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Abstract 

Polymers and colloids change the 'spontaneous' curvature of flexible membranes such as lipid 
bilayers. Two general cases will be discussed: (i) The effect of single polymers or colloids 
which are anchored or adsorbed to the membranes and exert bending moments on the adjacent 
membrane segments; and ( i i )  the effect of unbalanced tensions in the two membrane/water 
interfaces which arise, e.g., from polymer brushes and from non-anchored polymers or colloids. 
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1. Introduction 

All biomembranes consist of a bilayer of lipids and a large number of polymers 
which are attached to the membrane via hydrophobic anchors [ I ] .  These molecules are 
usually connected to relatively stiff, rod-like filaments which belong to the cytoskele- 
ton or to the extracellular matrix. Some fundamental aspects of these rather complex 
systems can be studied in model systems consisting of lipid bilayers and polymers. 

In this review, we will focus on one such fundamental aspect: how is the 'spontaneous' 
curvature of the membranes affected by the polymers'? Here and below, 'spontaneous' 
appears in quotes since this curvature arises from the interactions of the membrane 
with its surroundings. The concept of such a curvature has been introduced a long 
time ago for monolayers [2] and bilayers [ 3 ] .  However, it has been usually treated 
as a phenomenological parameter since its magnitude depends, in general, on the de- 
tails of the molecular structure. In contrast, the spontaneous curvature induced by the 
membrane/polymer interactions is usually governed by a simg/e length scale such as 
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the size of the polymer coil and thus exhibits simple scaling properties [4-61. As 
explained below, similar scaling properties apply to membranes which interact with 
other colloidal particles. 

The curvature effects discussed here should be accessible to experiments on vesicles. 
Indeed, it has been shown recently that one can deduce the 'spontaneous' curvature of 
the vesicle membrane from observations of the vesicle shapes [7,8]. Systematic studies 
in this direction are currently pursued in our laboratory. 

The paper is organized as follows. First, we consider in Section 2 the dilute limit 
of single chains which are anchored or adsorbed onto the membranes. A more coarse- 
grained approach is described in Section 3, where the effects of the polymers and 
colloids are discussed in terms of unbalanced tensions for the two membrane/water 
interfaces. Finally. Section 4 contains some remarks about possible checkerboard states 
of the membranes induced by polymers or colloids. 

2. Anchored polymers 

To proceed, let us consider a membrane segment with a single polymer anchored 
or adsorbed to it. We will focus on linear polymer chains and distinguish several 
cases. For each case, we consider the free energy /A,,) of the attached polymer and its 
dependence on the mean curvature M of the membrane surface. In general, 

= T o +  F\LM for small M, ( 1 )  

where L is a characteristic length scale to be determined below. 
For a tensionless membrane, the energy increase corresponding to the bending of 

the membrane is given by Afi, , ,? -= ~ K M ~ L ~ ,  where K is the bending rigidity. If Ad,,,,> 
is balanced against the polymer free energy .GI as given by Eq. ( I ) ,  one obtains the 
'spontaneous' mean curvature 

for the membrane segment adjacent to the anchored polymer. 
Anchowd nt one end. First, consider a single chain for which the anchor is located at 

one of its ends and for which the non-anchored polymer segments experience repulsive 
interactions with the membrane surface. Such a polymer forms a mushroom, see Fig. I. 
The size of these mushrooms is con~parable to the size of the free polymer, i.e., to 
R,,,, E al,,,NV with the persistence length a,,,, and the size exponent v.  The latter ex- 
ponent is 1' = $ for good solvents and v = 4 for 0-solvents or ideal chains, see, e.g., 
Ref. [9], 

The polymer size R,,,, represents the basic length scale L which enters in the curvature 
expansion, Eq. ( I  ). In addition, the tree energy .PI is found to be .Ti  2 -T .  Therefore, 
the general relation, Eq. (2) leads to [4] 

Adit, - + T/&, - +T!Kcit),,N" for mushrooms, 
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F I ~  1 Polymer mushrooms al the membrane segments of different shape 

where T is the temperature in energy units. The positive sign of ,W,,, in Eq. (3 )  implies 
that the membrane bends uwojl from the polymer in order to increase the configurational 
entropy of the chain. 

Anchored at both ends. If the polymer chain is anchored at both ends, one has two 
competing effects [ lo , ]  11. When the two ends are close together. the polymer forms 
an anchored ring and the membrane again bends away from the chain. On the other 
hand, if both ends are far apart, the polymer is in a stretched state and then pulls on 
the membrane. 

For ideal chains with v = ';, these two competing effects cancel to leading order. 
Indeed, for a spherical surface. the curvature expansion of the polymer free energy 
leads to Y;,, = .Yo for M > 0 and 

for a cylindrical surface, one has 

Since .̂ ,,,, does not contain a term - M ,  ideal chains anchored with both ends do not 
induce a 'spontaneous' curvature in the usual sense. Because the leading term M~ in 
Eq. (5)  is ~ w ~ j ( / t i w ~  a very flexible membrane with a relatively small bending rigidity 
1; could become unstable with respect to cylindrical deformations; in this case. the 
up-down symmetry would be broken spontaneously. It remains to be seen how this 
behavior is affected by self-avoidance. 

Chains with several anchors. Next, consider an ideal chain with several anchors 
which partition the chain into m segments. Its partition function factorizes into a product 
of tri partition functions. where each factor represents one chain segment. Those chain 
segments which are bounded by two anchors do not contribute to the 'spontaneous' 
curvature. Therefore, bending moments arise only from those ends which are not an- 
chored. If both end segments are free and consist of Nl and A',,, monomers, respectively, 
they lead to 

1 2  with R l  = a ,,,, 111; ' and R,,, = LZ,,~,A',,, for ideal chains. 



Adsorhcd c/iiiinx If the non-anchored segments of the chain experience uiiruciive 
interactions with the membrane surface, the polymer will form an adsorbed pancake. 
Scaling arguments predict that the membrane now bends towards the polymer in order 
to maximize the number of contact points with the pancake. An expicit calculation 
for ideal chains shows, however, that the sign of M,p may, in general, depend on 
microscopic parameters [6]. 

The attractive potential between the polymer and the surface is usually described 
by the so-called t'xtro/~olotion lcmjth I;,,, see. e.g., Ref. [ I ? ] .  In general, this length 
scale may depend on the curvature of the surface [I 3,6] and will then behave as 

RZ Io(l + I1A4) for small M. For a planar surface, the inverse extrapolation length 
l/lo measures the distance from the adsorption transition of the ideal chain; negative 
and positive values of l/Io correspond to adsorbed and desorbed chains, respectively. 

For ideal chains. the free energy .y,̂  can be calculated explicitly [6.14,15] and one 
finds ( i )  that the basic length scale L is provided by the lateral size LH = a',,,,Ni ' of 
the pancake and (i i)  that the free energy .P I  = T Q 1 ( j l )  with j, = U,,~;V' ?lo. In the 
adsorbed regime away from the adsorption transition, one has 

which depends on the parameter ratio 161. This leads to 

M ,  ,, cx /. T iiL - for pancakes. (8)  

where L 1 E I lo decribes the thickness of the pancake. 
Therefore. the sign of the 'spontaneous' curvature is neifutire for Ii/ ' lo < 1 but pos- 

itirv for i I  / lo > 1 ,  and the membrane bends towards and u u 3 q  from the polymer 
in these two cases, respectively. For a contact potential, one expects l I / l o  = 0 and 
the membrane bends towards the polymer 161. It is conceivable, however, that suffi- 
ciently long-ranged forces lead to /,/'lo > 1 and, thus, to the opposite curvature. Such 
a non-universal behavior could also apply to adsorption layers consisting of many 
polymer chains. In the latter case. it has been proposed by de Gennes [I61 that the 
membrane bends uway from the adsorption layer whereas Brooks et al. [I 71 found from 
a self-consistent calculation that the membrane bends touwtls the adsorbed polymers. 

Co/luj~.s~~(/ chums and colloiiiiil purticlcs. So far, we have assumed that the anchored 
polymers are swollen, i.e., that they are in good or 0 solvent. A somewhat different 
situation is encountered for collapsed chains, i.e., for chains in bad solvent. 

To a first approximation, a collapsed chain behaves like a fluid droplet characterized 
by a finite surface tension and will thus attain a near-spherical state with radius R,,Ã£ If 
such a droplet is anchored to the membrane, the configurational entropy of its desorbed 
state will be determined, to a large extent. by the structure of the anchor. In the 
adsorbed state. on the other hand, the tensionless membrane will fry to encapsulate the 
droplet. 

Thus, consider a state in which the droplet is completely contained in a spherical 
membrane bud. Thc adhesive energy of this state is given by W ~ I - C R : ~ ~ , ,  where W < 0 



is the adhesive energy per unit area of the two surfaces. The bending energy of the 
membrane bud is 8 7 ~ .  Therefore, encapsulation is energetically favored as soon as 

The same behavior applies to colloidal particles which have a near-spherical shape and 
a radius which exceeds R.. 

3. Unbalanced interfacial tensions 

Let us now consider a situation in which the membrane is exposed to many polymers 
or colloids and let us assume that the interaction between the membrane surface and 
these particles can be described by a change in the interfacial tension of the two 
membrane/watcr interfaces. We will also assume that there is no tendency for phase 
separation which implies that the interfacial tensions are uniform along the membrane. 
As soon as the corresponding interfacial tensions are different, they will induce a 
'spontaneous' curvature of the layer as envisaged in the classical work of Bancroft and 
Tucker [2]. 

If the neutral surface of the membrane has area A and mean curvature M ,  the areas 
4'" and A"' of its interior and its exterior interface are given by A1" = (1 + / , , , J4)A 
and A'" x (1 - l i , l~M)A, respectively, where denotes the membrane thickness. In 
addition, the interfacial tensions, Z"' and X"\ of these two lipidhater interfaces will 
depend on M ,  and one has 

where L is again an appropriate length scale which will be specified further below. If  
one now compares the flat and the curved state, one obtains the excess free energy 

of the curved state up to first order in \I. 
If the excess free energy AX is balanced against the bending energy ~ K I W ~ A ,  one 

obtains the tension-induced curvature 

In general, the bending rigidity K also contains contributions arising from the second- 
order terms of A I ,  but this will not be discussed here. If & and ll have different 
signs, the 'spontaneous' curvature as given by Eq. (12) may be positive or negative. 

Several cases will now be considered for which the curvature expansion. Eq. (10). 
has been explicitly performed. 

Po/~wicr  brushes. If the coverage of the membrane by anchored polymers is larger 
than the overlap coverage. one enters the brush regime [5,18,19]. The properties of 
such a brush depend on the reduced coverage l= = (a,,,,&,,,)2, where i;llll is the mean 



anchor separation (which is taken to be curvature independent here). In this case, the 
basic length scale L which enters in Eq. (10) is given by the brush height hn. Within 
the usual blob picture, one finds 

In addition, the interfacial tensions in Eq. (10) are 

Since Zl zx - In ,  even the asymmetric case, in which only one side of the membrane 
is covered by a brush, can lead to a positive or a negative 'spontaneous' curvature 
depending on the relative size of the membrane thickness and the brush height 
170. For A()  ̂> I,,,(,, the terms arising from Z i  dominate and M y / ,  > 0 corresponding to a 
membrane which bends away from the brush [ 5 ] .  

Not?-unrhori.~d polymers and colloi/.s. The excess free energy arising from a dilute 
solution of non-anchored polymers has been calculated in Ref. [14]. The corresponding 
curvature expansion leads to I, = R,,,, and to the interfacial tensions 

for n polymers per unit volume. If the polymers are only on the exterior side, e.g., 
one has 

and the membrane bends towards the polymer solution. 
Essentially, the same behavior also applies to dilute solutions of spherical colloids 

with radius R,,,. Indeed, all formulas remain valid (apart from numerical coefficients 
of order one) if the size R,,,, of the polymer coils is replaced by the size R;.,, of 
the colloids. If the colloids are thin rods, the curvature expansion of the interfacial 
tension leads to ZO > 0 but Zl = 0 [20] and the only contribution to the 'spontaneous' 
curvature arises from the membrane thickness. 

Elec/i '~tt ' .s .  Another case for which the curvature expansion, Eq. (10). has been 
considered are bilayers in electrolytes. In this ease, the basic length scale is provided 
by the Debye Huckel screening length ID//. Using the results of Refs. ( 21 -231, one 
obtains the interfacial tensions 

where Q and ;: are the surface charge per unit area and the static dielectric constant, 
respectively, in Sl units. Since X} = -Zo, the 'spontaneous' curvature hfyl, can again 
be positive or negative and it is small if = / , l , ( , .  



Fig. 2.  Checkerboard a r a y  of mushrooms 

4. Checkerboard states 

Two mushrooms or pancakes which are anchored to two different sides of the mem- 
brane want to uvoid each other: If we force two such polymers to be directly opposite 
to each other, we loose the free energy 2A.F where A.F KM,:~, dCl0 is the free energy 
gained for each curved membrane domain and .c-f,/,, is the domain area. For mushrooms 
and pancakes, one has A.F - T^/K and A.F - ( T ~ / K ) ( R ~ ~ / I ~ ) <  respectively. In gen- 
eral, the domains may also arise from colloidal particles attached to the membrane or 
from lateral phase separation within the membrane. 

If the coverage I' is of the order of hallf the overlap coverage, the domains on 
different sides of the membrane can still avoid each other if they attain a checkerboard 
array and the membrane aquires a corresponding curvature modulation as displayed in 
Fig. 2. In such a situation, the membrane domains with A-/,l, # 0 are connected by 
intermediate membrane segments which consist essentially of saddle points and thus 
cost 110 bending energy (such a curvature modulation has been previously discussed in 
different contexts [ 24-26]) .  

The free-energy difference between the checkerboard state and the flat state is AÂ¥ 
per domain. Such a situation resembles an antiferromagnet with nearest-neighbor cou- 
pling constant ,I = -A,^, which undergoes a phase transition to an ordered state at 
J = J,  = --0.5T. Thus, for J.F $ 0.5 T, the system may exhibit ordered checkerboard 
states [27].  
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