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Modulated phases in multicomponent fluid membranes

P. B. Sunil Kumar, G. Gompper, and R. Lipowsky
Max-Planck-Institut fu¨r Kolloid-und Grenzfla¨chenforschung, Am Mu¨hlenberg, Haus 2, 14476 Golm, Germany

~Received 23 November 1998; revised manuscript received 20 May 1999!

We investigate the behavior of flexible two-component bilayer and three-component monolayer membranes.
The components are assumed to have different spontaneous curvatures, and to mutually phase separate in
planar membranes. As a function of temperature, lateral tension and bending rigidity, a rich phase behavior is
obtained. In particular, we find three different types of modulated phases. In symmetric bilayers, the excess
component assembles at the boundary between oppositely curved domains; in sufficiently asymmetric bilayers,
the excess component is found to preferentially assemble in a single layer, with no tendency for segregation to
the domain boundaries. We show that the phase behavior of three-component monolayer strongly resembles
the behavior of two-component bilayers. In fact, in a certain, restricted region of parameter space, the two
models can be shown to be equivalent.@S1063-651X~99!07210-4#

PACS number~s!: 87.16.Dg, 64.60.2i, 68.10.2m, 82.65.Dp
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I. INTRODUCTION

Due to strong hydrophobic interactions, amphiphiles su
as phospholipids and surfactants spontaneously aggrega
water to form bilayer membranes. These membranes t
cally have fluidlike in-plane order and are very flexible, wi
their shapes and fluctuations controlled by the bending
ergy. In the case of lipid membranes, the bending rigid
k'10212 erg is large enough to stabilize structures wh
are much larger (;10220 mm) than the molecular scal
(;10–20 Å). The conformations of such membranes h
been studied both experimentally and theoretically in con
erable detail recently@1–3#.

Most of the experimental studies on lipid membran
have concentrated on systems made of only one type of li
On length scales larger than the bilayer thickness, the e
librium conformations of laterally homogeneous membra
are determined by their bending elasticity, so that the me
branes can be described as a two-dimensional elastic s
Extensive studies@4–7# of such theoretical models have r
sulted in complicated shape phase diagrams.

Biological membranes, however, are complex mixtures
lipid species, which vary with respect to both the lipid he
groups and the associated alkyl chains@8#. It is therefore
important to examine the properties of fluid membran
made of a simple mixture of pure lipids to get an idea ab
the more complex phenomena encountered in biom
branes. The presence of more than one component in a
membrane leads to the possibility of phase separation
domain formation within the membrane@9,3#. The additional
degrees of freedom introduced by the phase segregation
significantly alter the shape phase diagram of membra
since the line tension between the phases and the depend
of curvature on the local composition become important
determining the equilibrium conformations@3#.

Theoretical studies@10–19# of multicomponent mem-
branes have so far been limited to the case of two-compo
systems. Fortwo-component monolayers, which are com-
posed of molecules with different head group areas and
sizes, the most common approach is to couple the spont
ous curvature to the local composition linearly, i.e., to e
PRE 601063-651X/99/60~4!/4610~9!/$15.00
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press the spontaneous curvature as a linear superpositio
the spontaneous curvatures of the two components. In
case of binary mixtures of lipids, phase diagrams have b
calculated for two limiting cases. In thestrong segregation
limit @11,12,16,13#, the correlation length for concentratio
fluctuations is comparable to the molecular scale, so that
domain boundary is sharp and each domain consists ma
of a single species of molecules. This limit applies at lo
temperatures and large line tensions. In theweak segregation
limit @10,15#, on the other hand, there is only a small exce
of one component in each domain; the domain bounda
are broad in this case, and the line tension is small. The w
segregation limit usually applies to systems in the vicinity
a critical point.

For two-component bilayers, the dependence of the spon
taneous curvature on composition is derived from the pr
erties of the two monolayers@20#. The linear approximation
of the composition dependence of monolayers mentio
above leads immediately to a coupling of the membrane c
vature to thedifference in compositions between the tw
halves of the bilayer@18#. It is important to realize that do
mains in bilayers can either extend across both monolay
or can be confined to a single monolayer@11#. We will show
in this paper that the interaction of the domains of the t
monolayers gives rise to alternative types of modula
phases. We want to mention parenthetically that the bila
structure of the membrane also leads to other possible s
transitions. For example, in phase-separating fluid bilay
the two phases can coexist on opposite sides of a bila
resulting in a stable one-phase vesicle region@20,17#.

In the case ofthree-component monolayers, the situation
is more complicated. In general, the local mean curvatur
coupled to two composition variables. Only for specia
choices of spontaneous curvatures of the three compon
does the composition dependence of the curvature coup
again become relatively simple. This is the case, for
ample, when the spontaneous curvatures of two compon
are equal in magnitude and opposite in sign, while the th
component has vanishing spontaneous curvature.

In this paper we will consider two-component bilaye
~Sec. II! and three-component monolayers~Sec. III!. We
4610 © 1999 The American Physical Society
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PRE 60 4611MODULATED PHASES IN MULTICOMPONENT FLUID . . .
show that both kinds of membranes have a very rich ph
behavior. In fact, we observe that the phase diagrams of
two models show remarkable similarities. This can be s
by considering the case of a bilayer made of two amphiph
A andB, as shown schematically in Fig. 1. In the case wh
A is the majority component@Fig. 1~a!#, there are three dif-
ferent local combinations ofup/down composition—A/B,
B/A, and A/A—with different curvature energies. If w
identify theA/B, B/A, andA/A regions with three differen
types of molecules, we can replace the bilayer by a thr
component monolayer. We show in Sec. IV that the ph
diagrams of the two models are indeed very similar. In fa
in a restricted region of parameter space, a direct mapp
between these two models exists.

II. TWO-COMPONENT BILAYERS

Let us first consider bilayers made of two types of lipid
We start with a lattice model for aflat two-component bi-
layer made of two interacting monolayers. The Hamilton
is taken to be

H5J1(̂
i j &

~s i8s j81s i9s j9!1J2(
i

s i8s i91J3(̂
i j &

~s i8s j9

1s i9s j8!2(
i

@h̃~s i82s i9!1D̃~s i81s i9!#, ~1!

wheres i511(21) for A(B) molecules occupying sitei of
a triangular lattice. The spin variables of the upper and low
monolayers are denoted bys i8 ands i9 , respectively. We dis-
tinguish between the three different interactions of the lipi
the in-plane interactionJ1, the direct interplane interactio
J2 and the diagonal interplane interactionJ3.

We want to remark parenthetically that it is useful to st
with a lattice model~rather than a continuum model!, be-

FIG. 1. Schematic representation of a two component bila
membrane with curvature coupled to the local concentration.~a!
Excess of theA component.~b! Excess of theB component.
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cause this will allow us to derive a close corresponde
between two-component bilayers and three-compon
monolayers in Sec. IV below.

We now introduce two continuum variablesf(r i)
5(^s i8&2^s i9&)/2 andc(r i)5(^s i8&1^s i9&)/2 to define the
local composition of the bilayer. Equation~1! can then be
written in the continuum limit as

H5E d2r ~~6J11J216J3!f21~6J12J226J3!c2

1 3
4 ~J12J3!~¹f!21 3

4 ~J11J3!~¹c!22hf2Dc!.

~2!

The total mean-field free-energy functional for the in-pla
ordering is then

Fplane~f,c!5E d2r Fb18

2
~¹f!21

b28

2
~¹c!2

1 f plane~f,c!2hf2DcG ~3!

with

f plane~f,c!5
a8

2
f21

b8

2
c21

T

2
@~11c1f!ln~11c1f!

1~12c2f!ln~12c2f!1~11c2f!

3 ln~11c2f!1~12c1f!ln~12c1f!#

~4!

where a852(6J11J216J3), b852(6J12J226J3), b18
5 3

2 (J12J3), andb285 3
2 (J11J3).

For small deformations from the planar state, we can
the Monge representation to describe the membrane sh
The curvature energy is then given by

Fcurv~h!5E d2r Fk2 ~¹2h!21
s

2
~¹h!2G . ~5!

We consider the case where theA-rich and B-rich regions
favor opposite curvatures. Such a bias in curvature is nat
when the volumes occupied by the polar head and hydrop
bic tail of the two types of lipid molecules are different. Th
is shown schematically in Fig. 1. The demixing of lipids c
then lead to three distinct regions. When both leaves have
same composition, the bilayer membrane preferentially
mains flat and has no net spontaneous curvature. Reg
with a difference in composition of the two layers, on th
other hand, will have positive or negative curvatures@11,17#.
If the composition dependence of the spontaneous curva
of a monolayer is assumed to be linear@10#, i.e., the sponta-
neous curvature is expressed as a linear superposition o
spontaneous curvatures of the two components, the inte
tion energy has the form@18#

Fc2f~f,h!5CE d2r ~¹2h!f. ~6!

r
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By combining Eqs.~2!, ~4!, ~5!, and~6!, we get the effec-
tive free-energy functional

F~f,c,h!5E d2r Fk

2
~¹2h!21

s

2
~¹h!2

1Cf¹2h1
b18

2
~¹f!21

b28

2
~¹c!2

1 f plane~f,c!2hf2DcG . ~7!

In the mean-field approximation, the equation for the me
brane shape is obtained by settingdF/dhq50, wherehq is
the Fourier transform ofh(x,y); this gives

hq5
Cfq

~s1kq2!
. ~8!

In order to keep the analysis as simple as possible, we
neglect the (¹c)2 term in Eq.~3!. This choice is motivated
by the fact that the variation of the total concentrationc(r )
should usually be smaller than the variation of the conc
tration differencef(r ). Furthermore, when the interplane in
teractionJ3 is chosen to be of opposite sign ofJ1—to favor
interplane attraction of unlike lipids in the two layers—th
parameterb285(J11J3) is smaller thanb185(J12J3), so
that the (¹f)2 term should be the dominant gradient cont
bution. By inserting Eq.~8! into Eq. ~7! and expanding the
resulting expression in powers ofq up to orderq4, we then
find the effective free-energy functional

Fe f f~f,c!5E d2qF S kC2

2s2
q42

~C22b18s!

2s
q2D fq

2G
1E d2r @ f plane~f,c!2hf2Dc#. ~9!

We want to remark parenthetically that the case ofJ3

50 andJ2Þ0, in whichb185b28 anda8Þb8, has been stud
ied in Ref.@19# for equal chemical potential of the two com
ponents, i.e., in theh50 subspace of the phase diagram. T
phase behavior of the two models in this subspace is foun
be qualitatively the same.

We now employ a single-mode approximation, in whi
the Fourier representations off andc are truncated after the
terms with the smallest nonzero wave vector. The magnit
q* of this wave vector is obtained by minimizingFe f f with
respect toq. Due to the omission of the (¹c)2 term in Eq.
~3!, the equation forq* can be solved explicitly, and leads t

q* 25
~C22b18s!s

2C2k
. ~10!

This is the same expression as obtained in Ref.@10# for the
case of two-component monolayers. In the limit of sm
lateral tensions, the Monge parametrization is no long
appropriate since domains have the tendency to form s
buds @11#. This is reflected in the behavior ofq* which
vanishes identically in the limit of zero lateral tension,s
-

w

-

e
to

e

l

all

50; all modulated phases are therefore the result of the c
petition between spontaneous curvature and lateral tens
The lateral tensions and the line tension—characterized b
b18—have opposite effects onq* . The wave numberq* de-
creases with increasingb18 , since a higher line tension im
plies a larger distance between domain boundaries. An
crease ofs ~for s,C2/2b18), on the other hand, leads to
flattening of the membrane and therefore to a smaller dom
size.

We want to emphasize that the use of the single-m
approximation restricts our calculations to the weak segre
tion limit. Therefore, the temperature in the free energy fu
tional ~4! has to be so large that the extrema of the conc
tration profiles, compare Fig. 2, do not approach th
boundary values too closely. Our results could be exten
to lower temperatures and larger line tensions by employ
more modes in the Fourier expansion of the concentra
profiles. This has been done, for example, in the case
diblock-copolymer melts@21#.

Finally, we substituteq5q* in Fe f f to obtain the effec-
tive free-energy density

f e f f52
z

2
a1fq*

2
1

1

A0
E d2r f plane~f,c!, ~11!

wherez is the number of different wave vectors of lengthq*
(z51 for a lamellar,z52 for a square andz53 for a hex-
agonal phase!, A0 is the membrane area, and

a15
~C22b18s!2

8kC2
. ~12!

This is the starting point for our investigation of the stabili
of different modulated phases. It should be mentioned tha
an experimental situation a change ina1 is most easily
achieved by changing the surface tensions.

To calculate the phase diagram, we compare the free
ergy of the following phases:

~1! Stripe phaseLI :

FIG. 2. Modulations of thef and c fields as a function of
distancex in the~a! LII and~b! LI stripe phases. Note that in theLII

phase the totalA-concentration,c, peaks at thedomain boundary
betweenA/B andB/A regions, while in theLI phase the maximum
of the totalA-concentration occurs inside theA/B domains. Modu-
lations of theA-concentration of the up (^s8&) and down (̂s9&)
layers in the~c! LII and ~d! LI stripe phases.
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f5f01fq* cos~q* x!,

c5c01cq* cos~q* x!. ~13!

~2! Stripe phaseLII :

f5f01fq* cos~q* x!,

c5c01cq* cos~2q* x!. ~14!

Note that unlike in the case of two-component monola
ers, we have the possibility of two different stripe phas
here. The modulations of thef andc fields in the coexisting
region of the two stripe phasesLI andLII are shown in Fig.
2. In theLII phase, see Figs. 2~a! and 2~c!, regions of larger
c values are located at thedomain boundarybetween stripes
with positive and negativef values. Sincê s8&5(c1f)
and^s9&5(c2f), this corresponds to a structure with~ap-
proximately flat! regions, in which thesamecomponent is
enriched on both sides of the bilayer, occurring at the dom
boundary between~oppositely curved! regions, in which the
A concentration is increased in the top and bottom lay
respectively—compare Figs. 1 and 2~c!. This phase is differ-
ent from theLI structure shown in Figs. 2~b! and 2~d!, where
the totalA-concentration peaksinside the A/B domains.

Similarly, there is the the possibility of two differen
square phases, and three different hexagonal phases.

~3! Square phaseSI :

f5f01fq* @cos~q* x!1 cos~q* y!#,

c5c01cq* @cos~q* x!1 cos~q* y!#. ~15!

~4! Square phaseSII :

f5f01fq* @cos~q* x!1 cos~q* y!#,

c5c01cq* @cos~2q* x!1 cos~2q* y!#. ~16!

~5! Hexagonal phaseHI :

f5f01fq* (
i 51

3

cos~k i•r !,

c5c01cq* (
i 51

3

cos~k i•r !, ~17!

where k15q* x̂, k25(q* /2)(2 x̂1A3ŷ) and k35(q* /2)
(2 x̂2A3ŷ) with unit vectorsx̂ and ŷ;

~6! Hexagonal phaseHII :

f5f01fq* (
i 51

3

cos~k i•r !,

c5c01cq* (
i 51

3

cos~2k i•r !. ~18!

~7! Hexagonal phaseHIII :

f5f01fq* (
i 51

3

cos~k i•r !,
-
s

in

s,

c5c01cq* (
i 51

3

cos~A3pi•r !. ~19!

where, p15(q* /2)(A3x̂1 ŷ), p25(q* /2)(2A3x̂1 ŷ) and
p35q* ŷ.

~8! Disordered phases~D! with fq50, cq50.
Finally, we distinguish between hexagonal phas

(H)—with A/B domains (A excess in the top layer,B excess
in the bottom layer! in a B/A majority phase—and invers
hexagonal (IH ) phases — withB/A-domains in anA/B ma-
jority phase. A similar distinction is made for theLI andSI
phases.

The resulting phase diagram is shown in Fig. 3 in t
(f,c) plane for three different values of temperature.
high temperature@Fig. 3~a!#, we find three modulated phase

FIG. 3. Phase diagram of the two component bilayer fora85

22.7, b850, a1850.24 and three different temperatures~a! T
51.4, ~b! T51.2, and~c! T51.0. In ~c!, the one-phase region o
LII becomes very narrow forc&0.4, but persists all the way toc
50. The lines marked by diamonds (L) indicate second-orde
transitions. The dashed lines are the spinodals of the metastabSII

square andLII lamellar phases.
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the hexagonal phaseHI , the inverted phaseIH I , and the
symmetric stripe phaseLII , as well as the homogeneous di
ordered phase. Forc0&0.35, this is the same behavior as f
two-component monolayers@10#. The modulated phase
cease to exist forc0*0.35. For lower temperature@Fig.
3~b!#, the new, asymmetric stripe phasesLI and IL I appear
between the hexagonal and the disordered phase. The
agonal phase disappears as the temperature is lowered fu
@Fig. 3~c!#. Simultaneously, the line of transitions betwe
the LI and the disordered phases changes from first orde
small c to second order at largerc values. Forf.0, we
believe that theLII phase coexists with theD phase. How-
ever, numerically we cannot exclude the possibility that
critical line of theLI-to-LII transitions just touches theLII
2D binodal.

In the weak-segregation limit studied here, the squ
phasesSI and SII were found not to be stable anywhere
the phase diagram. However, the square phaseSII exists as a
metastable phase in the center of the phase diagram, as
cated by the dashed lines in Fig. 3. The spinodals of
metastable phase are identical with the spinodals of the m
stableLII phase. In the strong-segregation limit, the stabi
of the SII phase remains to be investigated.

III. THREE-COMPONENT MONOLAYERS

Our motivation for studying the phase behavior of thre
component monolayers is twofold. First, a three-compon
system is one step further towards the complexity of biolo
cal systems. Second, there is an interesting correspond
between two-component bilayers and three-compon
monolayers, as mentioned briefly in the introduction. T
schematic representation of Fig. 1 shows a surface withthree
different favored curvatures — depending on three differ
combinations ofA andB molecules in the two sheets of th
bilayer membrane. If we assume the two flat regions of
bilayer (A/A andB/B in Fig. 1! to have the same energy, th
bilayer model can be replaced by a monolayer model w
three components.

Before we discuss the mapping of the two models in m
detail, we want to investigate the three-component mo
layer in its own right, in particular the possible modulat
phases that can result from the demixing of the constitu
components in a three-component membrane. We restric
study to the case of almost planar membranes as before

The generic lattice model to study the behavior of tern
systems is the Blume-Emery-Griffiths model@22#. In the spin
representation, the most general Hamiltonian for a sys
with nearest-neighbor pair interactions only is given by

H~S!52(̂
i j &

@JSiSj1KSi
2Sj

21L~Si
2Sj1SiSj

2!#

1(
i

@DSi
21HSi #, ~20!

where the spin variableSi51,21,0 correspond to sitei of a
triangular lattice being occupied by theA, B, or C molecules,
respectively. In the mean-field approximation, the fre
energy density of homogeneous phases in this model is g
by @23#
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f ~x1 ,x2 ,x3!5ax1x21bx1x31cx2x31T@x1 ln~x1!

1x2 ln~x2!1x3 ln~x3!#, ~21!

wherex1 , x2, andx3 are the mole fractions of componentsA,
B, and C, respectively, which satisfyx11x21x351. The
relation of the parameters used in Eqs.~20! and~21! is given
by @23#

a512J, b53~J1K12L !, c53~J1K22L !.
~22!

We now introduce the relative composition of theA andB
molecules,f5x12x25^S&, andr5x3512^S2& as the two
order parameters such that21,f,1 and 0,r,1. In this
paper we consider only the symmetric case, where the
energy is symmetric inf (A-B symmetry!. In this case, one
hasL50 andb5c, and the free-energy density can be wr
ten as

f ~f,r!5
a

4
~12r1f!~12r2f!1br~12r!

1T
~12r1f!

2
ln~12r1f!

1T
~12r2f!

2
ln~12r2f!1Tr ln r. ~23!

The free-energy functional of aninhomogeneous, planar
monolayer then reads

Fi5E d2r Fb1

2
~¹f!21

b2

2
~¹r!21 f ~f,r!2mf2lrG

~24!

to lowest order in a gradient expansion, where@23#

l5D23~J1K !. ~25!

We assume the shape of the membrane to depend on
local composition in such a way that an excess of compon
A favors positive mean curvature of the membrane, an exc
of B favors negative mean curvature~of equal magnitude!,
and an excess of componentC favors zero mean curvature
In this case, the coupling between the composition and
mean curvature has the same form as in the case of bilay
compare Eq.~6!, and is given by

Fc2f5CE d2r ~¹2h!f. ~26!

In the analysis described below, we set againb250, for
simplicity. Since there is no coupling between ther field and
the mean curvature in Eq.~26!, the equations forhq(f) and
the most unstable wave vector are the same as in the bil
case, see Eqs.~8! and ~10! of the previous section.

We consider the same types of phases as in the cas
bilayers. There are two possible stripe phases,LI and LII .
The stripe phaseLII hasC-rich regions sandwiched betwee
stripes ofA-rich andB-rich regions, while theLI phase has
alternating stripes ofA-rich and B1C-rich regions. Simi-
larly, the hexagonal phasesHI , HII , andHIII and the square
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phasesSI and SII have largeC concentrations either insid
the B-rich domains, or at the boundary betweenA- and
B-rich domains. Also, there are three homogeneousA-rich,
B-rich, andC-rich disordered phases. Finally, we distingui
again between hexagonal phases (H)—with A-domains in a
B-rich majority phase—and inverse hexagonal (IH )
phases—withB-domains in aA-rich majority phase. A simi-
lar distinction is also made for theLI andSI phases.

The resulting phase diagram is shown in Fig. 4 for th
different values of the parametera1. For large values ofa1,
see Fig. 4~a!, there are three distinct modulated phases.
the phases are separated by first-order transitions. Sinc
A-rich andB-rich regions like to curve in opposite direction
the most probable phases forf0'0 are the symmetricLII
andSII phases. We see from Fig. 4 that at low values ofr0
and f0 indeed theLII phase appears. With increasing co
centration ofA or B components, theLII phase goes over into

FIG. 4. Phase diagram of the three-component monolayer
a52.7, b52.5, T51.0. ~a! a150.12, ~b! a150.06, and~c! a1

50.01. Black areas indicate three-phase regions.
e

ll
the

-

the B-rich disordered phase (DB) for f0↘21 and to the
A-rich disordered phase (DA) for f0↗1. TheLII phase ex-
ists all the way down to the two-component limit withr0
50. Since equal concentration of up and down regions c
not be arranged on a triangular lattice, hexagonal phases
more likely to be stable for asymmetric composition ofA and
B. In the HI (IH I) phase, theC component is mixed with
A(B). An increase inr0 makes the background flatter an
increases the stability of the hexagonal phases; this leads
change of theLII -DA transition into aLII -HI transition. The
second lamellar phaseLI (IL I)—with alternating stripes of
A(B) andC mixed with B(A)—appears forr0>0.5.

At the boundaries of the three-phase triangle, the conc
tration of one of the components is zero. This enables u
use two-component models to study the phase beha
along these lines. The points marked on the boundary
obtained from such calculations. We see that the ph
boundaries inside the Gibbs triangle connects smoothly~the
dotted lines in Fig. 4! to the two-component limits.

With decreasinga1 the region of stability for the modu
lated phases shrinks. From Fig. 4 we see that first the h
agonal phase and then the stripe phaseLI disappears. Fora1
close to zero@Fig. 4~c!# the Gibbs triangle shows—except fo
a small region ofLII —only coexistence of disordered phas
ending in critical points.

The above calculation can also be done using a Lan
expansion off (f,r) of the form

f l~f,r!5S 2
a

4
12TDf21S a

4
2b1TD r2

1T~ 2
3 f41 4

3 r412rf214f2r2!. ~27!

The resulting phase diagram is similar to Fig. 4 in the cen
region, but differs appreciably towards the two-compon
limits.

For the whole parameter space investigated the sq
phase was conspicuously absent, just as in the case of
component bilayers. From symmetry considerations,
phase should be most stable along thef050 line. In Fig. 5
we show a comparison of the free-energy differenceDF of
the SII andLII phases for different values ofr0 anda1. For
a given value ofr, this free-energy difference increases
favor of theLII phase with increasinga1. Although this dif-
ference in free energy tends to zero with decreasingr and

or

FIG. 5. Difference in reduced free energy,DF/T, for the three-
component monolayer between the square phaseSII and the stripe
phaseLII as a function ofa1 for the parametersa55.2, b51.35,
T51.0.
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a1, the local minimum of the free-energy functional, whic
corresponds to the square phase, disappears beforeDF
reaches zero. The square phase is therefore only metas
in this model.

IV. MAPPING OF THREE-COMPONENT MONOLAYERS
TO TWO-COMPONENT BILAYERS

Let us now look at the correspondence between the th
component monolayer and the two-component bilayer
E
e

d

al

nl
or
rv

e
t

ble

e-
n

more detail. With the identification

Sj5~s j82s j9!/2 ~28!

between the variabless j8 ands j9 for the two-component bi-
layer and the variableSj for the three-component monolaye
models, we can write the partition function of the plan
three-component model as
(
$Si %

exp@2bH$Si%#5(
$Si %

(
$s i8 ,s i9%

)
i

@~22Si
2!21d„Si2~s i82s i9!/2…#exp@2bH$s i8 ,s i9%#

5 (
$s i8 ,s i9%

)
i

2(s i82s i9)2/421 exp@2bH$s i8 ,s i9%#5 (
$s i8 ,s i9%

exp@2bH̃$s i8 ,s i9%# ~29!

with an effective Hamiltonian

H̃$s i8 ,s i9%5(̂
i j &

F2
J

4
~s i8s j81s i9s j9!2

K

4
s i8s i9s j8s j91

J

4
~s i8s j91s i9s j8!1

L

2
~s i8s i9s j82s i8s i9s j9!G

1(
i

F ~H1L !

2
~s i82s i9!2

@D2T ln~2!#

2
s i8s i9G . ~30!
e-
the

es.
that
-

a

ion

ery
ple,
in
er-
ave
no-
er-

ent
the
two
al in
ur-
Note that we have dropped an unimportant constant in
~30!. The ln(2) factor in Eq.~30! appears because both th
(s i851,s i951) and (s i8521,s i9521) states get mappe
onto the sameSi50 state.

A comparison of Eq.~30! with Eq. ~1! shows that the two
models are in generalnot the same. However, for the speci
case ofL5K50, the multispin interactions in Eq.~30! dis-
appear. Furthermore,D̃50 is required in Eq.~1!, which cor-
responds toD50 in the continuum limit~3!. The parameters
in Eq. ~1! can then identified to be

J152J/4, J252@D2T ln~2!#/2, J35J/4, h̃5H/2.
~31!

If these conditions are met, the two models are not o
equivalent for planar, but also—in the continuum limit—f
flexiblemembranes, because the coupling to the mean cu
ture is taken to be the same in both cases.

The conditionL5K50 in Eq. ~20! amounts tob5a/4 in
the continuum Eq.~23! @23#. With these results, we find th
relation between the parameters of the bilayer model and
three-component monolayer models to be

a852l2
a

4
1T ln~2!, ~32!

b851l2
a

4
2T ln~2!, ~33!

b185b1 , ~34!
q.

y

a-

he

b2850. ~35!

This shows in particular that the interaction potential b
tween the lipids in the bilayer model corresponds to
chemical potential in the three-component model.

Phase diagrams of the three-component model withb
5a/4 are shown in Fig. 6 for three different temperatur
Note that the phase diagrams have the same topology as
of the bilayer model given in Fig. 3. However, a direct com
parison between the two models is only possible alongl
5const.-line in Fig. 6 and theD50-line in Fig. 3, witha8
andb8 determined byl, compare Eqs.~32! and ~33!.

We compare the phase diagrams of thesamesystem, cal-
culated from the two models in the mean-field approximat
for fixed values of the~corresponding! parametersa andl.
This is shown in Fig. 7. The two phase diagrams are v
similar, as expected, but they are not identical. For exam
there is a small downward shift of the critical temperature
the three-component monolayer. We believe that this diff
ence is due to the fact that some degrees of freedom h
been integrated out exactly in the three-component mo
layer model, so that the mean-field approach implies diff
ent approximations in both cases.

V. DISCUSSION AND CONCLUSION

We have constructed simple models for two-compon
bilayer and three-component monolayer membranes. In
case of three-component monolayers, we assume that
components have spontaneous curvatures, which are equ
magnitude but of opposite sign, while the spontaneous c



a
x
en
en
a

im

ith
s
. A
ci

n
r
t
if
o
o

e
s
g
he
i

tra
e

du
o

ve

-
di-

er.
eed

An
d-

ent
mu-
nd

luid-
not
s-
r. If
e a
ase.
a-

, a
oth
red

ntra-
suf-
ses
ere

f

re

i-

f
hase

PRE 60 4617MODULATED PHASES IN MULTICOMPONENT FLUID . . .
vature of the third component vanishes. The resulting ph
diagram of this model, calculated in the mean-field appro
mation, shows a rich phase behavior with three differ
modulated phases. In particular, we find that two differ
stripe phases can coexist. On the other hand, square ph
are found to be only metastable in the weak segregation l
considered here.

The bilayer is modeled by coupling two monolayers w
two different types of lipids. The resulting mean-field pha
diagram is similar to that of three-component monolayer
direct mapping between the two models exists in a spe
region of the parameter space.

The main result of our paper is that the total local co
centration of the components in the two leaves of a bilaye
a thermodynamic variable, which cannot be integrated ou
give a simpler model, which contains the concentration d
ference between the two layers only. Instead, the total c
centration strongly affects the phase behavior. For equal c
centration of A and B molecules in the two layers, th
component with the larger overall concentration assemble
flat regions at the boundary between positively and ne
tively curved parts of the bilayer. If the concentrations in t
two layers are sufficiently different, the domain structure
more pronounced in the monolayer, in which the concen
tion of the minority component is larger. Finally, when th
total A- or B-concentration exceeds a threshold value, mo
lated phases no longer exist, and are replaced by a hom
neous, disordered phase.

Fluid-fluid phase separation has been studied intensi

FIG. 6. Phase diagram of the three-component monolayer
a55.4, b5a/4, a150.12 and three different temperatures~a! T
52, ~b! T51.5, ~c! T51.0. Black areas indicate three-phase
gions. The cut along the dashed line forl52.7 is shown in Fig. 7.
The lines marked by diamonds (L) indicate second-order trans
tions.
se
i-
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t
ses
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ge-

ly

in amphiphilic monolayers at the water-air interface@24#.
Such monolayers are almostplanar since the interface exhib
its a substantial tension, and can therefore not be used
rectly to study the phase behavior predicted in this pap
However, they indicate how phase separation should proc
in flexible monolayers containing several components.
interesting possibility is to study proteins, which are embe
ded in a two-component lipid monolayer. In one-compon
monolayers, adsorbed proteins have been found to accu
late at the boundary line between liquid-expanded a
liquid-condensed domains@25#.

In many cases, two-phase coexistence inbilayers is ob-
served between a fluid and a gel phase@1,8#. In addition,
some mixtures such as dielaidoyl PC/dipalmitoyl PE@26#,
phospholipid/cholesterol@27–30#, and palmitoyl oleyl phos-
phatidyl serine~POPS!/didodecanoyl PC@31# exhibit two-
phase coexistence regions where both phases are fluid. F
fluid coexistence in two-component membranes is
necessarily restricted to mixtures of two lipids. Another po
sible scenario is proteins adsorbed to one side of a bilaye
the proteins have an attractive interaction, there can b
phase separation into a protein-rich and a protein-pure ph

The results of our model indicate two possible mech
nisms for the formation of large domains in bilayers. First
large concentration of one component in either one or b
leaves of the bilayer leads to a homogeneous, disorde
phase—even when the same system with equal conce
tions ofA andB undergoes phase separation. Second, at
ficiently large lateral tension, a variety of modulated pha
becomes stable in a region of concentration space, wh

or

-

FIG. 7. Phase diagram in theT2f plane of~a! two component
bilayer with D50 and ~b! three-component monolayer withl
52.7 fora55.4, b5a/4, a150.12. See the text for the mapping o
the parameters of the two models. Gray areas indicate two-p
regions.
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macroscopic phase separation would occur if all compon
had zero spontaneous curvature. For small tensions, on
other hand, the membrane should undergo domain-indu
budding which again acts to prevent the formation of la
domains within the bilayer.

Compared to fluid-fluid coexistence, the two-phase co
istence between gel and fluid phases is more difficult to
scribe theoretically, since in general the shear elasticity
the gel domains has to be taken into account in addition
the curvature energy. However, the results calculated w
the curvature energy alone still apply to the striped pha
where the membranes are curved only in one direction
the shear energy vanishes. Furthermore, there are two a
tional features which make our results applicable to the g
to

e

Int

hi
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ed
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-
-
f

to
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di-
l-

fluid coexistence region. First, because the coupling betw
shear stress and curvature isquadratic in the amplitude of
the out-of-plane undulations, the shear energy should
small even for the hexagonal phases. Second, the gel p
often contains defects, and even a small density of dislo
tions makes the gel domains effectively fluidlike. Thus, w
can speculate that our results provide an explanation for
percolation behavior observed in diffusion experiments
gel-fluid coexistence@32,33#.
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