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Modulated phases in multicomponent fluid membranes
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We investigate the behavior of flexible two-component bilayer and three-component monolayer membranes.
The components are assumed to have different spontaneous curvatures, and to mutually phase separate in
planar membranes. As a function of temperature, lateral tension and bending rigidity, a rich phase behavior is
obtained. In particular, we find three different types of modulated phases. In symmetric bilayers, the excess
component assembles at the boundary between oppositely curved domains; in sufficiently asymmetric bilayers,
the excess component is found to preferentially assemble in a single layer, with no tendency for segregation to
the domain boundaries. We show that the phase behavior of three-component monolayer strongly resembles
the behavior of two-component bilayers. In fact, in a certain, restricted region of parameter space, the two
models can be shown to be equivaldi®1063-651X99)07210-4

PACS numbse(s): 87.16.Dg, 64.60-i, 68.10—m, 82.65.Dp

[. INTRODUCTION press the spontaneous curvature as a linear superposition of
the spontaneous curvatures of the two components. In the
Due to strong hydrophobic interactions, amphiphiles sucttase of binary mixtures of lipids, phase diagrams have been
as phospholipids and surfactants spontaneously aggregatedalculated for two limiting cases. In thetrong segregation
water to form bilayer membranes. These membranes typiimit [11,12,16,13 the correlation length for concentration
cally have fluidlike in-plane order and are very flexible, with fluctuations is comparable to the molecular scale, so that the
their shapes and fluctuations controlled by the bending erdomain boundary is sharp and each domain consists mainly
ergy. In the case of lipid membranes, the bending rigidityof a single species of molecules. This limit applies at low
k~10"12 erg is large enough to stabilize structures whichtemperatures and large line tensions. Inwheak segregation
are much larger £10—20 um) than the molecular scale limit [10,15, on the other hand, there is only a small excess
(~10-20 A). The conformations of such membranes havef one component in each domain; the domain boundaries
been studied both experimentally and theoretically in considare broad in this case, and the line tension is small. The weak
erable detail recentlj1—3]. segregation limit usually applies to systems in the vicinity of
Most of the experimental studies on lipid membranesa critical point.
have concentrated on systems made of only one type of lipid. Fortwo-component bilayershe dependence of the spon-
On length scales larger than the bilayer thickness, the equtaneous curvature on composition is derived from the prop-
librium conformations of laterally homogeneous membrane®rties of the two monolayef&0]. The linear approximation
are determined by their bending elasticity, so that the memef the composition dependence of monolayers mentioned
branes can be described as a two-dimensional elastic sheabove leads immediately to a coupling of the membrane cur-
Extensive studief4—7] of such theoretical models have re- vature to thedifferencein compositions between the two
sulted in complicated shape phase diagrams. halves of the bilayef18]. It is important to realize that do-
Biological membranes, however, are complex mixtures oimains in bilayers can either extend across both monolayers,
lipid species, which vary with respect to both the lipid heador can be confined to a single monolay&t]. We will show
groups and the associated alkyl chali&3. It is therefore in this paper that the interaction of the domains of the two
important to examine the properties of fluid membranesmonolayers gives rise to alternative types of modulated
made of a simple mixture of pure lipids to get an idea abouphases. We want to mention parenthetically that the bilayer
the more complex phenomena encountered in biomemstructure of the membrane also leads to other possible shape
branes. The presence of more than one component in a flutdansitions. For example, in phase-separating fluid bilayers
membrane leads to the possibility of phase separation arntie two phases can coexist on opposite sides of a bilayer
domain formation within the membraf@,3]. The additional resulting in a stable one-phase vesicle redi®,17].
degrees of freedom introduced by the phase segregation can In the case othree-component monolayeithe situation
significantly alter the shape phase diagram of membraness more complicated. In general, the local mean curvature is
since the line tension between the phases and the dependemmeipled to two composition variables. Only for special
of curvature on the local composition become important inchoices of spontaneous curvatures of the three components
determining the equilibrium conformatiof3]. does the composition dependence of the curvature coupling
Theoretical studied10-19 of multicomponent mem- again become relatively simple. This is the case, for ex-
branes have so far been limited to the case of two-componemimple, when the spontaneous curvatures of two components
systems. Fortwo-component monolayersvhich are com- are equal in magnitude and opposite in sign, while the third
posed of molecules with different head group areas and tatomponent has vanishing spontaneous curvature.
sizes, the most common approach is to couple the spontane- In this paper we will consider two-component bilayers
ous curvature to the local composition linearly, i.e., to ex-(Sec. I) and three-component monolayefSec. Ill). We
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(@) . AB i cause this will allow us to derive a close correspondence
between two-component bilayers and three-component
________ : Q&\ Zy-i. o monolayers in Sec. IV below.
AA é\\%% (g/(/‘//i”' AA We now introduce two continuum variables(r;)
S oA = (oY= (a")12 and y(r;) = ({a! )+ (a!))/2 to define the
----- ‘%s' \%\//%45"' local composition of the bilayer. Equatidi) can then be
4%2/”/?7{‘&% written in the continuum limit as
LN
BA H=f d?r ((6J1+J,+6J3) p2+ (6J,—J,— 6J3) 2
A/B
(b) 3 2.3 2
: AT : +2(J1=33) (V)" + 331+ I3) (Vi) — ndp—Ay).
........ N y
B/B o;'éi?»% E@é}; B/B @
- &@ @& The total mean-field free-energy functional for the in-plane
% O&‘/ﬁ?ﬁﬁ({&% ordering is then
YUY P
B/A Fplane(d”‘/’):f dzr[?l(vﬁb)z"'iz(vdf)z

FIG. 1. Schematic representation of a two component bilayer
membrane with curvature coupled to the local concentratian. +fpland @, 9) — 77¢—A(4 3)
Excess of theA component(b) Excess of theB component.

show that both kinds of membranes have a very rich phas\Q’ith

behavior. In fact, we observe that the phase diagrams of the o b’ T

two models show remarkable similarities. This can be seen = Bt — Pt —[(1+ o+ D)L+ o+
by considering the case of a bilayer made of two amphiphiles pland #:9) = 5 7 07+ LA YF A)In(L+ g+ )
A andB, as shown schematically in Fig. 1. In the case where

A is the majority componeriFig. 1(a)], there are three dif- TA=¢=d)InA-y= ) +(1+ 4= ¢)
ferent local combinations ofip/down composition—A/B, XIN(1l+y—@)+(1— g+ @)In(1— ¢+ ¢)]
B/A, and A/A—uwith different curvature energies. If we

identify the A/B, B/A, andA/A regions with three different )

types of molecules, we can replace the bilayer by a three- . , ,
component monolayer. We show in Sec. IV that the phasd/N€'® @' =2(6J1+J,16J5), b'=2(6J,=J,=6Js), by
diagrams of the two models are indeed very similar. In fact,™ 3(J1=J3), andb,=3(J;+J3).

between these two models exists. e Monge representation to describe the membrane shape.

The curvature energy is then given by

II. TWO-COMPONENT BILAYERS K o
S g Feunt = | er[—(v2h>2+ 2oz ®
Let us first consider bilayers made of two types of lipids. 2 2
We start with a lattice model for #lat two-component bi-
layer made of two interacting monolayers. The HamiltonianWe consider the case where therich and B-rich regions
is taken to be favor opposite curvatures. Such a bias in curvature is natural
when the volumes occupied by the polar head and hydropho-
bic tail of the two types of lipid molecules are different. This
H=3,2, (o] oj +o{’a}’)+J22 ol ol +33, (o] of is shown schematically in Fig. 1. The demixing of lipids can
(i [ (i) then lead to three distinct regions. When both leaves have the
same composition, the bilayer membrane preferentially re-
+o7a))= 2 [9(a] — o)+ A(a] +0])], (1)  mains flat and has no net spontaneous curvature. Regions
! with a difference in composition of the two layers, on the
other hand, will have positive or negative curvaturks, 17).
whereo;=+1(—1) for A(B) molecules occupying siteof  If the composition dependence of the spontaneous curvature
a triangular lattice. The spin variables of the upper and lowepf a monolayer is assumed to be lin¢40], i.e., the sponta-
monolayers are denoted by ando? , respectively. We dis- neous curvature is expressed as a linear superposition of the
tinguish between the three different interactions of the lipidsspontaneous curvatures of the two components, the interac-
the in-plane interactiod;, the direct interplane interaction tion energy has the forrfi8]
J, and the diagonal interplane interactidg
We want to remark parenthetically that it is useful to start
with a lattice model(raF;her than a c):/ontinuum modgebe- F°*¢(¢”h):CJ d?r(V*h)¢. ©®)
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By combining Eqgs(2), (4), (5), and(6), we get the effec- 08 @ 06 o
tive free-energy functional 0.4 02 \y\
0
K o 0.2
P = [ | S vz 2oy 14 !
2 2 0.8 -06
bi bé X 7 1 3 5 X
+ChpV2h+ = (Vp)2+ (V)2
$VPh+ S (Vg)*+ (Vi) - s
06 0.6
} 0.2
+Fotand &, 8) — 16— Ay|. Y 02
0.2 -0.2 <0‘>
In the mean-field approximation, the equation for the mem- 0'61 s <‘;"> 4]'61 R

brane shape is obtained by settiég/sh,=0, whereh, is X

the Fourier transform oi(x,y); this gives FIG. 2. Modulations of thep and ¢ fields as a function of

distancexin the(a) L;, and(b) L, stripe phases. Note that in th¢
®) phase the totah-concentrationy, peaks at thelomain boundary

betweenA/B andB/A regions, while in the_; phase the maximum

of the totalA-concentration occurs inside t#¢B domains. Modu-
In order to keep the analysis as simple as possible, we nol@tions of theA-concentration of the up(¢’)) and down (o))
neglect the ¥ )2 term in Eq.(3). This choice is motivated layers in the(c) L, and(d) L, stripe phases.

by the fact that the variation of the total concentratiffr) _
should usually be smaller than the variation of the concen=0; all modulated phases are therefore the result of the com-

tration differences(r). Furthermore, when the interplane in- petition between spontaneous curvature and lateral tension.
teractionJ, is chosen to be of opposite sign f—to favor The lateral tensiomr and the line tension—characterized by
interplane attraction of unlike lipids in the two layers—the P1—have opposite effects oq*. The wave numbeq* de-
parameterbé:(‘]l-F JS) is smaller thanbi:(\]l—‘]s)’ SO creases with increasinkji, since a hlgher line tension im-
that the 7 ¢)? term should be the dominant gradient contri- Plies a larger distance between domain boundaries. An in-
bution. By inserting Eq(8) into Eq. (7) and expanding the crease ofo (for ¢<C</2b;), on the other hand, leads to a
resulting expression in powers gfup to orderg®, we then flattening of the membrane and therefore to a smaller domain
find the effective free-energy functional size.
We want to emphasize that the use of the single-mode
Kk C2 . (C2—b}o) o approximation restricts our calculations to the weak segrega-
20 g

Cdyq

hy=—— 2
Y (ot kg

tion limit. Therefore, the temperature in the free energy func-
tional (4) has to be so large that the extrema of the concen-
tration profiles, compare Fig. 2, do not approach their
boundary values too closely. Our results could be extended
to lower temperatures and larger line tensions by employing

We want to remark parenthetically that the caselgf More modes in the Fourier expansion of the. concentration
=0 andJ,#0, in whichb]=b, anda’ #b’, has been stud- p_roflles. This has been done, for example, in the case of
ied in Ref.[19] for equal chemical potential of the two com- d|b|9ck-copolymer ”_‘e't@l]-* . .
ponents, i.e., in thegy=0 subspace of the phase diagram. The.. Finally, we substituteg=q* in Fe¢; to obtain the effec-
phase behavior of the two models in this subspace is found five free-energy density
be qualitatively the same.

We now employ a single-mode approximation, in which
the Fourier representations ¢fand are truncated after the
terms with the smallest nonzero wave vector. The magnitud
g* of this wave vector is obtained by minimizirfe,¢; with
respect tog. Due to the omission of theV(y)? term in Eq.
(3), the equation fog* can be solved explicitly, and leads to

Feff(ﬁf’,'lf):f d’q

+ [ @l pand ) - no-891. @

z 1
fers=— §a1¢§* +A—of d?rf prand ¢, ), 11

fuherezis the number of different wave vectors of length
(z=1 for a lamellar,z=2 for a square and=3 for a hex-
agonal phase A, is the membrane area, and

, . (C?—b}o)? 12
q*2:(C bla)o. 10 1 aeC?
2C%k
This is the starting point for our investigation of the stability

This is the same expression as obtained in REJ] for the  of different modulated phases. It should be mentioned that in
case of two-component monolayers. In the limit of smallan experimental situation a change @ is most easily
lateral tensiono, the Monge parametrization is no longer achieved by changing the surface tensian
appropriate since domains have the tendency to form small To calculate the phase diagram, we compare the free en-
buds [11]. This is reflected in the behavior af* which  ergy of the following phases:
vanishes identically in the limit of zero lateral tensian, (1) Stripe phase.;:
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d= o+t dgr COLY*X),

= o+ g O™ X).
(2) Stripe phasé., :

¢= o+t dgx COLY*X),
= thot Pgx COL20%X).

Note that unlike in the case of two-component monolay-
ers, we have the possibility of two different stripe phases
here. The modulations of thg and ¢ fields in the coexisting
region of the two stripe phasés andL,, are shown in Fig.

2. In thel,, phase, see Figs(@ and Zc), regions of larger
¢ values are located at tltmmain boundanpetween stripes

13

(14

with positive and negativep values. Sinc€o’)=(+ ¢)

and(o”)=(¢— ¢), this corresponds to a structure wiip-
proximately flaj regions, in which thesamecomponent is
enriched on both sides of the bilayer, occurring at the domain
boundary betweefoppositely curvegregions, in which the

A concentration is increased in the top and bottom layers,
respectively—compare Figs. 1 an(tR This phase is differ-
ent from thel, structure shown in Figs.(B) and 2d), where

the total A-concentration peakimisidethe A/B domains.

Similarly, there is the the possibility of two different

square phases, and three different hexagonal phases.

(3) Square phass§, :
¢= o+ dgx[cOLq*X) + codq*y)],
Y= ho+ hgx[cOLq*x) + cogLq*y)].
(4) Square phas§, :
= ot dgx[cOLq*X) + cogq*y)],

= ot Pge[cOL2q" X) + coL20*y)].

(5) Hexagonal phaskl, :

3

¢=¢o+¢>q*21 cogk;-r),

i=
3

o=+ wq*El cogk;-r),

(19

(16)

(17

where k;=q*X, k,=(q*/2)(—x+3y) and ks=(q*/2)

(—x—+/3y) with unit vectorsx andy;
(6) Hexagonal phaskl |, :

3

b= o+ g >, cogk; 1),

i=
3

=+ z/xq*El cog 2k; ).

(7) Hexagonal phaskl), :

3

b= o+ bgx >, cogk; 1),

(18
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FIG. 3. Phase diagram of the two component bilayerdor
—27, b’=0, a;=0.24 and three different temperaturés T
=1.4,(b) T=1.2, and(c) T=1.0. In(c), the one-phase region of
L, becomes very narrow fay=0.4, but persists all the way t@
=0. The lines marked by diamonds®() indicate second-order
transitions. The dashed lines are the spinodals of the metagable
square and.,, lamellar phases.

3

Y=o+ hgx >, cod\3p;-1). (19)

where, py=(q*/2)(V3x+Y), p.=(q*/2)(~3x+y) and
P3=q*y.

(8) Disordered phase®) with ¢,=0, #,=0.

Finally, we distinguish between hexagonal phases
(H)—with A/B domains @A excess in the top layeRB excess
in the bottom layerin a B/A majority phase—and inverse
hexagonal (H) phases — witlB/A-domains in arA/B ma-
jority phase. A similar distinction is made for theg and S
phases.

The resulting phase diagram is shown in Fig. 3 in the
(¢,¢) plane for three different values of temperature. At
high temperaturgFig. 3(@], we find three modulated phases,
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the hexagonal phasH,, the inverted phaséH,, and the f(Xq,Xp,X3) = aX;Xy+ bXyXg+ CXoXg+ T[ X1 IN(X7)
symmetric stripe phade, , as well as the homogeneous dis-
ordered phase. Fak,=<0.35, this is the same behavior as for +X2In(Xz) +X3In(x3)], (21)

two-component monolayer§l0]. The modulated phases
cease to exist fony;=0.35. For lower temperaturfFig.
3(b)], the new, asymmetric stripe phadesandIL, appear . : T
between the hexagonal and the disordered phase. The h )g_la'ggn of the parameters used in E(®0) and(21) is given
agonal phase disappears as the temperature is lowered furt r[ ]

[Fig. 3(c)]. Simultaneously, the line of transitions between a=12], b=3(J+K+2L), c=3(J+K-2L).

wherexy, X,, andxs are the mole fractions of componemts
B, and C, respectively, which satisfx;+Xx,+x3=1. The

theL, and the disordered phases changes from first order at (22)
small s to second order at largef values. For¢p=0, we
believe that thd.,, phase coexists with thB phase. How- We now introduce the relative composition of theandB

ever, numerically we cannot exclude the possibility that themolecules$=x;—x,=(S), andp=x;=1—(S?) as the two

critical line of theL,-to-L,, transitions just touches theg,, order parameters such thatl<¢$<1 and O<p<1. In this

—D binodal. paper we consider only the symmetric case, where the free
In the weak-segregation limit studied here, the squarenergy is symmetric irp (A-B symmetry. In this case, one

phasesS, and S;, were found not to be stable anywhere in hasL =0 andb=c, and the free-energy density can be writ-

the phase diagram. However, the square plgasexists as a ten as

metastable phase in the center of the phase diagram, as indi-

cated by the dashed lines in Fig. 3. The spinodals of this _a

metastable phase are identical with the spinodals of the meta- | (#:P)= z(1=pF ) (1=p=¢)+bp(1=p)

stableL,, phase. In the strong-segregation limit, the stability

of the S;; phase remains to be investigated. +T(1_P+ ¢) IN(1—p+ ¢)
2
IIl. THREE-COMPONENT MONOLAYERS (1-p—¢)
_ , : +T——F——In(1-p—¢)+ :
Our motivation for studying the phase behavior of three- T 2 In=p=¢)+Tplnp. (23

component monolayers is twofold. First, a three-component
system is one step further towards the complexity of biologi-The free-energy functional of amhomogeneoysplanar
cal systems. Second, there is an interesting correspondeng¥nolayer then reads

between two-component bilayers and three-component

monolayers, as mentioned briefly in the introduction. The F:j dzr{ﬂ(qug(vmqf((b p)— pd—N\p
schematic representation of Fig. 1 shows a surface thitre ' 2 2 ’

different favored curvatures — depending on three different (24)
combinations ofA and B molecules in the two sheets of the ) , ,

bilayer membrane. If we assume the two flat regions of thd® lowest order in a gradient expansion, whi28]

bilayer (A/A andB/B in Fig. 1) to have the same energy, the L

bilayer model can be replaced by a monolayer model with A=D=3(J+K). 29

three components. _ , We assume the shape of the membrane to depend on the
Before we discuss the mapping of the two models in morgq.4| composition in such a way that an excess of component
detail, we want to investigate the three-component monop fayors positive mean curvature of the membrane, an excess
layer in its own right, in particular the possible modulated ¢ g favors negative mean curvatutef equal magnitude
phases that can result from the demixing of the constituent, 4 an excess of componedtfavors zero mean curvature.
components in a three-component membrane. We restrict oy this case, the coupling between the composition and the

study to the case of almost planar membranes as before. mean curvature has the same form as in the case of bilayers,
The generic lattice model to study the behavior of ternaryCompare Eq(6), and is given by

systems is the Blume-Emery-Griffiths modi2R]. In the spin

representation, the most general Hamiltonian for a system s
with nearest-neighbor pair interactions only is given by Fc—¢>ch dr(Veh)¢. (26)
H(S) = _<Z> [JSSJ+K5125,-2+L(S.ZSJ+SSJ-2)] In the analysis described below, we set adajr 0, for
ij

simplicity. Since there is no coupling between théeld and
the mean curvature in E¢26), the equations foh,(¢) and
2 the most unstable wave vector are the same as in the bilayer
+Ei [DST+HS], (20 case, see Eq$8) and (10) of the previous section.
We consider the same types of phases as in the case of
where the spin variabl§ =1,—1,0 correspond to siteof a  bilayers. There are two possible stripe phadgsandL .
triangular lattice being occupied by the B, or C molecules, The stripe phask;, hasC-rich regions sandwiched between
respectively. In the mean-field approximation, the free-stripes ofA-rich andB-rich regions, while the., phase has
energy density of homogeneous phases in this model is giveslternating stripes of-rich and B+ C-rich regions. Simi-
by [23] larly, the hexagonal phaseél , H,,, andH,;, and the square
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0.02

AF/T

0.01

0 0.08 a,; 0.6

FIG. 5. Difference in reduced free energyi/T, for the three-
component monolayer between the square plSgsand the stripe
phaselL,, as a function ofa, for the parametera=5.2, b=1.35,
T=1.0.

the B-rich disordered phaseDi) for ¢o\,—1 and to the
A-rich disordered phaseD(y) for ¢o,"1. ThelL,, phase ex-

ists all the way down to the two-component limit wigh

=0. Since equal concentration of up and down regions can-
not be arranged on a triangular lattice, hexagonal phases are
more likely to be stable for asymmetric compositionfodind

B. In the H, (IH,) phase, theC component is mixed with
A(B). An increase inp, makes the background flatter and
increases the stability of the hexagonal phases; this leads to a
change of the | -D  transition into aL,-H, transition. The
second lamellar phade, (IL,)—with alternating stripes of
A(B) and C mixed with B(A)—appears fopy=0.5.

At the boundaries of the three-phase triangle, the concen-
tration of one of the components is zero. This enables us to
use two-component models to study the phase behavior
along these lines. The points marked on the boundary are
obtained from such calculations. We see that the phase
boundaries inside the Gibbs triangle connects smodthky
dotted lines in Fig. #to the two-component limits.

With decreasinga; the region of stability for the modu-
lated phases shrinks. From Fig. 4 we see that first the hex-
agonal phase and then the stripe phasdisappears. Faa,;
close to zerdFig. 4(c)] the Gibbs triangle shows—except for

FIG. 4. Phase diagram of the three-component monolayer foft small region ot;;—only coexistence of disordered phases
a=2.7,b=25,T=1.0. (@ a,=0.12, (b) a,=0.06, and(c) a,  ending in critical points.
=0.01. Black areas indicate three-phase regions. The above calculation can also be done using a Landau
expansion off (¢,p) of the form

A B

phasesS, and S;, have largeC concentrations either inside a a

the B-rich domains, or at the boundary betwega and filg.p)=| =z +2T P*+ 7 b7 p?

B-rich domains. Also, there are three homogeneauth,

B-rich, andC-rich disordered phases. Finally, we distinguish +T(3p*+ 2p*+2pp°+4d%p?). (27)

again between hexagonal phaseg{with A-domains in a

B-rich majority phase—and inverse hexagonalHY  The resulting phase diagram is similar to Fig. 4 in the central
phases—wittB-domains in @A-rich majority phase. A simi- region, but differs appreciably towards the two-component
lar distinction is also made for the, and S, phases. limits.

The resulting phase diagram is shown in Fig. 4 for three For the whole parameter space investigated the square
different values of the parametes. For large values od,, phase was conspicuously absent, just as in the case of two-
see Fig. 4a), there are three distinct modulated phases. Allcomponent bilayers. From symmetry considerations, this
the phases are separated by first-order transitions. Since tpbase should be most stable along #hg=0 line. In Fig. 5
A-rich andB-rich regions like to curve in opposite directions, we show a comparison of the free-energy differeAde of
the most probable phases fgg~0 are the symmetrit,, the S, andL,, phases for different values pf, anda,. For
andS,, phases. We see from Fig. 4 that at low valuep®f a given value ofp, this free-energy difference increases in
and ¢, indeed thel |, phase appears. With increasing con-favor of thelL, phase with increasing,. Although this dif-
centration ofA or B components, the;, phase goes over into ference in free energy tends to zero with decreagirand
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a,, the local minimum of the free-energy functional, which more detail. With the identification
corresponds to the square phase, disappears beére
reaches zero. The square phase is therefore only metastable I
in this model. S=(oj—0j)/2 (28)
IV. MAPPING OF THREE-COMPONENT MONOLAYERS

TO TWO-COMPONENT BILAYERS between the variables; and o for the two-component bi-

layer and the vanabIS for the three-component monolayer
Let us now look at the correspondence between the threenodels, we can write the partition function of the planar
component monolayer and the two-component bilayer irthree-component model as

exd —BH{S}H=> X H[z S 718(S— (o — of)/2)lexd — BH{a] ,of}]

{Si} {S

—_—
S
)

H 2(”(“7;')2/4‘1ex;[—BH{cri’ ol = 2 exd — BH{U, ol 1] (29)

o] o) o ol

with an effective Hamiltonian

I’O-I} 2

oloj+tolo))——aiolo{o]+~

L
o oj+ 0'"0’)+ olojo{—o{a{ad])

(H+L)

—of)— —[D_Tzln(Z)] alal|. (30

2

Note that we have dropped an unimportant constant in Eq. b.=0. (35)
(30). The In(2) factor in Eq(30) appears because both the

(oi=10{=1) and (oj=—10{=—1) states get mapped Thjs shows in particular that the interaction potential be-
onto the samé&;=0 state. tween the lipids in the bilayer model corresponds to the
A comparison of Eq(30) with Eq. (1) shows that the two  chemical potential in the three-component model.

models are in generalotthe same. However, for the special  phase diagrams of the three-component model With
case ofL =K =0, the multispin interactions in Eq30) dis-  =a/4 are shown in Fig. 6 for three different temperatures.
appear. Furthermoré, =0 is required in Eq(1), which cor-  Note that the phase diagrams have the same topology as that
responds tdA =0 in the continuum limi{3). The parameters of the bilayer model given in Fig. 3. However, a direct com-
in Eq. (1) can then identified to be parison between the two models is only possible along a

=const.-line in Fig. 6 and tha =0-line in Fig. 3, witha’
J;=—J14, J,=—[D-TIn(2)]/2, J3=J/4, 77=H/2. andb’ determined by\, compare Eqs(32) and (33).

(3D We compare the phase diagrams of faenesystem, cal-

culated from the two models in the mean-field approximation
If these conditions are met, the two models are not onlyfor fixed values of thecorrespondingparameters and\.
equivalent for planar, but also—in the continuum limit—for This is shown in Fig. 7. The two phase diagrams are very
flexiblemembranes, because the coupling to the mean curvaimilar, as expected, but they are not identical. For example,
ture is taken to be the same in both cases. there is a small downward shift of the critical temperature in

The conditionL =K =0 in Eq.(20) amounts tdo=a/4 in the three-component monolayer. We believe that this differ-

the continuum Eq(23) [23]. With these results, we find the ence is due to the fact that some degrees of freedom have
relation between the parameters of the bilayer model and thiseen integrated out exactly in the three-component mono-
three-component monolayer models to be layer model, so that the mean-field approach implies differ-

ent approximations in both cases.

a
a'=—N——-+TIn(2), (32

4 V. DISCUSSION AND CONCLUSION

a We have constructed simple models for two-component
b'=+\— Z—TIn(Z), (33 bilayer and three-component monolayer membranes. In the

case of three-component monolayers, we assume that two
, components have spontaneous curvatures, which are equal in
bi=by, (34 magnitude but of opposite sign, while the spontaneous cur-
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FIG. 6. Phase diagram of the three-component monolayer for
a=5.4, b=al4, a;=0.12 and three different temperatures T
=2, (b) T=1.5, (c) T=1.0. Black areas indicate three-phase re-
gions. The cut along the dashed line for 2.7 is shown in Fig. 7.
The lines marked by diamonds)() indicate second-order transi-
tions.

FIG. 7. Phase diagram in tie— ¢ plane of(a) two component
bilayer with A=0 and (b) three-component monolayer with

=2.7 fora=5.4,b=al4, a;,=0.12. See the text for the mapping of
the parameters of the two models. Gray areas indicate two-phase
regions.

in amphiphilic monolayers at the water-air interfaf@4].

vature of the third component vanishes. The resulting phas8uch monolayers are aimgstnar since the interface exhib-
diagram of this model, calculated in the mean-field approxidits a substantial tension, and can therefore not be used di-
mation, shows a rich phase behavior with three differentectly to study the phase behavior predicted in this paper.
modulated phases. In particular, we find that two differentHowever, they indicate how phase separation should proceed
stripe phases can coexist. On the other hand, square phasasflexible monolayers containing several components. An
are found to be only metastable in the weak segregation limiinteresting possibility is to study proteins, which are embed-
considered here. ded in a two-component lipid monolayer. In one-component

The bilayer is modeled by coupling two monolayers with monolayers, adsorbed proteins have been found to accumu-
two different types of lipids. The resulting mean-field phaselate at the boundary line between liquid-expanded and
diagram is similar to that of three-component monolayer. Aliquid-condensed domair5].
direct mapping between the two models exists in a special In many cases, two-phase coexistenceilayersis ob-
region of the parameter space. served between a fluid and a gel pha&e8]. In addition,

The main result of our paper is that the total local con-some mixtures such as dielaidoyl PC/dipalmitoyl P5],
centration of the components in the two leaves of a bilayer iphospholipid/cholestergR7-30, and palmitoyl oleyl phos-
a thermodynamic variable, which cannot be integrated out tphatidyl serine(POP3/didodecanoyl PG31] exhibit two-
give a simpler model, which contains the concentration dif-phase coexistence regions where both phases are fluid. Fluid-
ference between the two layers only. Instead, the total corfluid coexistence in two-component membranes is not
centration strongly affects the phase behavior. For equal comecessarily restricted to mixtures of two lipids. Another pos-
centration of A and B molecules in the two layers, the sible scenario is proteins adsorbed to one side of a bilayer. If
component with the larger overall concentration assembles ithe proteins have an attractive interaction, there can be a
flat regions at the boundary between positively and negaphase separation into a protein-rich and a protein-pure phase.
tively curved parts of the bilayer. If the concentrations in the  The results of our model indicate two possible mecha-
two layers are sufficiently different, the domain structure isnisms for the formation of large domains in bilayers. First, a
more pronounced in the monolayer, in which the concentralarge concentration of one component in either one or both
tion of the minority component is larger. Finally, when the leaves of the bilayer leads to a homogeneous, disordered
total A- or B-concentration exceeds a threshold value, moduphase—even when the same system with equal concentra-
lated phases no longer exist, and are replaced by a homogtiens of A andB undergoes phase separation. Second, at suf-
neous, disordered phase. ficiently large lateral tension, a variety of modulated phases

Fluid-fluid phase separation has been studied intensivelgecomes stable in a region of concentration space, where
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macroscopic phase separation would occur if all componentuid coexistence region. First, because the coupling between

had zero spontaneous curvature. For small tensions, on tlelear stress and curvaturegsadratic in the amplitude of

other hand, the membrane should undergo domain-inducetie out-of-plane undulations, the shear energy should be

budding which again acts to prevent the formation of largesmall even for the hexagonal phases. Second, the gel phase

domains within the bilayer. often contains defects, and even a small density of disloca-
Compared to fluid-fluid coexistence, the two-phase coextions makes the gel domains effectively fluidlike. Thus, we

istence between gel and fluid phases is more difficult to deean speculate that our results provide an explanation for the

scribe theoretically, since in general the shear elasticity opercolation behavior observed in diffusion experiments at

the gel domains has to be taken into account in addition tgel-fluid coexistenc¢32,33.

the curvature energy. However, the results calculated with

the curvature energy alone still apply to the strlped _phases ACKNOWLEDGMENT

where the membranes are curved only in one direction and

the shear energy vanishes. Furthermore, there are two addi- We thank T. Schilling for checking some of our numerical

tional features which make our results applicable to the gelresults independently.
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