g/mol for the translation of
our results into dimensionful quantities. Our choiceNAve
52 kJ/mol for the energy scale exceeds the values used in
Ref. 2 since our particles represent molecular groups which
exceed the CH2 groups in Ref. 2. The energy scaleNAve
52 kJ/mol is equivalent to 324 K or about 50 °C. With this
choice form, e, ands, we obtain the time scaletsc51.4 ps
and simulations times of up to 5ms. If we made other
choices which are consistent with the above parameter inter-
vals, the time scaletsc could vary by a factor of 4.

III. SELF-ASSEMBLY OF MODEL SURFACTANTS

First, we study the self-assembly behavior of our model
surfactants by performing several simulations at different
surfactant concentrations for all three types of surfactant
molecules. As initial configurations, we used uniform ran-
dom distributions of water and surfactant molecules.

The surfactant concentration is defined by

cs[~Nt1Nh!/N, ~3.1!

whereNt , Nh , andN are the number of tail particles, head
group particles, and the total number of particles~including
water particles!, respectively. The same series of concentra-
tions is used for both theht4 and theHT4 surfactants. For
the systems withH3(T4)2 surfactants, the number of surfac-
tant molecules was chosen in such a way that the resulting
concentrations closely match those ofht4 .

First, we report results for a simulation box withL i

512s andL'515s. This choice of the simulation box cor-
responds to the typical size used in Sec. IV where we study
the stretching elasticity.

During the initial MC simulation, the surfactants start to
aggregate and form small micellelike structures containing
up to ten surfactant molecules. In the subsequent MD simu-
lations, these small aggregates merge into larger micelles. At
low surfactant concentration, this process leads to one large
spherical micelle containing all surfactants. Even for a rela-
tively small numberNs of surfactants, i.e., forNs of the
order of 10–15, the resulting micelles are almost spherical,
as shown in Fig. 4. For aggregates with only five surfactants,
this still applies to the average shape but no longer to a
typical configuration as seen in a snapshot.

Because of the periodic boundary conditions, a large mi-
celle merges with itself at high concentrations in one or two
directions and forms either an infinite long cylindrical mi-
celle or a bilayer, see Fig. 5.

For most aggregates, the assembly process takes be-
tween 1 and 53105 time steps. These times decrease first
with increasing surfactant concentration but then increase
again, see Table I. This is due to a process of internal rear-
rangement of the surfactants in the large aggregates. Further-
more, the merging process at high concentrations takes some
time as well. At very low concentrations, small micellelike
aggregates move sometimes almost parallel through the
simulation box and do not fuse for relatively long times. In
the latter case, the aggregation times are much larger.

A crude estimate of the surface and the volume of the
aggregates may be obtained by fitting a sphere or a cylinder
to the end configurations of these micellar aggregates. Divid-
ing by the number of surfactants, one gets the surface area
and volume per surfactant molecule as given in Table I.

The surface area per surfactant molecule decreases with
increasing size of the aggregates, while the volume per sur-
factant stays almost constant. This agrees with the volume
incompressibility of surfactants as observed in real systems.

The results forHT4 surfactants are similar to those for
ht4 apart from the high concentration regime, see Table I.
Here we found a vertically oriented bilayer containing a
pore. By direct observation of the corresponding assembly

FIG. 4. Micellar aggregates formed by flexibleht4 surfactants:~a! Spherical micelle containing 10 flexibleht4 surfactants (cs50.035).~b! Spherical micelle
containing 20 flexibleht4 surfactants (cs50.069).~c! Spherical micelle containing 60 flexibleht4 surfactants (cs50.208). The black, white, and transparent
beads represent the tail, head group, and water particles, respectively.

7400 J. Chem. Phys., Vol. 108, No. 17, 1 May 1998 R. Goetz and R. Lipowsky



process, one finds that, in the high concentration regime, the
merging of the small micellar structures occurs at two cen-
ters. Because of the box geometry, one of those centers is
located in the upper part of the box and the other in the lower
part. These two micelles prefer to merge to one vertically
oriented object rather than to an horizontally oriented one.

For the parameter values, for which the surfactants form
a vertical bilayer with a pore, these molecules could also
form a horizontal bilayer without such a pore. In fact, the
vertical pore state should have a free energy which exceeds
the one for the horizontal state since~i! the vertical state is
stretched more strongly than the horizontal one~i.e., the pore
does not relax all the stress in the vertical bilayer! and~ii ! the
pore has an edge tension which gives an additional contribu-
tion to the free energy of the vertical state. Therefore, the
vertical pore state should represent a metastable state and
should relax toward the horizontal state on sufficiently long
time scales. However, we found no such relaxation process
in 1.53106 time steps. This implies that the vertical pore

state is kinetically trapped because of the large activation
barrier associated with the disassembly of the vertical bi-
layer.

Self-assembly of theH3(T4)2 surfactants leads to similar
aggregates, see Table II. Cylindrical micelles occur at some-
what lower concentrationscs.0.2 and no bilayers are found
at high concentration for this choice of the box size. How-
ever, a bilayer containing 55H3(T4)2 surfactants would
have the areaAs55.5s2 per surfactants. This is a lot bigger
than the value obtained for a stress free bilayer, see Sec. IV.
Therefore, a cylindrical micelle is formed instead of a bilayer
under high stress.

In order to check if bilayer formation is also possible for
HT4 or H3(T4)2 surfactants, we performed additional simu-
lations in a more elongated simulation box withL i510s and
L'521.6s for H3(T4)2 and with L i510.5s and L'

519.6s for HT4 . For these box sizes, a nice horizontal bi-
layer was found for the surfactant concentrationcs50.42 for
both types of surfactants.

FIG. 5. Aggregates formed by flexibleht4 surfactants:~a! Cylindrical micelle containing 80 flexibleht4 surfactants (cs50.278), ~b! flattened cylindrical
micelle containing 80 flexibleht4 surfactants (cs50.347), and~c! bilayer containing 110 flexibleht4 surfactants (cs50.382). The beads are colored in the
same way as in Fig. 4.

TABLE I. Aggregates ofNS surfactants with one tail corresponding to surfactant concentrationcs : ~left!
Flexible ht4 surfactants and~right! semiflexibleHT4 surfactants with bending modulusk352e. The assembly
times tas are given in units of 103Dt. These times include 105 initial MC steps. For theht4 surfactants, the
volumesVs* and the projected surfacesAs* per surfactant molecule are also displayed. For the bilayer state, the
projected surface area is given by the cross sectional area of the simulation box divided by the number of
molecules. Hence there is no error in this estimate.

NS cs

ht4 surfactants HT4 surfactants

Aggregate type tas Vs* As* Aggregate type Tas

5 0.017 Sph. micelle 290 8.964.2 12.263.5 Sph. micelle 230
10 0.035 Sph. micelle 950 9.263.8 9.962.6 Sph. micelle 250
20 0.069 Sph. micelle 550 9.062.9 7.761.6 Sph. micelle 740
40 0.139 Sph. micelle 160 9.262.2 6.261.0 Sph. micelle 330
60 0.208 Sph. micelle 220 8.762.2 5.260.9 Sph. micelle 140
80 0.278 Cyl. micelle 240 8.261.8 3.960.4 Cyl. micelle 200

100 0.347 Flat. cyl. micelle 380 8.661.5 3.860.3 Flat. cyl. micelle 160
110 0.382 Horizontal bilayer 540 8.860.9 2.460.0
120 0.417 Vertical bilayer

with a pore
200
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In conclusion, we found that all three types of surfactant
were capable of forming spherical micelles, cylindrical mi-
celles, and bilayers. Because of the periodic boundary con-
ditions, the bilayer state corresponds to a lamellar state for
which the separation of the bilayers is equal toL' .

IV. MOBILITY OF WATER AND SURFACTANT

The next thing to check is whether the self-assembled
bilayers are in a fluid state. This has been done by measuring
the rms displacement of the surfactant molecules. For times
which exceed about 23105 time steps, this quantity is pro-
portional toAt. This is typical for diffusive motion. Because
of the periodic boundary conditions the center of mass of the
whole system moves as well. Since all particles have the
same mass, the center-of-mass coordinate is simply given by
R(t)5(1/N)( ir i(t) where the sum overi includes all par-
ticles. The particle displacements relative to this overall mo-
tion are defined viaDr i(t)5r i(t)2R(t). One can then de-
fine a time-dependent diffusion coefficientD(t) via

D~ t ![
( i@Dr ~ t !2Dr ~0!#2

6Nt
. ~4.1!

For long t, this diffusion coefficient approaches the
asymptotic mean valueD̄, see Fig. 6.

As mentioned before, because of the periodic boundary
conditions, the bilayer segment spanning the simulation box
corresponds to a lamellar state of bilayers. Therefore one has
to distinguish the lateral and the transverse diffusive mo-
tions, which are governed by two different diffusion coeffi-
cientsD i andD' . The diffusion coefficientD i is defined by

D i~ t ![
( i@Dr i~ t !2Dr i~0!#2

6Nt
, ~4.2!

whereDr i(t) is the lateral component ofDr (t). D i is also
displayed in Fig. 6.

Inspection of Fig. 6 shows that, for the surfactant mol-
ecules, the asymptotic mean valueD̄ i of D i(t) for large t is
found to be essentially equal toD̄. By following the paths of
some tracer molecule in the bilayer, one can directly observe
that the surfactant molecules exchange their position within
the bilayer. The rapid diffusion measured along the bilayer
shows that this surfactant bilayer is in a fluid phase.

In addition to the lateral diffusion of the surfactant mol-
ecules, we also observed transmembrane diffusion or flip-

flops of surfactant molecules, but only very rarely.18 A more
detailed discussion of the observed flip-flop process will fol-
low in a forthcoming paper.

As shown in Fig. 6, the asymptotic mean valueD̄ i of the
lateral diffusion coefficient for the water particles is close to
the asymptotic mean valueD̄ of the total diffusion coeffi-
cient but shows a small systematic deviation fromD̄. The
differenceD̄2D̄ i arises from the finite permeability of the
bilayer membrane for water molecules.

The measured values of the diffusion coefficientsD̄W

and D̄S for the water and the surfactant particles, respec-
tively, are displayed in Table III.

V. INTERFACIAL TENSION AND STRESS PROFILE

Real bilayers in solution often attain a state which is
essentially tensionless and which then has interesting elastic
properties. As will be shown in Sec. VI, it takes a certain
effort to obtain such states in computer simulations. Indeed,
the bilayer segments which can be studied via simulations
are constrained by boundary conditions which usually induce
substantial interfacial tensions.

In order to attain an essentially tensionless state of the
bilayer membrane in simulations, one has to determine the
projected tension as a function of the size of the simulation
box for fixed surfactant number. The size of the simulation
box determines the projected areaAs per surfactant molecule
via As5L i

2/Ns . Close to the tensionless state withAs5As0

the stretching free energyFs behaves asFs'KA@(As

2As0)/As0#2 with the area compressibility modulusKA as
follows from the classical elasticity theory for elastic sheets.
The interfacial tension is the derivative ofFs with respect to
the relative area changedA5(As2As0)/As0 and thus given
by S5]Fs /]dA'KA(As2As0)/As0 . Thus, in order to
study the state of the bilayers, we have to determine both the
projected surfactant areaAs and the interfacial tensionS.
The projected areaAs follows directly via As5L i

2/Ns. The

FIG. 6. The time evolution of the reduced diffusion coefficientD*

[Dtsc/s25DAm/(s2e). For large timet, the diffusion coefficientsDW*
andDS* for water and for surfactant particles attains asymptotic mean values
D̄W* and D̄S* corresponding to the straight dashed lines. The dashed-dotted
curves correspond to the lateral diffusion coefficientsD i , as defined in Eq.
~4.2!

TABLE II. Aggregates ofNS semiflexibleH3(T4)2 surfactants with two
tails and bending modulusk352e corresponding to surfactant concentration
cs . The units for the assembly timetas are the same as given in Table I.

NS cs Aggregate type tas

5 0.038 Sph. micelle 750
9 0.069 Sph. micelle 600

15 0.115 Sph. micelle 1110
18 0.138 Sph. micelle 310
27 0.208 Cyl. micelle 200
55 0.420 Cyl. micelle 1000
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interfacial tensionS, on the other hand, requires some non-
trivial computations.

A. Macroscopic stress tensor

For a fluid system which is translationally invariant in
the lateral directions, parallel to the bilayer, the stress tensor
Sab has only two distinct diagonal components, the tangen-
tial stressST and the normal stressSN :

Sab5S ST

0
0

0
ST

0

0
0

SN

D , ~5.1!

where thez axis is taken to be normal to the bilayer plane.
Since the system is translationally invariant in the lateral

directions, the components of the stress tensor depend only
on the coordinatez. Using the mechanical definition of the
interfacial tensionS, one finds19

S5E
2`

`

dz@ST~z!2SN~z!#. ~5.2!

The z-dependent function in the integrand represents the
stress profile

s~z![ST~z!2SN~z! ~5.3!

across the bilayer.

B. Microscopic stress tensor

The macroscopic stress tensorSab can be expressed in
terms of the microscopic stress tensorsab, which depends
on the positions and momenta of the particles within a small
volumeV around an arbitrary but fixed position. The tensor
sab has a kinetic part and an interaction part. The kinetic
part of sab does not contribute to the stress profiles(z) as
defined by Eq.~5.3!. Explicit expressions for the interaction
part s in

ab are derived in Appendix B. This derivation repre-
sents an extension of the work by Schofield and
Henderson,20 see also Refs. 21 and 19. The interaction part
of the macroscopic stress tensorSab is then given by

S in
ab5^s in

ab&, ~5.4!

where the brackets represent a thermal average.

VI. SIMULATION RESULTS FOR THE INTERFACIAL
TENSION

In order to check the reliability of our program, we first
performed some simulations with ‘‘pure’’ water, i.e., for a
one-component Lennard-Jones fluid, and found a vanishing
interfacial tension. Likewise, the off-diagonal components
were found to vanish both for pure water and in the presence
of a bilayer.

In order to obtain the dependence of the interfacial ten-
sion on the stretching of the bilayer, i.e., on the area per
surfactant molecule, we performed a series of simulations
with varying box widthL i but constant number of surfactant
moleculesNS5128, constant total number of particlesN
51440, and constant overall densityn5N/V52/3s3. The
volume was fixed atL i

2L'52160s3. The initial configura-
tions were preassembled bilayers. These initial configura-
tions were relaxed via 1.63105 MC steps and 83105 MD
steps.

The interfacial tension of bilayer membranes has been
previously studied by MD simulations for models with
atomic resolution.22 In this latter work, relatively small sys-
tems with 72 phospholipid molecules and 2511 water mol-
ecules have been investigated. For these systems, the tension
was determined for four values of the surfactant areaAs but
no attempt was made to attain states with vanishing tension.
In contrast, we have systematically studied bilayer states
with small negative or positive tensions and have, thus, been
able to interpolate toward tensionless states.

The first measurements of the interfacial tension were
done with a sampling interval of 1000 time steps. A careful
analysis of the time evolution of the interfacial tension for a
short run consisting of 104 time steps revealed that, for small
systems sizes as used here, the fluctuations of the interfacial
tension are about 10 times larger than its average value.
Similar tension fluctuations have also been observed in Ref.
22.

In order to reduce these effects of the short time fluctua-
tions, we preaverage the interfacial tensions over 5000 time
steps instead of taking only one sample out of this interval.
This average value is then used as the sample for this inter-
val. Since the number of samples has not been enlarged, we
can still get a reliable estimate of the statistical error.

TABLE III. The diffusion coefficientsD̄W and D̄S for water and surfactant. The two columns forHT4 are
distinguished by two different values of the bending modulusk3 . The data were obtained from the last 1.6
3106 time steps@2.43106 time steps in the case ofH3(T4)2# of the simulations described in Sec. V. The
bilayers are almost tensionless.

Surfactant ht4 HT4 HT4 H3(T4)2

k3 ~e! 0 2 5 2
AS (s2) 2.33 2.14 1.89 4.20

D̄W (1026
•sAem21) 6162 6462 6264 6463

D̄W (10212
•ms22) 4.860.1 5.060.1 4.960.3 5.060.2

D̄S (1026
•sAem21) 9.660.7 9.960.5 8.061.0 3.660.4

D̄S (10212
•ms22) 0.7560.05 0.7860.04 0.6360.08 0.2860.03
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A. Small tension regime

By varying the box widthL i , we induced different in-
terfacial tensions on the bilayer. The initial configurations
were equilibrated using 63104 MC steps and 83105 MD
steps. We then performed a total number of 2.43106 MD
steps which were used to calculate thermal averages. After
83105 and 1.63106 MD steps, we inserted intermediate se-
quences consisting of 53104 MC and 53104 MD steps in
order to reach regions of phase space not easily accessible by
a single deterministic MD trajectory and thus to enhance the
quality of our averages.

Figure 7 shows the results for the flexibleht4 surfactants
and for the semiflexibleHT4 surfactants with two different
chain stiffnesses; the inset in Fig. 8 displays the results for
the semiflexible two-chain surfactants@H3(T4)2#.

By fitting a linear function to these data, we determined
the area compressibility modulusKA and the areaA0 per
surfactant molecule for the tensionless bilayer. The values of
these quantities are given in Table IV. One finds that the area

per chain for theH3(T4)2 surfactant~with two chains! is 3%
smaller than for theHT4 surfactant with the same chain stiff-
ness. This is because the configurations of the two chains in
the sameH3(T4)2 molecule are strongly correlated.

By using the values fore, m, ands as given in Sec. II C,
one can estimate the stretching modulus and the area per
surfactant moleculeA0 in physical units, see Table IV. For
the H3(T4)2 surfactants, the area per surfactantAs has the
value As.46.3 Å2, which is smaller than for typical lipids
with As.65 Å2. However, real lipids have longer chains and
this increases the entropic repulsion in the tail region. The
values for the compressibility modulusKA obtained in this
way are of the same order as the values observed for real
lipid bilayers.

B. Large tension regime

The curves displayed in Figs. 7 and 8 exhibit a sublinear
behavior for large areasAs per surfactant molecule. For the
H3(T4)2 surfactants, the interfacial tensionS has been stud-
ied for even larger areasAs , see Fig. 8. If one increasesAs

beyond the values shown in Fig. 8 the bilayers exhibit hy-
drophilic pores. Within 53104 MC steps and 83105 MD
steps, no pore formation has been observed for the other less
stretched bilayers.

The qualitative behavior of the interfacial tensionS as a
function of the surfactant areaAs can be understood from a
rather simple picture as originally envisaged for
monolayers.23,24 Thus, each monolayer of the bilayer is
viewed as a thin film which contains a two-dimensional gas
of tail particles. Such a gas should have a free energy per
particle or chemical potentialms , which becomes large for
small As . For an ideal gas, for example, one hasms5
2kBT ln(As/l2) where l is the de Broglie wavelength. In
addition, the free energy of the film has another contribution
arising from the interfacial tensionSsw of the surfactant/
water interface. If one combines both terms, one has the free
energy f s per surfactant molecule as given byf s.ms(As)
1SswAs.2kBT ln(As/l2)1SswAs, where the second esti-
mate holds only for an ideal gas of tails. For interacting tails
the first term exhibits a different functional dependence on
As but it will still increase for smallAs ; for a recent review,
see Ref. 25. Furthermore, the interfacial tensionSsw in the
second term increases if one increases the amplitude or the
range of the repulsive forces between the water and the tail
particles.

The free energyF of the bilayer is then estimated to be
F5Nsf s and the interfacial tensionS5]F/]A for fixed Ns

FIG. 7. Functional dependence of the surface tensionS* on the areaAs* per
surfactant molecule for flexibleht4 with bending modulusk350 and for
semiflexibleHT4 surfactants withk352e andk355e. The straight lines are
linear fits. The dotted lines are alternative fits to estimate the error.

FIG. 8. Surface tensionS* as a function of the surfactant areaAs* for
semiflexible two-chainH3(T4)2 surfactants. The nonlinear behavior for
large As* corresponds to highly stretched bilayers. An enlarged plot of the
linear part for smallS* is shown in the inset. In this inset, the straight line
represents a linear fit; the dotted line is used to estimate the error.

TABLE IV. Area As0 per surfactant molecule and area compressibility
modulusKA for tensionless bilayers. The dimensional quantities in the last
two columns were obtained usings51/3 nm, NAve52 kJ mol21, and
NAvm536 g mol21 as discussed in Sec. II C.

Amphiphil k3 ~e! As0* KA* As0(Å 2) KA(mJ m22)

ht4 0 (2.3460.01) 13.661.6 26.060.1 408648
HT4 2 (2.1560.02) 11.861.5 23.960.2 354645
HT4 5 (1.8360.02) 12.261.6 20.360.2 366648
H3(T4)2 2 (4.1660.02) 14.362.0 46.360.2 429660
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with the total areaA[NsAs/2. This impliesS52] f s /]As

which vanishes atAs5A0 where f s(As) has a minimum and
approaches the constant value 2Ssw for largeAs . Therefore,
for large As the tension exhibits a sublinear behavior as a
function of As as observed in the simulations.

In Fig. 9, we show the interfacial tension as obtained
from simulations using interaction potentials with different
cutoff radii r c as introduced after Eq.~2.2!. One finds that
the linear regime withS;As2A0 increases with increasing
r c . For the largest valuer c54.0s, the behavior is linear
over the whole range ofAs-values.

C. Stress and density profiles

A more detailed description of the state of the bilayer is
obtained in terms of the stress profiles(z) as introduced in
Eq. ~5.6! above. The stress profile for bilayers has been pre-
viously discussed by Helfrich26 using heuristic arguments
and by Ben Shaul and co-workers25 via mean field theories
for the configurations of the surfactant chains.

In the following, we will determine the stress profile via
MD simulations. We will explicitly discuss this profile for
the case of a tensionless bilayer built up from semiflexible
HT4 surfactants withk352e. This bilayer was characterized
by the projected surfactant areaAs52.16s2 and by the in-
terfacial tensionS50.06es22. We have also performed
simulations for the two other types of model surfactants; the
results were found to be similar.

As explained before, the kinetic part of the microscopic
stress tensor does not contribute to the stress profiles(z).
Thus, it is only the interaction part of the microscopic stress
tensor which determines this profile. This interaction part,
s in

ab , depends linearly on the gradients¹ i
aF of the total

potential energyF, see Eq.~B1!. In the present case, the
total potential energy contains contributions from~i! the
Lennard-Jones and soft core potentials between the hydro-
philic and hydrophobic particles,~ii ! the bond potentialsU2 ,
and ~iii ! the bending potentialsU3 along the chains. There-
fore, each of these potentials gives a contribution to the total
stress profiles(z).

The MD data obtained for these different contributions
are displayed in Figs. 10, 11, and 12. In these figures, we
show dimensionless stress profiless* as functions of the
dimensionless coordinatez* ; the latter coordinate represents
the distance from the midplane of the bilayer along the nor-
mal direction.

In Fig. 10, the different contributions arising from the
Lennard-Jones and the soft core potentials are displayed. In
each case, we show the tangential componentST* , the nor-
mal component2SN* , and the differences* 5ST* 2SN* .

In Fig. 10~a!, the contribution arising from the Lennard-
Jones potentials between the tail particles is displayed. We
see that this contribution is confined to the interior of the
bilayer and that it is dominated by a negative tangential com-
ponent which represents a compression in the direction par-
allel to the bilayer. This agrees with the intuitive picture that

FIG. 9. Dependence of the surface tensionS* on the areaAs* per lipid for
flexible ht4 surfactants with three different cutoffs. For the top curve with
the cutoff radiusr c54s, the behavior is fairly linear over the whole range
of As* values.

FIG. 10. The stress profiles* across a bilayer of semiflexibleHT4 surfac-
tants as a function of the coordinatez* which measures the distance from
the midplane of the bilayer along the normal direction. The total stresss* is
equal toST* 2SN* ~solid curves!, and the tangential and the normal compo-
nentST* and 2SN* are given by the dotted and the dashed curves, respec-
tively. ~a! Contributions from the Lennard-Jones potential for tail–tail~t-t!
interactions;~b! contributions from the soft core potential for tail–water
~t-w! and tail–head group~t-h! interactions; and~c! contributions from the
Lennard-Jones potential for water–water~w-w!, headgroup-water~h-w!, and
head group-head group~h-h! interactions.
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the tail particles behave as a compressed two-dimensional
gas. In Fig. 10~b!, we display the stress profile arising from
the repulsive soft core potential between the tail and the hy-
drophilic particles. This leads to a positive contribution to
the interfacial tensions between the hydrophobic bilayer in-
terior and the bilayer/water interface. Finally, the contribu-
tion from the Lennard-Jones potentials between the hydro-
philic particles is shown in Fig. 10~c!. The corresponding
stress vanishes away from the two surfactant water interfaces
and makes a positive contribution to the tension of these
interfaces.

Thus, both the repulsive soft core potentials between the
tail particles and the hydrophilic particles and the Lennard-
Jones potentials between the hydrophilic particles give a
contribution to the interfacial tension of the bilayer/water
interface. Inspection of Figs. 10~b! and 10~c! shows that
these two contributions are comparable in size~note the dif-
ferent units in these two figures!.

The stress profile arising from all Lennard-Jones and all
soft core potentials is given by the solid curve in Fig. 11. It
has the expected behavior: The two bilayer/water interfaces
are characterized by positive interfacial tensions whereas the
bilayer interior represents a compressed region of tails. In
Fig. 11, we also display the stress profiles arising from the
bond potentialsU2 and from the bending potentialsU3 . The
contribution from the bond potentialU2 is confined to the
interfacial regions between the bilayer and the water. This
contribution which is large and negative corresponds to nor-
mal stretching of the chains by the ‘‘anchorage’’ to the two
bilayer/water interfaces. Since the elastic modulusk2 is
rather large in our simulations, even relatively small dis-
placements give large contributions to the stress. The contri-
bution of the bending potentialU3 , on the other hand, is
positive which reflects the fact that the tails fluctuate and
thus deviate from straight rod configurations.

The total stress profile arising from all interaction poten-
tials is shown in Fig. 12~a!. In order to identify the location
of the different ‘‘layers’’ of positive and negative stress, the
density profiles of the different types of particles are dis-
played in Fig. 12~b!.

Comparison of the total stress profile in Fig. 12~a! with
the different contributions in Figs. 11 and 10 shows that the
positive peak of the total stress profile, which is located be-
tween the head groups and the water, arises both from the
Lennard-Jones and the soft core potentials and represents the
interfacial tension which one expects naively. The adjacent
region of compression with negative values ofs(z), on the
other hand, is unexpected and results from the stretching of
the bonds along the chain. The large magnitude of this com-
pression reflects the large size of the elastic modulusk2 . The
second positive peak of the total stress profile, which is lo-
cated at the interface between the head groups and the tails,
arises mainly from the bending potential as is evident if one
compares the different contributions in Fig. 11. Finally, the
negative peak around the midplane of the bilayer corre-
sponds to the compressed tail region as expected.

In summary, we find that all interaction potentials make
significant contributions to the total stress profile. In particu-
lar, the contributions arising from the bond potentialsU2 and
the bending potentialsU3 cannot be neglected compared to
the contributions from the Lennard-Jones and the soft core
pair potentials but lead to additional negative and positive
peaks in the stress profile, respectively. The interfacial ten-
sionS of the bilayer is given by the integral*dz s(z). In the
present case of an almost tensionless bilayer, this integral is
close to zero, which means that the area under the five posi-
tive peaks of the stress profile is roughly equal to the area
under its three negative peaks. It remains to be seen if this
multiple-peak structure of the stress profiles(z) is generic
and if the same number of peaks is also present in more
realistic models of the water surfactant system.

FIG. 11. Different contributions to the stress profiles* as a function of the
distancez* arising from Lennard-Jones and soft core potentials~solid
curve!, bond potentialsU2 ~dashed curve! and bending potentialsU3 ~dotted
curve!. The solid curve represents the sum of all contributions displayed in
Fig. 10.

FIG. 12. ~a! Total stress profiles* as a function of the coordinatez* . This
stress profile represents the sum of the curves shown in Fig. 11;~b! density
profile r* vs z* . The solid curve represents the total density. The contribu-
tions from the head group, the hydrophilic particles~head groups and water!
and the tails are given by the dotted-dashed, dotted, and dashed curves,
respectively.
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VII. SUMMARY AND OUTLOOK

In summary, we have shown that the binary Lennard-
Jones fluids studied here lead to the formation of micelles
and bilayers. The dependence of the type of aggregate on the
surfactant concentration is summarized in Table I. The bi-
layer membranes are in a fluid state which is characterized
by rapid lateral diffusion along the membranes. We have
measured the corresponding diffusion coefficients of the wa-
ter and the surfactant particles, see Table III. In addition, we
have determined the interfacial tension of the bilayer which
is induced by the finite size of the simulation box.

One important aspect of our work is the identification of
tensionlessbilayer states as appropriate for real bilayer mem-
branes which do not experience external constraints. These
tensionless states were found by measuring the interfacial
tension as a function of the box size and, thus, as a function
of the area per surfactant molecule. The derivative of the
interfacial tension with respect to the surfactant area deter-
mines the area compressibility modulus, see Table IV.

For one such tensionless state, the stress profile was ana-
lyzed in detail and it was found thatall interaction potentials
make a significant contribution to this profile. As a result, the
stress profile determined above has several maxima and
minima which have not been anticipated from heuristic ar-
guments.

In the models studied here, the self-assembly process is
driven by the pair interactions between the different types of
particles. This mechanism applies directly to systems for
which the aggregation process is primarily driven byen-
thalpy. One example is provided by solutions of semifluori-
nated alkanes in hydrocarbon or fluorocarbon solvents.13–16

Our simulations show that these systems can exhibit both
micelles and bilayers.

As far asaqueoussolutions are concerned, the pair in-
teractions used in our models should be regarded as effec-
tive, temperature-dependent interactions which incorporate
the entropic forces arising from the hydrogen bond networks
present in real systems. It remains to be seen if one can find
useful relations between these effective interactions and the
parameters of microscopically refined models in which the
hydrogen bond networks are explicitly simulated. Likewise,
it remains to be seen if the qualitative form of the stress
profile as found here also applies to such refined models.

As emphasized in Sec. I, the work presented here was
performed in order to bridge the gap between bilayer models
with ~almost! atomic resolution and continuous membrane
models. One important parameter which enters in the con-
tinuous models is the bending rigidity of the membranes.
Recently, we have been able to extract this elastic modulus
via additional MD simulations on even larger systems as will
be described elsewhere.
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APPENDIX A: TECHNICAL DETAILS

The MD part of the simulations is performed using the
LEAP-FROG algorithm27 at constant temperature. The time
step isDt[tsc/2000 with the time scaletsc[Ams2/e. The
temperaturekBT51.35e is kept constant by rescaling the
velocities at every time step. For the MC part, we used the
standardMETROPOLIS algorithm. One MD time step for a
simulation with 1440 particles took 0.3 s on a SGI INDY
R4400~150 MHz!. One MC step, i.e., trying every particle
once, took about twice that time.

We used three kinds of initial configurations:~i! Ran-
domly distributed surfactant and water molecules.~ii ! Preas-
sembled ordered bilayers in which the head group particles
are on a two-dimensional lattice with some random in-plane
displacements from their lattice positions. The tail particles
are added along the normal direction of the lattice, i.e., par-
allel to thez axis with some small deviations from this ori-
entation. The water molecules were distributed randomly in
the remaining space not occupied by the bilayer.~iii ! End
configurations of previous simulations.

For a randomly chosen initial distribution of the par-
ticles, one always finds very small distances between some
particles in these configurations. This leads to very large
forces acting on these particles which are hard to handle in
MD simulations. Therefore, all initial configurations with
randomly chosen particle positions were first relaxed via a
MC simulation. Since the MC steps are more time consum-
ing than the MD steps, we tried to keep the number of MC
steps as small as possible. A convenient choice was between
0.5 and 1.63105 MC steps. These initial MC simulations
were followed by long MD simulations consisting of up to
323105 time steps.

For the random initial configuration and the MC simula-
tion, we used the following linear congruential pseudoran-
dom number generator:

Yi5~69069Yi 2111!mod 232, ~A1!

Ỹi5Yi /2
32, ~A2!

whereYi with i 51,2,... represents the series of random num-
bers andỸi their projection into the interval between 0 and 1.
For a careful data analysis, only uncorrelated samples should
be used in order to calculate its average values and the stan-
dard deviations, which are used to estimate the errors. There-
fore we estimate the correlation time by measuring the auto-
correlation functionC(t) of the total interaction potentialF
as defined in Eq.~2.8!. This correlation function is given by

C~t!5
^F~ t1t!F~ t !&2^F~ t !&2

^F2~ t !&2^F~ t !&2 . ~A3!

The measurement of the autocorrelation functionC(t) on a
run with 3.23106 MD steps shows three correlation times of
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140, 650, and about 4000 time steps. As a consequence, we
used a sampling time of 5000 time steps for most of our
measurements.

APPENDIX B: INTERACTION PART OF THE
MICROSCOPIC STRESS TENSOR

We consider a system of classical particles with posi-
tions r i and momentapi ; the interparticle potentials are
taken to be independent of the momenta and translationally
invariant but otherwise arbitrary. As shown in Ref. 20, the
interaction part of the microscopic stress tensor is then given
by

s in
ab5(

i
¹ i

aF~$r i%!E
C 0i

dlbd~R2 l! ~B1!

with contoursC 0i which connect an arbitrarily chosen posi-
tion R0 with the particle positionr i .

The total interparticle potentialF can be divided into
two-body, three-body, and more-body potentials which im-
plies

F~$r i%!5(
m

F~m!~$r i%!5(
m

(̂
j &

U ~m!~r j 1
,...,r j m

!,

~B2!

where U (m) denotes them-body potential. The summation
over ^ j & includes all m clusters labeled by ^ j &
5( j 1 , j 2 ,...,j m). The contribution to the microscopic stress
tensor arising fromF (m) is given by

@s in
ab#~m!5(̂

j &
(
k51

m

@¹ j k

a U ~m!~r j 1
,r j 2

,...,r j m
!#

3E
C 0 j k

dlbd~R2 l!. ~B3!

Here the particles in them-cluster ^ j & are labeled by
j 1 , j 2 ,...,j m . Now we select one particle in each cluster, say
with label j l , and choose the contours asC 0 j k

5C 0 j l

1C j l j k
, i.e., all contours contains the same segmentC 0 j l

which connectsR0 with r j l
. If these contours are inserted

into ~B3!, one obtains two terms. However, the first term
arising from theC 0 j l

segment vanishes since it is propor-

tional to the sum over allm-body forces¹ j k

a U (m) in one

cluster andU (m) is taken to be translationally invariant.
Therefore, one is left with the second term arising from the
C j l j k

segments and

@s in
ab#~m!5(̂

j &
(
k51

m

@¹ j k

a U ~m!~r j 1
,r j 2

,...,r j m
!#

3E
C j l j k

dlbd~R2 l!. ~B4!

Since there is nothing special about the value ofl we
average over all possible choices ofl . This leads to an ex-
pression for which each pair of particles inm-cluster ^ j &
occurs twice. Finally, we choose the contourC j l j k

to be iden-
tical with C j kj l

apart from its orientation. In this way, we
obtain

@s in
ab#~m!5

1

m (̂
j &

(
^k,l &

~¹ j k

a U ~m!2¹ j l

aU ~m!!E
C j l j k

dlbd~R2 l!,

~B5!

where the summation over^k,l & represents the sum over all
possible pairs of particles within a givenm cluster.

In order to get a quantity which is accessible to computer
simulations, we subdivide the simulation box into thin slices
and average the stress tensor over these slices. The slices are
perpendicular to thez axis, extend fromzs to zs1Dz and
have volumeVDz . Furthermore, we choose the contours to
be linear and parametrize them via

l b5r j k

b 1l~r j l

b2r j k

b !5r j k

b 1lr j kj l

b . ~B6!

This choice leads to the averaged microscopic stress tensor

@s̄ in
ab#~m!~zs!52

1

mVDz
(̂

j &
(
^k,l &

E dX

3E dYE
zs

zs1Dz

dZ~¹ j k

a U ~m!

2¹ j l

aU ~m!!r j kj l

b E
0

1

dld~R2@r j k
1lr j kj l

!#,

~B7!

whereVDz is the volume of the slice. The slice integration
can be expressed using Heaviside functions which leads to

@s̄ in
ab#~m!~zs!52

1

mVDz
(̂

j &
(
^k,l &

E d3Ru~Z2zs!

3u~zs1Dz2Z!~¹ j k

a U ~m!2¹ j l

aU ~m!!r j 1 j 2

b

3E
0

1

dld@R2~r j 1
1lr j 1 j 2

!#. ~B8!

After integration one finds

@s̄ in
ab#~m!~zs!52

1

mVDz
(̂

j &
(
^k,l &

~¹ j k

a U ~m!

2¹ j l

aU ~m!!r j kj l

b f ~zj k
,zj l

,zs! ~B9!

with f (z1 ,z2 ,zs) as given by

f ~z1 ,z2 ,zs![H u~z12zs!u~zs1Dz2z1! for z15z2

1

z22z1
E

z1

z2
dzu~z2zs!u~zs1Dz2z! otherwise,

~B10!
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whereu(z) is the Heaviside step function withu(z)50 for
z,0, u(z)51 for z.0, andu(0)51/2. Forz15z25z this
implies

f ~z,z,zs!5 H 1
1/2

for zs,z,zs1Dz
for z5zs or z5zs1Dz. ~B11!

For z1Þz2 , on the other hand, the expression~B10!
leads to

f ~z1 ,z2 ,zs!5Dz/uz22z1u ~B12!

if ~i! z1<zs andz2>zs1Dz or ~ii ! z2<zs andz1>zs1Dz. If
both z1 and z2 lie within the Dz slice at z5zs , one has
f (z1 ,z2 ,zs)51. Slightly different expressions are obtained if
only z1 or only z2 lie within the Dz slice. However, in all
cases, the functionf is approximately equal to the inverse of
the number of slices betweenz1 andz2 . The latter approxi-
mation has been used in the simulations.

When applied to the two-body case, one obtains the
coarse-grained stress tensor

s̄2
ab~zs!52

1

2VDz
(̂

j &
~¹ j 1

a U ~2!

2¹ j 2

a U ~2!!r j 1 j 2

b f ~zj 1
,zj 2

,zs!

5
1

VDz
(̂

j &
~¹ j 1 j 2

a U ~2!!r j 1 j 2

b f ~zj 1
,zj 2

,zs! ~B13!

for the contribution from the two-body potentialU (2). In this
case, the summation over^ j & includes all possible pairs of
particles. Likewise, the coarse-grained stress tensor arising
from the three-body potentialU (3) is given by

s̄3
ab~zs!52

1

3VDz
(̂

j &
(
^k,l &

~¹ j k

a U ~3!

2¹ j l

aU ~3!!r j kj l

b f ~zj k
,zj l

,zs!, ~B14!

where the summation over^ j & includes all possible triplets
and the summation over^k,l & represents three terms corre-
sponding to the three possible particle pairs within a given
particle triplet.

1Structure and Dynamics of Membranes, Handbook of Biological Physics
Vol. 1, edited by R. Lipowsky and E. Sackmann~Elsevier, Amsterdam
1995!.

2E. Egberts and H. J. C. Berendsen, J. Chem. Phys.89, 3718~1988!.
3H. E. Alper, D. Bassolino, and T. R. Stouch, J. Chem. Phys.98, 9798
~1993!.

4H. Heller, M. Schaefer, and K. Schulten, J. Phys. Chem.97, 8343~1993!.
5For a review, see R. W. Pastor, Curr. Opin. Struct. Biol.4, 486 ~1994!.
6B. Widom, J. Chem. Phys.81, 1030~1984!.
7C. Borzi, R. Lipowsky, and B. Widom, J. Chem. Soc., Faraday Trans. 2
82, 1739~1986!.

8M. M. Telo da Gama and K. E. Gubbins, Mol. Phys.59, 227 ~1986!.
9B. Smit, P. A. J. Hilbers, K. Esselink, L. A. M. Rupert, N. M. van Os, and
A. G. Schlijper, J. Chem. Phys.95, 6361~1991!.

10G. Gompper and M. Schick, inPhase Transition and Critical Phenomena,
edited by C. Domb and J. Lebowitz~Academic, London, 1994!, Vol. 16.

11A. T. Bernardes, J. Phys. II6, 196 ~1996!.
12C. Tanford,The Hydrophobic Effect: Formation of Micelles and Biologi-

cal Membranes~Wiley, New York, 1980!.
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