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Abstract Dimeric kinesin presumably moves in a
“hand-over-hand” fashion via alternating steps of its
two heads, which can cooperate in various ways. This
motion is discussed in the framework of nonuniform
ratchet models in which the molecular motor is de-
scribed by M internal states and undergoes transitions at
K spatial locations within the period of the molecular
force potentials. Two subclasses of models with (M,
K)=(3, 2) and (M, K)=(2, 2) are studied which corre-
spond to weakly and strongly cooperative heads, re-
spectively. Both subclasses lead to the same universal
relationship between the motor velocity and the un-
binding rate constant of the motor heads which is rem-
iniscent of, but distinct from, Michaelis-Menten kinetics.

Key words Molecular motors - Kinesin - Ratchets -
Michaelis-Menten kinetics - Force dependence

Introduction

Biological cells and subcellular organelles undergo di-
rected motion during many essential biological processes
such as cell locomotion, intracellular transport, or cell
division. This motion is powered by molecular motors
which are able to provide a direct coupling between
chemistry and mechanics, i.e., to transduce the free en-
ergy released from chemical reactions directly into me-
chanical work.

One specific motor which has been experimentally
studied in much detail is dimeric kinesin, which moves
on microtubules (Howard et al. 1989; Svoboda et al.
1993; Hua et al. 1997; Schnitzer and Block 1997; Gilbert
et al. 1998; Hancock and Howard 1998; Thorméhlen
et al. 1998; Visscher et al. 1999). The microtubule is a
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linear filament consisting of 13 protofilaments of tubulin
molecules which form a hollow cylinder. Each protofi-
lament represents a one-dimensional lattice with a lattice
constant of 8 nm. The motor consists of two identical
amino acid chains which form two heads. Each kinesin
head can act as an ATPase which adsorbs and hydro-
lyses ATP. In addition, each head can bind to and un-
bind from the microtubule. Thus, each head has an
ATP-adsorption domain and a microtubule-binding
domain.

Dimeric kinesin requires both heads in order to make
many successive steps (e.g., see Hancock and Howard
1998). Each step corresponds to a center-of-mass
movement of 8 nm (Svoboda et al. 1993; Hua et al. 1997;
Schnitzer and Block 1997). In its rigor state, the two
heads are bound to two successive lattice sites separated
by 8 nm (Thorméhlen et al. 1998). All of these features
are consistent with the intuitive picture that the motor
advances via alternating 16 nm steps by each of its heads
in a “hand-over-hand” fashion.

It is, however, still difficult to construct a unique
model for this “hand-over-hand’ motion since the two
heads and their enzymatic cycles may cooperate in var-
ious ways (Gilbert et al. 1998; Hancock and Howard
1998). Thus, we will study two different classes of mo-
lecular motor models, which correspond to weakly and
strongly cooperative heads, respectively, and will em-
phasize those features which are valid in both types of
models. One such feature is the relationship between the
motor velocity and the unbinding rate constant of the
motor heads.

The unbinding rate constant may be expressed in
terms of the ATP concentration. In this way, our models
also lead to Michaelis-Menten-type relationships be-
tween the motor velocity and the ATP concentration
which provide a good fit to the experimental data
(Howard et al. 1989; Hua et al. 1997; Schnitzer and
Block 1998; Visscher et al. 1999). In contrast, the de-
pendence of the velocity on the applied force F is non-
universal and depends on the underlying molecular
interaction potentials.



In this article, we use the theoretical framework of
composite Markov processes (or reaction-diffusion
models) in one dimension (van Kampen 1992), several
variants of which have been used recently in the context
of molecular motors (e.g., see Astumian and Bier 1994;
Prost et al. 1994; Harms and Lipowsky 1997; Jiilicher
et al. 1997; Parmeggiani et al. 1999). One important
aspect of real motors which should be included in these
models is the interdependence of the enzymatic step and
the conformational state, as emphasized by the French
group (Prost et al. 1994; Jiilicher et al. 1997; Parmeg-
giani et al. 1999). This leads to nonuniform ratchet
models in which the transition rates vary with the spatial
position of the motor and are localized around certain
positions.

Our article is organized as follows. First, we intro-
duce a general class of nonuniform ratchet models in
which the molecular motor is described by M internal
states and undergoes transitions at K spatial locations
within the period of the molecular force potentials. This
generalizes previous work on nonuniform ratchets
(Prost et al. 1994; Jiilicher et al. 1997; Parmeggiani et al.
1999) which was restricted to the case (M, K)=(2, 2).
The latter authors used transition rates which are
localized with infinite spatial intervals. In contrast, we
found it advantageous to parametrize the localized
rates in terms of delta functions since this allows us to
solve these models analytically. In addition, we will
focus on the situation far from chemical equilibrium
and detailed balance and, thus, do not address the
linear response regime discussed by Parmeggiani et al.
(1999).

In the second part of our article, we consider two
subclasses of models with (M, K)=(3, 2) and (M,
K)=(2, 2) in order to describe the “hand-over-hand”
motion of kinesin. As mentioned, these two subclasses
correspond to different assumptions about the coopera-
tivity between the two heads of kinesin: the (3, 2)-models
describe weakly cooperative heads whereas the (2, 2)-
models are for strongly cooperative ones.

Nonuniform ratchet models

The theoretical framework used here is based on the
time evolution of the probability densities P,,(x, t) to
find the motor at position x and in internal state m
which can attain M values m = 0,...,M-1. It is tacitly
assumed here that displacements of the center-of-mass
of the motor which are perpendicular to the filament can
be ignored. The position coordinate x measures the
displacements of the center-of-mass parallel to the fila-
ment.

The different internal states correspond to different
internal conformations arising (1) from the chemical
reactions between filament, motor, and ATP and (2)
from transverse displacements of the center-of-mass of
the motor, or (3) from relative displacements of different
molecular groups within the motor protein.
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In principle, the internal degrees of freedom of the
motor could also be described by continuous variables
or coordinates, as recently emphasized by Keller and
Bustamante (2000). The motor then undergoes sto-
chastic motion within a multi-dimensional state space.
We do not pursue such an approach here since the
theoretical methods, which are available for the analysis
of this multi-dimensional dynamics, are rather limited
(Risken 1989; van Kampen 1992).

For a given motor position x and internal state m, the
probability density P,, may change (1) because of lateral
diffusion in state m described by lateral currents J,, or
(2) because of transitions between the different internal
states. Therefore, the probability densities P,, satisfy
the continuity equations 0P, (x,t)/0t + 0J,(x,t)/0x =
I,,(x,t) with the transition current densities 7,,,.

The lateral currents J,,, depend on the molecular force
potentials U,,(x) and on the external force F which de-
fine the effective force potentials:

Vin(x) = (Un(x) — Fx)/T (1)

where T is the temperature in energy units. Note that F
is the force component which acts tangential to the fil-
ament. We use the sign convention that a load force
which acts against the motor movement corresponds to
F<0. The x-dependence of the molecular interaction
potentials U,,(x) is governed by a characteristic length
scale denoted by /. For kinesin on microtubules, these
potentials are periodic and / represents the potential
period with U, (x + 1) = U (x).

Using these effective potentials, the lateral currents
J,, have the Smoluchowski- or Fokker-Planck form
(Risken 1989; van Kampen 1992):

0 0
In(x,8) = =Dy [a Vi (x) + a} Pu(x,1) (2)
where the parameter D, represents the small-scale dif-
fusion coefficient. The corresponding friction coefficient
¢ is given by ¢, = T/Dy, as follows from the Einstein
relation.

Note that, in the continuum approach used here, the
applied force F, which is conjugate to the parallel co-
ordinate x, must enter linearly into the lateral current as
in Eq. (2). In the context of discrete hopping models, a
quasi-equilibrium hypothesis leads to transition rates
which depend exponentially on the applied force (Fisher
and Kolomeisky 1999).

The transition current densities /,, depend on the
transition rates Q,,, = Omega,,(x) from state m to state
n and have the generic form:

Im = Z , [*PQOn (X) + PI’IQnm (X)]

n

(3)

where the prime indicates n # m.

We now want to implement the property of real
motors that the biochemical cycle is coupled to the
mechanical movement. In the context of ratchets as
considered here, this implies that the transitions between
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different motor states occur for certain values of x. This
has been previously studied for ratchets with M =2 in-
ternal states and for transitions which are localized at
two positions (Prost et al. 1994; Jiilicher et al. 1997;
Parmeggiani et al. 1999). Here, we generalize this type of
model and consider (1) general values of M and (2)
transition rates which are localized in space at the dis-
crete set of K positions x=x; with k=1,...,K and
X1 <x;< --- <xi. The latter rates are expressed as:

Qun(x) = > O (x2) LS (x — 1) (4)
k

where [q represents a molecular length and (x) is Di-
rac’s delta function. As shown below, this parametriza-
tion is useful since it allows us to solve these models
analytically.

We will now focus on the stationary states with
OP,,/0t = 0 and total lateral current J = X,,J,, = const.
It is then convenient to integrate the expressions of Eq.
(2), which leads to:

1 X
eVm(")Pm(x) = eV’"(x*)Pm(x*) — D—/derm(y)Jm(y) (5)
)

with V,,(x) = (Un(x) — Fx)/T. In addition, we consider
the finite interval 0 < x </ and use periodic boundary
conditions with the “box normalization’”:

/

!
/de(x)—O/dx;szl

0

()

which implies one motor per box and, thus, the motor
velocity v=1[J. For periodic potentials U,,,(x), the box size
[ is equal to the potential period, as mentioned before.

Before we consider explicit examples for the above
ratchet models, we will briefly explain how one can
obtain the stationary state of these models in general.
When the localized transition rates of Eq. (4) are in-
serted into the densities 7,, as in Eq. (3), integration of
the continuity equation 0J,,/0x = I,, leads to:

Tn(x) = T+ > A (x2)0(x — x) (7)

with the average currents J,, and the current disconti-
nuities:

/

ATy (xi) = Z[_P’" (e )W (X)) + P (0% ) Wom (x1) 12

n

(®)

Inspection of the last two equations shows that the lat-
eral currents J,, are now expressed in terms of the MK
variables P,,(x;) and the M variables J,. Thus, one
needs M(K+ 1) equations in order to determine these
M(K+1) unknowns. This set of equations can be ob-
tained as follows.

First, the lateral currents as given by Eq. (7) are in-
serted into the general relations of Eq. (5) which express

the probability densities P,, in terms of the currents J,,,.
The choice x+=x; and x=x; with k=2,...,K then leads
to M(K-1) linear and homogeneous equations for the
unknowns P(x;) and J,. In addition, the periodic
boundary conditions lead to 2M-1 linear and homoge-
neous equations as given by (1) J,, (x; + [) = J,,(x1) with
m=0,....,M-2 and by (2) P,(x;+!)=P,(x;) with
m=0,...,M-1. The Mth equation Jy_ (x;+1)=
Jy—1(x1) for the currents is not linearly independent
since X,,AJ,,(x;) = 0 for all x;. Finally, the last equation
is provided by the normalization condition of Eq. (6),
which is a linear but inhomogeneous equation. In this
way, one obtains a complete set of M(K+1) linear
equations for the M(K+1) unknowns P(x;) and J,,
which can be solved by linear algebra.

Models for dimeric kinesin

The general procedure outlined above will now be ap-
plied to the “hand-over-hand” motion of two-headed
kinesin. In view of its two heads, both of which can bind
to the microtubule, one can distinguish four internal
states: (1) A doubly bound state in which both heads are
bound to the filament; (2, 3) two excited states, 1 and 2,
in which head 1 and head 2 are unbound, respectively;
and (4) a completely unbound state in which both heads
have been detached.

The excitations from the doubly bound state are in-
duced by the hydrolysis of ATP which may, in general,
occur at both heads (Peskin and Oster 1995). If the en-
zymatic activity of the two heads were completety un-
correlated, the second head could unbind while the other
is still in its unbound state. In order to have a motor
which is highly processive, such transitions to the com-
pletely unbound state must be rare, which requires some
sort of cooperative behavior of the two heads. First, we
will assume that the heads are weakly cooperative in the
sense that the unbound head suppresses the simulta-
neous unbinding of the other bound head. We may then
ignore the completely unbound state and consider three-
state models as in Fig. 1.

In the doubly bound state, the center-of-mass of the
motor is located at discrete x-positions which are 8 nm
apart. The latter states correspond to the minima of the
interaction potential Uy(x) which are separated by large
potential barriers, as shown schematically in Fig. 1.
Now, consider a doubly bound state and let us displace
the neck region of the molecular motor using, for
example, the tip of an atomic force microscope. In such
an experiment, the motor would stay in the doubly
bound state for sufficiently small displacements away
from the minima, but would detach from the filament if
these displacements became too large. Therefore, the
potential barriers must be sufficiently large to prevent
the motor attaining doubly bound states at intermediate
x-values.

If the motor sits in one of these minima, both the
trailing and the leading head should be able to adsorb
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Fig. 1 Molecular interaction potential U, and transition rates for
the three-state model as a function of the motor position x. The
doubly bound state corresponds to the potential Uy, the excited
states 1 and 2 correspond to unbound heads 1 and 2, respectively.
The potential barriers are indicated only in a schematic manner.
The transition rates are restricted to the potential minima of U,. On
the left, one has a sequence of two excitations of the trailing head
with unbinding rate constant w; on the right, a sequence of two
excitations of the leading head with unbinding rate constant pw.
All transition rates are periodic functions of x with period /, which
implies four different rates at each potential minimum of U,

ATP, unbind from the filament, and then make a for-
ward or a backward step of /=16 nm, respectively. As
mentioned, this corresponds to a 8 nm step of the center-
of-mass coordinate x. Since both heads are equivalent,
the four transition rates from the doubly bound state to
the excited states 1 and 2 and back to the doubly bound
state must all be periodic with period / (see Fig. 1),
and must be related via Qg(x) = Qi (x —//2) and
Qo0(x) = Qyo(x — 1/2). Thus, one has to specify only two
of the four transition rates, say Qg and Q;o. The un-
binding rate g, depends on two rate constants, w, = @
and wj, = po, for the trailing and the leading head, re-
spectively, with 0 < p <1, and is given by:

Q()l(x) = G)lgé(x — 1/2) + pwlgé(x) (9)

Likewise, we consider two different rebinding rate con-
stants, v = v and v, = v, > v, and the rebinding rate:

Quo(x) = v11d(x — 1/2) + vala(x) (10)

In the two excited states 1 and 2, the motor experiences
the microscopic force potentials U;(x) and U,(x), re-
spectively, as shown schematically in Fig. 1. Since both
heads are equivalent, these two potentials must be re-
lated via Uy (x) = Uy (x — 1/2).

In principle, the two potentials U;(x) and U,(x) rep-
resent measurable quantities. Thus, assume that the
motor is in the excited state 1 where head 2 is bound and
head 1 is unbound. Now, we can imagine to move the
unbound head of the motor using again the tip of an
atomic force microscope while the other head remains in
its bound state. The potential energy of this conforma-
tion as a function of the motor position x is described by
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Ui(x). The bound head 2 represents a strong constraint
on the possible locations of the unbound head 1 and,
thus, on the position x. It is believed that the unbound
head can be displaced by about 16 nm, which cor-
responds to a displacement of the motor position x by
about 8 nm. These displacements are presumably ac-
commodated by the flexibility of the neck region of the
dimeric kinesin. Larger separations of the two heads are,
however, very unlikely since they would lead to a severe
distortion or overstretching of the molecule.

The simplest potential which embodies these features
is given by the indented sawtooth potential:

Ul(x):U;mx/ll (11)

= Urd(l _x)/(l - ll)

If the height U, of the potential ramp is small compared
to height U, of the potential barrier, this indented
sawtooth potential has a steep barrier at x=1[; <//2 as
displayed in Fig. 1. Note that the potential ramp cor-
responds to the range of x-values which are accessible to
the motor by displacements of the unbound head,
whereas the potential barrier corresponds to those x-
values which are inaccessible because of the geometric
constraints just discussed.

The stationary state of the three-state ratchet with the
transition rates as given by Egs. (9) and (10) can be
determined analytically using the general procedure
outlined above. As a result, we find that the motor ve-
locity v has the generic form:

for 0 <x <14
for 1 <x<l

) (12)

(0, F) = tres(F) + [v5ae(F) — tres(F)] o+ on(F)

for any choice of the interaction potentials U, and of the
rebinding rate constants v; and v, (the saturation ve-
locity v, can vanish for force potentials U,,, with certain
symmetries which do not lead to directed motion). Thus,
the w-dependence is rather simple whereas the applied
force F enters via three functions, the residual velocity
Vies, the saturation velocity v, and the characteristic
rate ..

The residual velocity v..s(F) is equal to the velocity in
the absence of ATP and, thus, vanishes for zero applied
force. Therefore, one obtains the simple hyperbolic re-
lationship:

v(@,0) = v (0)w/(® + @.(0)) (13)

which is again universal in the sense explained above.
This relationship has the same functional form as the
well-known Michaelis-Menten relation for enzyme ki-
netics (Bisswanger 1994). It is important to note, how-
ever, that the derivation of the velocity-rate relationship
of Eq. (13) did not involve any assumptions about the
enzyme kinetics of the kinesin heads.

In fact, we will now implement the underlying
chemical kinetics and express the unbinding rate con-
stant @ in terms of the ATP concentration I'. We will
divide the biochemical cycle of each head into an un-
binding and a rebinding sequence. The unbinding se-

for F=0
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quence contains the adsorption and hydrolysis of ATP
and is given by M/K + ATP—-M/K/ATP — M/K/ADP/
P, > M+K/ADP+P;, where M, K, and P; stand for
microtubule, kinesin, and inorganic phosphate, respec-
tively. Only the first step of the unbinding sequence
depends on the ATP concentration I' and the associated
rate constant is given by kI". This implies that the un-
binding rate constant w can be expressed as:

o= kD) + k! (14)

which describes Michaelis-Menten kinetics (Bisswanger
1994). The rebinding sequence, on the other hand,
consists of M+ K/ADP - M/K/ADP — M/K +ADP
and the corresponding rate constants are independent of
I". If one inserts the expression of Eq. (14) into the ve-
locity-rate relationships as given by Eqs. (12) and (13),
one obtains precisely the same functional relationships
between the velocity v and T" but with rescaled (or ren-
ormalized) functions vy, w., and V.

So far, we have assumed a relatively weak coopera-
tivity between the two heads. Now, let us assume that
the heads are strongly cooperative in the sense that the
rebinding of the unbound head is strongly correlated
with the ATP adsorption of the bound head. Therefore,
these two processes can be combined into a single step of
the motor cycle, and one may eliminate the intermediate
step corresponding to a doubly bound state from the
theoretical description. In this way, one arrives at ef-
fective two-state models in which the motor undergoes
transitions between the two states 1 and 2.

Because of the equivalence of the two heads, the
transition rates Q;, and €,; between the two states are
again related and Q,;(x) = Qj2(x — //2). Thus, the two-
state model is defined by the unbinding rate:

Qs (x) = wld(x) + pwlad(x — 1/2) (15)

with 0 < p<1. It turns out that this two-state model
again leads to the velocity-rate relationships as given by
Eqgs. (12) and (13) for all possible molecular interaction
potentials.

In general, one may consider models which describe
the enzyme kinetics of the two heads in more detail. In
the theoretical framework considered here, this leads to
ratchet models with an increased number of internal
states and with more transitions between these states. In
such more detailed models, one may also study different
types of synchronization between the two enzymatic
cycles of the two heads.

Force dependence of motor properties

Finally, we briefly address the dependence of the motor
velocity on the applied force F. We will focus on the
simplest case, namely on the two-state model where we
choose p=0 in Eq. (15) in order to eliminate one pa-
rameter from the problem; the more general case with
p >0 is qualitatively similar. The functional dependence
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Fig. 2a—c Left column Molecular interaction potentials U = U, in
units of temperature 7 as a function of the coordinate x in units of
the potential period /. a and b are indented sawtooth potentials with
steep potential barriers Uy, =407 at x//=1,//=9/20 and with ramp
potential U, =0 and U,, = 12T, respectively. ¢ A simple sawtooth
for comparison with Uy,/T=U,/T=18. Right column Force
dependence of the saturation velocity vy, the characteristic rate
w+, and the efficiency #n for the potentials shown on the left. All
quantities plotted in the right column are dimensionless; the
corresponding units are defined in the text

Force [pN]

of vg and w+ on the load force F<0 is shown in Fig. 2
for three different choices of the sawtooth potential of
Eq. (11). The velocity vy, is plotted in units of the ve-
locity scale vs. = D/, the characteristic rate w« in units
of wy. = 2Dy/llg, and the force F has been transformed
into physical units using F. = T/l ~ 0.257 pN.

As mentioned, the molecular interaction potentials
should contain a steep barrier reflecting the limited ex-
tensibility of the kinesin molecule. In this case, the ve-
locity v, decreases with increasing load and becomes
rather small at a certain characteristic force F= F«. For
the examples in Fig. 2a and b, one finds F+ =~ -2 pN and
—6 pN , respectively. The residual velocity v, is very
small in the presence of a steep barrier and can be safely
ignored for the force range in Fig. 2. Therefore, the
velocity v is proportional to vy, and F= F« represents
the stall force for the motor.

In Fig. 2¢ we display, for comparison, the behavior
for a simple sawtooth potential without a steep barrier,



as used previously in the context of two-state models
(Prost et al. 1994; Jiilicher et al. 1997). In this case, the
velocity vg,; goes through zero at F=F« and becomes
negative for F< F:. Furthermore, the residual velocity
Vres €an no longer be ignored since forces of the order of
F:« will frequently push the motor over the relatively
small potential barriers.

Another important quantity which characterizes the
performance of the motor is its efficiency #, which can be
easily determined in our models. First, one has to cal-
culate the unbinding current J.,, for the stationary
state, which is equal to the number of unbinding tran-
sitions per unit time and per motor. In the two-state
model with p=0 as discussed here, the unbinding cur-
rent is given by

Junb = [Pl (0) +P2(l/2)]&)lg

The efficiency 5 is then given by 1= |F|v/AGJn,, Where

AG is the free energy consumed per unbinding transi-
tion. Using the dimensionless force F = F/F,. = IF/T,
the dimensionless velocity v = v/vs. = lv/Dy, and the
dimensionless unbinding current  Jyup = Junv/Jse =
I>Junb /2Dy one obtains = (T /2AG)Fo/Jyn, which de-
fines the natural efficiency scale 5, = T/2AG.

In Fig. 2 the efficiency 7 is plotted in units of 7. In
general, n depends on w. For the indented sawtooth
potentials in Fig. 2a and b, this dependence is negligible
over the displayed range of forces. For the simple saw-
tooth in Fig. 2¢, on the other hand, the plotted efficiency
corresponds to the limit of large w. As w is decreased,
the velocity v decreases and the left part of the #-curve is
shifted towards the right.

It is interesting to note that, for the indented saw-
tooth potentials, the efficiency # increases monotonically
for increasing load up to and beyond the stall force,
whereas it goes through zero for the simple sawtooth
potential. If the motor consumes one ATP per unbind-
ing transition, one has 5y = 1/40, which implies that the
efficiency for F=-5 pN is about 49% for the indented
sawtooth in Fig. 2b and only about 8% for the simple
sawtooth in Fig. 2c. Note that the behavior for the in-
dented sawtooth potential with p=0 corresponds to
“tight coupling” between the enzymatic cycle and the
mechanical movement. In the models considered here,
“loose coupling” can arise from p >0 corresponding to
active backwards steps or from reduced potential bar-
riers which allow diffusive steps in the backwards di-
rection.

(16)

Conclusion

In summary, we have introduced a general class of
nonuniform ratchet (or reaction-diffusion) models with
M internal states and transitions at K spatial locations.
We have determined the functional dependence of the
motor velocity v on the unbinding rate constant o (and,
thus, on the ATP concentration I') for two subclasses of
models with (M, K)=(3, 2) and (M, K)=(2, 2), which
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correspond to weakly and strongly cooperative heads,
respectively. In both cases, we found the same universal
relationships between v and w as given by Egs. (12) and
(13).

It is possible to determine the velocity-concentration
relationship for all nonuniform ratchet models with
arbritrary values of M and K (R. Lipowsky, unpub-
lished results). One then finds that the relationship of
Eq. (12) is always valid if the motor cycle contains only
one ATP-dependent transition rate per motor cycle. It
should be noted, however, that the three-state and the
two-state models considered here contain four or two
ATP-dependent transition rates per motor cycle. In
general, the velocity-concentration relationship depends
on the number of ATP-dependent transition rates (R.
Lipowsky, unpublished results). Thus, (M, K) models
with two and four ATP-dependent transition rates are
characterized by velocity-concentration relationships
which can be somewhat more complex than the form
given by Eq. (12). However, these more general rela-
tionships reduce to Eq. (12) if the (M, K) models contain
certain symmetries or constraints. Such a reduction
applies to the two subclasses of models with (M, K)=(3,
2) and (M, K)=(2, 2) as studied here for two-headed
kinesin.
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