
Abstract We present measurements of the effective spon-
taneous curvature of fluid lipid bilayers as a function of
trans-bilayer asymmetry. Experiments are performed on
micrometer-scale vesicles in sugar solutions with varying
species across the membrane. There are two effects lead-
ing to a preferred curvature of such a vesicle. The sponta-
neous curvatures of the two monolayers as well as their
area difference combine into an effective spontaneous cur-
vature of the membrane. Our technique for measuring this
parameter allows us to use vesicle morphology as a probe
for general membrane-solute interactions affecting elastic-
ity.
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Introduction

The concept of interfacial elasticity (Helfrich 1973; Evans
1974; Safran 1998) has become an integral part in the theo-
retical description of fluid interfaces and biomembranes
(Lipowsky 1992; Gompper and Schick 1994; Sackmann
1994; Seifert 1997). For instance, the shape of red blood
cells (Deuling and Helfrich 1976; Mohandas and Evans
1994) and the morphology of fluid lipid vesicles (Berndl
et al. 1990; Käs and Sackmann 1991; Farge and Devaux
1992; Döbereiner et al. 1997) is controlled by the elastic
energy of the membrane and the cytoskeleton. Further, 
the steric interaction between fluctuating membranes 
(Helfrich 1978; Lipowsky and Leibler 1986) plays an im-
portant role in the stability of soft colloids.

The fundamental elastic constants which characterize a
fluid membrane sheet are the bending elastic modulus and
the spontaneous curvature (Helfrich 1973; Evans 1974).
The bending modulus κ sets the energy scale. There is a

large literature on various techniques to measure this pa-
rameter (Seifert 1997). In contrast, the other parameter, the
spontaneous curvature, has received considerably less at-
tention by experimentalists. Introduced by Helfrich, it de-
scribes the preferred curvature of an unconstraint piece of
membrane. In an early paper (Harbich et al. 1977), the
spontaneous curvature of bilayer membranes was esti-
mated from single snapshots of fluctuating vesicle shapes.
The spontaneous curvature of mixed lipid monolayers was
measured in a seminal work (Rand et al. 1990) via the os-
motic force technique. They found the transition from la-
mellar to inverted hexagonal phases to be driven by a
change in this parameter. The purpose of our work is to
monitor for the first time the spontaneous curvature of fluid
bilayers as a function of their aqueous environment. In this
Letter, we constrain ourself to an investigation of double-
chain phospholipids. Under appropriate conditions, these
molecules form closed bilayer capsules, i.e., vesicles,
which are generally in mechanical but not in thermody-
namic equilibrium due to the low solubility of these lipids
in water. In addition, the flip-flop time between the mono-
layers is very slow. Thus, the area of each monolayer is
conserved separately on experimentally relevant time
scales. This is in contrast to the spontaneous vesicle for-
mation observed with single chain surfactants (Kaler et al.
1992; Safran 1998). These amphiphilic systems are in 
thermodynamic equilibrium and may form a bulk vesicle
phase.

For a phospholipid vesicle there are two different phys-
ical origins for bending in mechanical equilibrium (Sve-
tina et al. 1985; Miao et al. 1994). First, the intrinsic spon-
taneous curvatures of the monolayers add up to a local
spontaneous curvature of the membrane. Second, the dif-
ference in the number of molecules between two monolay-
ers of a closed vesicle, i.e., the area difference between the
inner and the outer monolayer, couples to the integrated
mean curvature and gives rise to a non-local source of
bending (Evans 1974; Helfrich 1974; Sheetz and Singer
1974). These two effects combine into an effective spon-
taneous curvature (Miao et al. 1994; Döbereiner et al.
1997). In this Letter, we present measurements of this
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quantity for unilamellar vesicles (10 µm) as a function of
sugar asymmetry across the membrane. Indeed, we find
two contributions to the effective spontaneous curvature
corresponding to the monolayer and bilayer aspect of mem-
brane architecture. This is accomplished by comparison of
experimental mean vesicle shapes obtained via video
phase-contrast microscopy with the theoretical shapes pre-
dicted by the area-difference-elasticity (ADE) model
(Miao et al. 1994). The method is quite general and allows
us to examine the spontaneous curvature induced by (al-
most) any kind of asymmetry across a membrane. To our
knowledge, this is the first time such a study has been at-
tempted. In the following, we recall briefly the main de-
terminants of vesicle shape and describe the mapping of
experimental shapes into the theoretical (shape) phase di-
agram.

Theoretical background

As shown recently (Döbereiner et al. 1997), experimental
vesicle shapes are well described by the ADE model

(1)

where the first term is the Helfrich bending energy with
the modulus κ and the spontaneous curvature C0 (Helfrich
1973). The second term gives the elastic contributions from
the differential monolayer area ∆A, where the relative
weight is determined by the ratio α = κ̃ /κ of the two bend-
ing moduli (Raphael and Waugh 1996). The mean mono-
layer area and the thickness of the membrane are denoted
by A and D, respectively. The relaxed area difference ∆A0
describes the preferred curvature of the bilayer for 
C0 = 0. In general, the proper dimensionless variable for
preferred curvature (Döbereiner et al. 1997) is

c̄0 = c0 + 2π α (∆a0–∆a) (2)

where c0 = C0 RA, ∆a0 = ∆A0/8πDRA, and ∆a are reduced
quantities scaled by RA = (A/4π)1/2. Vesicle shapes are ob-
tained from minimizing Eq. (1) under the constraints of
fixed area A and volume V (Miao et al. 1994). Thus, in 
addition to c̄0, one needs to know the reduced volume 
v = 3V/(4πR3

A) to fully characterize a shape. We note that
Eq. (2) captures the physics of the two sources of sponta-
neous curvature. Whereas c0 is only a property of the ves-
icle membrane, the result of changing ∆a0 depends also on
the reference shape via its integrated mean curvature which
is proportional to ∆a.

Experimental methods and data analysis

The mapping of an experimental mean vesicle shape into
the (v, c̄0) parameter space has been described in detail 
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(Döbereiner et al. 1997). In this study, vesicle shapes were
changed by controlling the sample temperature at a con-
stant solution asymmetry across the membrane. Briefly,
vesicles are stabilized by gravity at the bottom of the ob-
servation chamber in order to record long time sequences
of fluctuating shapes. The usual rotational symmetry is
slightly broken and prolate vesicles appear more circular
in the plane including their long axis. This introduces a new
dimensionless variable (Kraus et al. 1995), g ≡ g0 ∆ρ R4

A/κ,
measuring the relative importance of gravity, where g0 is
the local acceleration and ∆ρ is the excess mass density of
the interior solution. The chamber floor is modeled by a
soft repulsive substrate potential (Döbereiner et al. 1997).
As we shall see later, such an assumption is slightly incon-
sistent. Effects of adhesion to the substrate should be in-
cluded in a full data analysis. However, in our case the ves-
icles adhere at most weakly and we will ignore adhesion
in a first approximation. Theoretical vesicle shapes are ob-
tained via direct energy minimization for a given gravity
strength g and compared to the experimental shapes. In this
way, one obtains a one-to-one mapping of experimental
shapes characterized by appropriate mean Fourier ampli-
tudes of their contours (see below) into the (v, c̄0) param-
eter space. Thus, the effective spontaneous curvature c̄0
can be measured for a particular vesicle under observation.
Due to the relatively small shape changes, the error in de-
termining c̄0 is only slightly smaller then one in dimen-
sionless units. Near the first-order budding transition,
where a small satellite is expelled from the parent vesicle,
the error is intrinsically larger due to the finite lifetime of
the metastable prolate vesicle (Döbereiner et al. 1995). Al-
though our measurement of the spontaneous curvature re-
quires theoretical input, we note that the procedure is, in-
deed, only weakly model dependent. Since vesicle shapes
do not depend on the ratio α of the elastic moduli, the pre-
cise value of this parameter is irrelevant for a measurement
of the combined quantity; see Eq. (2). Apart from correc-
tions due to gravity, the only assumption is that vesicles
assume the shape of lowest mechanical bending energy of
their membrane subject to constraints on area and volume.
This has clearly been shown to be true in quite a number
of studies (Käs and Sackmann 1991; Farge and Devaux
1992; Mui et al. 1995; Döbereiner et al. 1997).

We have constructed a micro-chamber, where the outer
solution can be exchanged during observation of a vesicle.
This chamber basically consists of a Teflon spacer sealed
by a sapphire window on top and a common cover-slide on
the bottom. Sapphire was used for the top window because
of its high thermal conductivity, guaranteeing optimal ther-
mal contact to a thermostat water cushion. Solution ex-
change is realized via two tubing ports connecting the
chamber to a microliter pump and a liquid reservoir. Por-
ous walls in the inlet path homogenize the flow. Pumping
with typical rates of about 1 µl/s results in an almost ho-
mogeneous shear flow at the vesicle position with a shear
rate on the order of 1 s–1. We have observed that (1) shear
flow lifts the vesicles from the chamber bottom where they
have accumulated due to gravity and (2) even minute shear
flow has considerable influence on the vesicle shapes. Sta-
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tionary non-equilibrium shapes are generally quite differ-
ent from the corresponding equilibrium shapes. Indeed, we
have seen oblate vesicles being deformed into prolates
under shear flow. The first finding points to an effective
hydrodynamic repulsion of the vesicles from the wall. As
it is clear from the above remarks, equilibrium shape anal-
ysis was done only after the solution had been exchanged
and fluid flow had come to a complete stop.

The described chamber-thermostat combination is
mounted on the object table of an inverted microscope
equipped with a CCD camera which directly passes the
phase-contrast images of the vesicles to the video-board 
of a Unix workstation. There, the relevant shape parame-
ters are extracted in real time (25 fps) via Fourier analysis
of the vesicle contours. A half-contour may be written 
in terms of its arclength s which starts at the north pole 
(s = 0) and ends at the south pole (s = s*). A representa-
tion which will be convenient for our purposes is

(3)

where ψ (s) is the angle between the polar axis and the out-
ward-pointing normal to the curve. For prolate vesicles,
the amplitude a2 is a measure of ellipticity, whereas a3 de-
scribes a pear-shape-like symmetry breaking. The sponta-
neous curvature of the vesicles is essentially encoded in
the amplitude a4 (Döbereiner et al. 1997). In Fig. 1, an ex-
perimental example of the probability distribution of the
amplitude (a2, a4) is shown.

Vesicles are swollen from stearoyl-oleoyl-phospho-
choline (SOPC) and dimyristoyl-phosphocholine (DMPC)
in 75 mosmol raffinose solution and incubated in an iso-
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osmolal raffinose-glucose solution (9:1). Depending on their
radius, the vesicles experience a varying buoyance force
and the larger ones accumulate quickly on the bottom of
the chamber. Suitable prolate vesicles are selected for anal-
ysis and observed under the microscope. The concentra-
tion of glucose in the outer solution is then gradually in-
creased at iso-osmolal conditions, N in

ra = Nex
gl + Nex

ra, and the
mean shape determined for several different sugar ratios 
x = Nex

gl /(Nex
gl +Nex

ra ). Due to the low permeability of the
membrane to sugar molecules, the solution in the interior
of the vesicles stays constant on experimentally relevant
time scales. This has been confirmed by monitoring the op-
tical contrast across the membrane due to sugar asymme-
try.

This protocol creates an increasing solution asymmetry
across the vesicle membrane. The density difference
between the inner and outer solution increases with in-
creasing asymmetry. Combining measurements of osmo-
lality with densitometry, we get an almost linear relation-
ship, ∆ρ . x · 10 g/l, at 75 mosmol. Thus, for a fixed ves-
icle radius, the gravitational parameter g is linearly increas-
ing with x.

Results and discussion

Prolate vesicles are expect to be pressed against the bot-
tom of the chamber by gravity and become progressively
flattened with increasing g. Indeed, for fixed spontaneous
curvature, theory predicts a gravity-induced prolate-oblate
transition (Kraus et al. 1995). However, the experimental
finding is that the vesicles usually become more elongated
when increasing the density difference between the inter-
ior and the exterior of the vesicle by raising the external
glucose concentration. We conclude that the spontaneous
curvature of the vesicles is in fact not constant but gets
larger and counteracts the rising gravitational force. In-
deed, the fluctuation spectra acquire the characteristics of
spinodal fluctuations near the budding instability 
(Döbereiner et al. 1995), i.e., there is a strong increase in
the a3 fluctuations with increasing asymmetry. For vesicles
which were sufficiently close to the prolate-oblate transi-
tion, i.e., those exhibiting large a2 fluctuations 
(Döbereiner and Seifert 1996), we found a shift of the max-
imum of the fluctuation spectrum from n = 2 to n = 3. In
some cases, we could even induce budding. Thus, one can-
not evade the conclusion – even without any detailed anal-
ysis – that the effective spontaneous curvature of the mem-
brane must have increased. One can also decrease sponta-
neous curvature by decreasing sugar asymmetry across the
membrane. In that way, one vesicle which was found to be
oblate at high glucose concentration was driven across the
stomatocyte phase boundary (Seifert 1997) to exhibit an in-
ward budded morphology. We also observe a slight decrease
of the reduced volume v when increasing sugar asymmetry
x at iso-osmolal conditions. This apparent change of v could
be due to a weak adhesion of the vesicles to the substrate,
which we did not include in our analysis.
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Fig. 1 Experimental distribution of the contour amplitudes (a2, a4).
Their mean values uniquely fix the theoretical shape parameters 
(v, c̄0). The plot contains over 53000 points corresponding to more
than 35 min of real time data recorded at a rate of 25 video frames
per second



The qualitative effects just described are quantified in
Fig. 2, where the effective spontaneous curvature c̄0 of
three different vesicles is displayed as a function of the glu-
cose content x of the exterior solution. Individual linear
fits to the data give a universal slope with different offsets
in c̄0 at x = 0 for each vesicle. Thus, even for a symmetric
solution across the membrane there is some asymmetry of
the membrane left. We attribute this to a variation in ∆a0
between the different vesicles. For nanometer-scale vesi-
cles, it has already been shown by driven lipid flip-flop
that changes in the equilibrium area difference ∆a0 result
in a corresponding change in vesicle morphology (Mui et
al. 1995). It became also apparent in tether pulling experi-
ments (Waugh et al. 1992; Yeung 1994) that the monolayer
area difference contributes considerably to membrane cur-
vature. Variations in ∆a0 explain why one usually finds
quite a zoo of vesicle shapes even in symmetric buffer so-
lutions. We note that it is therefore not generally correct to
set the (effective) spontaneous curvature of a vesicle to
zero, as it is often done in the literature. Since ∆a0 ≈ ∆N āmol
is essentially determined by the difference in the number
of molecules ∆N, it is clear that the vesicles will have a
distribution in ∆a0 fixed at the time of membrane closure.
Thus, this quantity is dependent on the sample preparation
and the particular history of the vesicle under investiga-
tion. In contrast, the common slope of the data in Fig. 2
points to an intrinsic interaction of the sugar molecules
with the membrane. We find c̄0 . (9.5±1.5) x. Within ex-
perimental resolution, there is no difference between SOPC
and DMPC detectable. We note that to leading order, one
expects a linear dependence of c̄0 on sugar asymmetry x
from symmetry considerations. The limited number of data
points do not permit us to detect any deviation from line-
arity. However, the fact that individual linear fits give a
universal slope allows us to extract the numerical value of
this slope with some confidence.

From the theoretical point of view, the sugar molecules
may be viewed as small particles which interact with the
membrane surfaces but are essentially insoluble in the
interior of the lipid bilayer. If the interaction between the
sugar molecules and the membrane surfaces is repulsive,

two different sugar species induce a spontaneous curvature
provided these two species differ in their size. Indeed, the
two depletion layers in front of the membrane then differ
in their thickness and the two species suffer a different loss
of translational entropy. In order to minimize this entropy
loss, the membrane has a tendency to curve toward the
larger particles. Since glucose is smaller than raffinose, this
entropic mechanism curves the membrane away from the
glucose molecules, as observed in our experiments.

In the simplest approximation, one considers a dilute
solution of quasi-spherical raffinose and glucose particles
which have the characteristic size Rra and Rgl, respectively.
For a bilayer membrane with thickness lme at temperature
T, one then finds the spontaneous curvature (Lipowsky and
Döbereiner 1998)

c0 = (kT/2κ) RA (Rra–Rgl) [lme+Rra+Rgl] n x (4)

where n ≡ N in
ra/V is the sugar concentration of the solution.

A rough estimate of the molecular dimensions leads to Rra
. 0.8 nm and Rgl . 0.6 nm, whereas the vesicle membrane
is characterized by RA . 10 µm and lme . 4 nm. The stud-
ied sugar osmolality of 75 mosmol corresponds to a sugar
concentration n . 1/20 nm3. If one inserts these values into
Eq. (4), one obtains c0 . 11, which must be compared with
the data shown in Fig. 2 which give c0 . 10 x. Thus, this
rather simple picture leads to an estimate of c0 which has
the correct order of magnitude.

Experimental data which were obtained for the uptake
of glucose by vesicle dispersions seem to indicate that glu-
cose is adsorbed onto phospholipid membranes (Bummer
and Zografi 1988). We are not aware of corresponding data
for raffinose. Since the attractive interactions can arise
from several hydrogen bonds, it is not obvious how this
interaction differs for different sugar species.

Theoretically, it follows from the Gibbs adsorption
equation that relatively small particles which are adsorbed
onto the membrane surface reduce the interfacial tension
of this surface. Thus, if glucose is adsorbed only onto the
exterior membrane surface, the membrane should curve
away from the exterior solution, as observed. The magni-
tude of the corresponding contribution to the spontaneous
curvature can be calculated in the framework of a simple
Langmuir-type model for monolayer adsorption. One then
finds (Lipowsky and Döbereiner 1998) that

c0 = (kT/2κ) RA (lme+2Rgl) Γgl (5)

where Γgl is the glucose coverage, i.e., the number of ad-
sorbed glucose molecules per unit area. The data by Bum-
mer and Zografi (1988) imply that Γgl increases roughly
linearly with increasing bulk concentration ngl as Γgl .
B ngl with B . 3×1015 m/mol. It then follows from Eq. (5)
that c0 . 260 x for the parameter values as used before.
Compared to our experimental data, this is too large by one
order of magnitude. Thus, if we accept the results of Bum-
mer and Zografi, our data seem to imply that raffinose is
also adsorbed onto the membrane surfaces but that this ad-
sorption is not as strong as for glucose. Indeed, the two
contributions arising from the adsorption of glucose and
of raffinose would compensate each other to some extent,
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Fig. 2 Effective spontaneous curvature c̄0 as a function of sugar
asymmetry x across the membrane in 75 mosmol raffinose-glucose
solution. Vesicles contain pure raffinose solution. The percentage of
glucose on the outside is given by x



and the bilayer would curve away from the more strongly
adsorbed particles.

In summary, both depletion and adsorption could be re-
sponsible for the observed increase in the spontaneous cur-
vature with increasing glucose concentration. In order to
discriminate between the two possibilities, one has to de-
termine the concentration profiles of the sugar molecules
in front of the lipid membranes. This can be done, for ex-
ample, by performing ellipsometry with lipid monolayers
at the air-water interface.

The technique described above for measuring the effec-
tive spontaneous curvature is quite general and can be ap-
plied to a large number of systems. Vesicle shapes may
serve as a morphological probe for the investigation of 
general interfacial interactions affecting the elastic prop-
erties of membranes. Two specific examples, which have
attracted considerable theoretical interest, are electrolytes
(Winterhalter and Helfrich 1988, 1992; Mitchell and Nin-
ham 1989) and polymers (Lipowsky 1995; Eisenriegler 
et al. 1996; Hiergeist and Lipowsky 1996) interacting with
(charged) membranes. We conclude by remarking that the
sensitivity of the membrane shape to minute differences in
total area between the two monolayers allows for in situ
characterization of enzyme, e.g., phospholipase, activity
(Wick et al. 1996), and provides a non-invasive technique
for studying lipid flip-flop (Mui et al. 1995).
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