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Abstract. On the micrometer scale, the behavior of membranes and vesicles
can be understood, to a large extent, in terms of a few parameters. Two of these
parameters, which are crucial for the membrane morphology, are the vesicle vol-
ume and the preferred or ’spontaneous’ curvature of the membrane. † The volume
is primarily determined by the osmotic conditions, i.e., by the concentration of
solutes such as ions, molecules, and colloids which are dispersed in the aqueous
solution and which cannot permeate the membrane. These particles can also be
used to change the ’spontaneous’ curvature in a systematic and controlled fash-
ion. Another local control mechanism for this curvature is provided by molecules
which are attached to the membranes via hydrophobic anchors. These control
mechanisms might be used in order to construct membrane machines such as
swimming vesicles which are based on cycles in shape space.

1 Introduction

Flexible membranes form the boundaries of cells and organelles and exhibit fasci-
nating morphologies. [1] One example is shown in Fig. 1. To a large extent, this
polymorphism is due to the fluidity of these membranes, i.e., to the abilitiy of
the membrane molecules to move laterally within the membranes. This becomes
apparent from studies of lipid bilayers and vesicles which contain only one or
a few molecular components. [1, 2] Indeed, in their fluid state, these relatively
simple lipid membranes already exhibit a rather complex morphology, see Fig. 2.

The polymorphism of membranes and vesicles as observed on the micrometer
scale can be understood in terms of curvature models which depend only on a
small number of parameters: (i) On geometric parameters such as vesicle vol-
ume and membane area and (ii) on material parameters such as ’spontaneous’
curvature and bending rigidity.

∗Email: lipowsky@mpikg-golm.mpg.de
†Here and below, ’spontaneous’ appears in quotes since this curvature often arises from the

interactions of the membrane with its surroundings.
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FIG. 1: Biomembranes which bound various organelles: the labyrinth of mem-
brane sheets and tubes defines the endoplasmic reticulum; within the lamellar
region, one sees the membranes of three mitochondria (M) and of one lysosom
(L). (Krstic, 1976)

FIG. 2: Temperature–induced budding or ’endocytosis’: (top) A vesicle observed
by phase contrast microscopy during a temperature increase of less than one
degree Celsius; (bottom) Theoretical shapes of minimal curvature energy with
constraints on volume, area, and total mean curvature. The last shape on the
right represents a small spherical bud which is contained in the larger sphere;
both spheres are connected by a small neck or ’wormhole’.
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In general, these parameters may be changed in many ways. In the present
paper, I will focus on those mechanisms which are localized in the sense that
they change the vesicle shape but leave the environment of the vesicle essentially
unaffected. Two such methods are discussed in some detail: (i) particles dispersed
in the interior of the vesicle; and (ii) molecules attached to the membranes by
hydrophobic anchors.

The paper is organized as follows. First, I will briefly review the morphology
of membranes in Section 2. The interplay of membranes with dispersed particles
and anchored molecules is described in Sections 3 and 4, respectively. Finally,
section 5 contains some speculations on the construction of membrane machines
such as swimming vesicles which are based on a cyclic change of the membrane
shape.

2 Membrane morphology

Single lipid bilayers form closed vesicles which can have a linear size of the order
of 10 µm and which can be directly observed in the optical microscope. When the
vesicle membrane is fluid, one finds a large variety of different shapes and shape
transformations. One example is provided by budding processes as illustrated in
Fig. 2; in this case, the vesicle develops a small interior bud and finally forms two
spheres which are connected by a small neck.

The vesicle shape is governed by the curvature energies of its membrane and
by constraints on the membrane area and on the vesicle volume. The area of
lipid membranes is fixed (at constant temperature) because (a) the exchange of
molecules between the membrane and the solution can be neglected and (b) the
membrane is essentially unstretchable. Indeed, if the area of the membrane is
stretched by only a few percent, the membrane ruptures. The volume of the
vesicle, on the other hand, is clamped by the osmotic pressure arising from those
solutes which cannot permeate the bilayer membrane, see (7) below.

The curvature energies of bilayer membranes depend on the rate at which
the two monolayers exchange molecules. The basic exchange process consists of
a so–called flip flop in which one amphiphilic molecule is transferred from one
monolayer to the other. Two limiting cases may be considered: (i) Fast exchange
and frequent flip flops on the time scales of the experiment which implies that the
molecules within the membrane may easily attain their optimal packing densities
in both monolayers; and (ii) Slow exchange and rare flip flops which implies that
the number of molecules is kept fixed in both monolayers.

2.1 Bilayer with fast exchange between monolayers

First, consider bilayer membranes for which the molecules can easily undergo
flip flops and, thus, relax local stresses induced by bending deformations. One
example is provided by membranes with a large amount of cholesterol which
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undergo frequent flip flops. One can then ignore the bilayer structure and treat
the membrane as a surface which is characterized by its local geometric properties.

As one knows from differential geometry, the shape of any surface is charac-
terized locally by its mean curvature M and its Gaußian curvature G as defined
by

M ≡ (C1 + C2)/2 and G ≡ C1C2 (1)

where C1 and C2 represent the two principal curvatures (i.e., the inverse curvature
radii) at each point of the surface.

For the large vesicles considered here, the curvature radii are huge compared
to the membrane thickness lme � 4 nm. One may then expand the curvature
energies in powers of lmeCi. Up to second order in the curvatures, this leads to
the curvature energies [3]

E =
∮

dA {2κ(M −Msp)
2 + κGG} . (2)

The surface integrals extend over the whole membrane surface and dA is the
intrinsic area element. The two elastic parameters κ and κG have the dimensions
of energy and represent the bending rigidity and the modulus of the Gaußian
curvature, respectively. For closed membranes without edges, the integral over
the Gaußian curvature does not depend on the shape of the surface but only on
its topology as follows from the Gauß–Bonnet theorem.

The ’spontaneous’ curvature Msp in (2) describes the local asymmetry of the
membrane which may arise (i) since the two monolayers of a bilayer membrane
differ in their chemical composition and/or (ii) because the two sides of the mem-
brane face different surroundings. If the membrane is symmetric, i.e., if both sides
of the membrane are identical, one has Msp = 0. In the latter case, the curvature
energy as given by (2) is scale–invariant and even conformally invariant. [4]

If the bilayer membrane of a vesicle exhibits fast molecular exchange between
the two monolayers, the experimentally observed shapes should correspond to
those shapes which minimize the curvature energy E as given by (2) under the
constraint of fixed surface area A ≡ 4πR 2

ve and fixed volume V in of the vesicle.
These minimal shapes depend only on two dimensionless parameters: (i) the
reduced volume υ ≡ 3V in/4πR 3

ve ≤ 1 where the equality holds for a sphere; and
(ii) the reduced ’spontaneous’ curvature msp ≡ 2RveMsp. The corresponding
shape diagram in the (υ,msp)–plane is shown in Fig. 3. [5]

2.2 Bilayer with slow exchange between monolayers

If the exchange of molecules between the two monolayers of the bilayer is suffi-
ciently slow, each monolayer contains a fixed number of molecules. Since each
of these molecules would like to occupy a certain optimal area, one obtains a
constraint on the total mean curvature

M ≡
∮

dA M =
∮

dA 1

2
(C1 + C2) (3)
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FIG. 3: Shape diagram for vesicles: fast molecular exchange between monolayers.
The equilibrium shape is determined by the volume υ and the ’spontaneous’
curvature msp as defined in the text.

FIG. 4: Shape diagram for vesicles: slow molecular exchange between monolay-
ers. (Courtesy of H. G. Döbereiner) The equilibrium shape is determined by the
volume υ and the effective ’spontaneous’ curvature m′

sp as defined in the text.
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which is proportional, for a closed bilayer membrane, to the area difference ∆A
of the two monolayers. In fact, M would like to assume the optimal value Mo

corresponding to the optimal packing of the molecules within the monolayers.
This leads to the additional curvature energy [6]

Ē = 2πκ̄(M−Mo)
2/4πR 2

ve (4)

which depends on the second bending rigidity κ̄ and on the vesicle radius Rve.
The dimensionless ratio κ̄/κ is expected to be of order one and 4πR 2

ve = A as
before.

The combined curvature energy E + Ē has two terms which are linear in the
total mean curvature M. This leads to the effective ’spontaneous’ curvature

M ′
sp ≡ Msp + κMo/4κ̄R

2
ve (no flip flops) . (5)

The first term arises from E as given by (2) and represents the local ’sponta-
neous’ curvature which depends on the local properties of the membrane and
its surroundings. The second term in (5) arises from Ē as in (4); it is a global
quantity since it depends on the preferred value Mo of the total mean curvature.

Now, the vesicle shapes which are observed experimentally should correspond
to those shapes which minimize the combined curvature energy E + Ē as given by
(2) and (4), again under the constraint of fixed surface area A and fixed volume
V in. These minimal shapes now depend (i) on the reduced volume υ as defined
previously and (ii) on the reduced ’spontaneous’ curvature m′

sp ≡ κRveM
′
sp/πκ̄

(normalized in such a way that m′
sp = 1 for a sphere). The corresponding shape

diagram in the (υ,m′
sp)–plane is shown in Fig. 4. [7]

A more detailed discussion of curvature models and their associated shape
diagrams can be found in Ref. [1] and in the review by Seifert [8].

2.3 Global versus localized control of vesicle shape

If one wants to change the vesicle shape in a systematic and controlled way,
one has three possiblities: (i) Changing the membrane area; (ii) Changing the
enclosed volume of the vesicle; and (iii) Changing the preferred or ’spontaneous’
curvature of the membrane.

In principle, one has various control mechanisms which couple to these mem-
brane parameters. Some of these mechanisms are global in the sense that they
change both the vesicle and its environment. One obvious example is a change in
temperature which represents the most convenient way to change the membrane
area.

In the following, I will focus on localized control mechanisms by which one
can change the vesicle shape but leaves its environment essentially unaffected.
Several examples for such localized mechanisms will be discussed: (i) Control
of the vesicle volume by changing the number of particles dispersed within the
vesicle; (ii) membrane curvature induced by the interaction of such particles with
the membrane; and (iii) local control of curvature by molecules anchored to the
membrane.
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3 Membranes and dispersed particles

The behavior of membranes in contact with dispersed ions, molecules and colloids
is governed by the interplay of entropic and enthalpic forces. The entropic con-
tribution arises from the loss of translational entropy of the particles in front of
the membrane/solvent interfaces. This occurs as soon as the dispersed particles
cannot permeate the membrane on the experimentally relevant time scales.

In the presence of such particles, one must first consider osmotic effects since
the lipid bilayers are permeable to water molecules. As a consequence, the vol-
umes of the two water compartments, which are separated by the membrane, will
adapt until the system is osmotically balanced. In addition to these osmotic ef-
fects, the dispersed particles also affect the curvature of the membrane since they
change the interfacial tensions of the two membrane/solvent interfaces. Three
cases must be distinguished: [9] (i) Nonadhesive particles which are repelled
from the membrane surfaces; (ii) Small adhesive particles with a size which is
smaller than the membrane thickness; and (iii) Large adhesive particles with a
size which is larger than the membrane thickness.

The curvature effects discussed here are accessible to experimental studies of
vesicles. Recently, this approach has been used for vesicles in solutions of glucose
and raffinose. [10] The values for the ’spontaneous’ curvature which have been
deduced in this way are in fair agreement with the theoretical results as reviewed
in the following subsections.

3.1 Osmotic balance

The membrane of a closed vesicle divides space into an interior (in) and an ex-
terior (ex) compartment with volumes V in ∼ R3

ve and Vex, respectively. Both
compartments may contain different particle species labeled by j. For dilute
solutions, the osmotic pressure ∆P across the membrane is given by ∆P =
T (N ex−N in) with Nα ≡ ∑

j N
α
j where Nα

j is the number densitiy (or concen-
tration) of j–particles per unit volume with α = in, ex.

This osmotic pressure difference is balanced by the bending rigidity κ of the
bilayer membrane which leads to N exV in = (N inV in + cPκ/T ). In principle, this
is a nonlinear equation for V in since the dimensionless coefficient cP depends on
the shape and thus on V in. However, one usually has N inV in � κ/T which leads
to ∑

j

∆Nj ≡
∑
j

(N ex
j −N in

j ) � 0 (6)

where terms of order κ/TV in ∼ κ/TR3
ve have been ignored.

The particle number densities N in
j are given by N in

j ≡ N in
j /V in where N in

j

represents the number of j–particles inside the vesicle. It then follows from (6)
that the vesicle volume V in satisfies

V in �
∑
j

N in
j /

∑
j

N ex
j . (7)
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Thus, one may change the vesicle volume (i) by changes in the exterior num-
ber densities (or concentrations) N ex

j which represent global control parameters
and/or (ii) by changes in the interior particle numbers N in

j which represent lo-
calized control parameters.

Thus, in order to control the vesicle volume without changing its environment,
one has to change the particle numbers N in

j inside the vesicle. This can be
achieved, e.g., by polymerization, association and/or adsorption of the dispersed
particles, see Fig. 5.

FIG. 5: Localized control of vesicle volume by (a) polymerization, (b) association,
and (c) adsorption of particles dispersed inside the vesicle. The downward and
the upward arrows correspond to deflation and inflation, respectively.

3.2 Non–adhesive particles

Nonadhesive particles are repelled from the membrane/solvent interfaces and thus
are depleted in front of these interfaces. This depletion increases the interfacial
free energy of these surfaces. [11, 12, 13] If one substracts the interfacial free
energy of the flat membrane/water interfaces and balances the resulting excess
free energy with the bending energy, one arrives at the ’spontaneous’ curvature
[9]

Msp = − T

4κ

∑
j

∆NjRj(lme + Rj) . (8)

Here all particles are taken to be essentially spherical and, thus, to be char-
acterized by a single length scale, namely their radius Rpa = Rj for species j.
In general, the bending rigidity κ may contain contributions from higher order
curvature terms of the interfacial free energies.
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For a closed vesicle, osmotic equilibrium implies
∑

∆Nj � 0 as in (6). Thus,
for a solution with a single species, the ’spontaneous’ curvature as given by (8)
vanishes. For a binary solution with two particle species j = 1 and j = 2, one
obtains Msp = (T/4κ)∆N1(R2 −R1)(lme +R1 +R2) which is proportional to the
size difference R2 − R1. Since ∆N1 = N ex

1 −N in
1 , the membrane segment curves

toward the larger particles, see Fig. 6 (a).

FIG. 6: ’Spontaneous’ curvature of a membrane segment which is in contact with
dispersed particles: (a) Two non–adhesive particle species; (b) One adhesive and
one non–adhesive species; and (c) Two adhesive species.

Note that the ’spontaneous’ curvature increases monotonically with increasing
particle size. This should apply both to small particles with Rpa < lme and to
large particles with Rpa > lme. In both cases, the expression as given above will
apply to membrane segments which are large compared to the mean distance of
the dispersed particles.

3.3 Small adhesive particles

Next, consider small spherical particles with radii Rj � lme which are attracted
toward the membrane surface. It follows from the Gibbs adsorption equation that
the interfacial tension is reduced by adsorption. A simple estimate for this reduc-
tion can be obtained in the framework of Langmuir–type models for monolayer
adsorption. [14]

If the resulting change in the free energies of the membrane/water interfaces
is again balanced against the bending energy of the membrane, one now obtains
the ’spontaneous’ curvature [9]

Msp = +
T

4κ

∑
j

kj∆Nj
lme + 2Rpa

cadR2
pa

. (9)
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which increases monotonically with decreasing particle size (a lower cutoff is pro-
vided by the molecular roughness of the membrane surface). The Langmuir
constants kj are small and large for weak and strong j–adsorption, respectively.

A single species of adhesive particles has again no effect on the spontaneous
curvature. For a binary solution with two species j = 1 and j = 2 of adhesive
particles, on the other hand, the ’spontaneous’ curvature as given by (9) becomes
Msp = (T/4κ)(k1 − k2)∆N1(lme +2Rpa)/cadR

2
pa. This implies that the membrane

curves away from the more strongly adsorbed particles as in Fig. 6(c). In addition,
Msp decreases monotonically with increasing Rpa.

3.4 Large adhesive particles

If the particle size Rpa is large compared to the membrane thickness lme but
still small compared to the vesicle size, the competition between the adhesion
energy and the bending energy now leads to a somewhat different behavior: the
membrane will typically try to wrap around the particle and thus to encapsulate
it.

The attractive interaction between the particle and the membrane may be
described by their adhesion energy per unit area, W < 0. The adhesion energy
is then given by WAco where Aco is the contact area. If this adhesion energy
is balanced against the bending energy of the membrane, a single particle is
encapsulated by the membrane as soon as its size Rpa exceeds the threshold value
[15, 9]

R∗ ≡ [2κ/|W |]1/2 . (10)

The same threshold also applies to collapsed polymer chains which adhere to
the membrane. A similar balance of adhesion and bending energies has been
recently used for the case in which the attraction arises from depletion forces
between small and large dispersed particles. [16] Note that the relation (10) does
not include the constraints on the vesicle area and on the vesicle volume. If the
particle size Rpa becomes of the same order as the vesicle size, these constraints
act to prevent the particle encapsulation as observed in recent experiments. [17].

If the solution contains many adhesive particles with Rpa � R∗, the membrane
will try to encapsulate a large number of them. If the membrane is again treated
as an unstretchable surface with fixed area A, the maximal number of particles
which can be encapsulated depends on the reduced volume υ ≡ 3V in/4πR 3

ve ≤ 1 of
the initial state of the vesicle: The membrane can encapsulate adhering particles
if its initial state has v < 1, i.e., as long as its initial shape is deflated compared
to a sphere. The encapsulation will proceed until the membrane forms a large
spherical ’mother’ vesicle with many spherical buds, see Fig. 7. [9]

If some molecules such as cholesterol within the bilayer membrane can undergo
relatively fast flip flops between the two monolayers, all three states displayed in
Fig. 7 should be accessible. For relatively slow flip flops, on the other hand, the
constraint on the area difference ∆A ∼ M described by the curvature energy (4)
favors the states shown in Fig. 7(b) for which the numbers of interior and exterior
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FIG. 7: Vesicle with several encapsulated particles adsorbed (a) from the interior
compartment; (b) from both the interior and the exterior solution; and (c) from
the exterior compartment. In order to simplify the figure, the membrane thickness
and the particle size have been exaggerated compared to the vesicle size, and the
thin water layers between the membrane and the particles have been omitted.

buds are comparable. The asymmetric states shown in Fig. 7(a) and (c), on the
other hand, will be suppressed by this constraint since each interior bud which is
not compensated by an exterior one involves a certain change in ∆A.

4 Membranes and anchored molecules

In this section, I will discuss the possibility to control the ’spontaneous’ curvature
of a fluid membrane by decorating it with anchored molecules. Two aspects will
be emphasized: (i) anchored polymers; in this case, the the ’spontaneous’ curva-
ture induced by the molecules can be estimated by simple scaling laws; and (ii)
anchored molecules which can undergo transitions between different conforma-
tional states and which, thus, represent switches between different ’spontaneous’
curvatures in the adjacent membrane segments.

The following discussion summarizes our theoretical understanding of the cur-
vature effects arising from anchored molecules. [18, 19, 15] Vesicles with anchored
polymers have also been observed by optical microscopy [20, 21] but systematic
studies of the curvature effects of these polymers are still missing.

There are various ways to attach molecules to membranes. Some possibilities
for polymers are displayed in Fig. 8. I will focus on the simplest type of anchor
which is provided by a lipid molecule. The anchored molecule is then bound
covalently to the head group of this lipid anchor.
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FIG. 8: Different ways to attach polymer chains to bilayer membranes: (a) Lipid
anchor, (b) Hydrophobic side chain; (c) Membrane-spanning polymer segment;
and (d) Anchored and adsorbed chain

4.1 Mushroom anchored at one end

First, consider a single chain for which the anchor is located at one of its ends and
for which the non–anchored polymer segments experience repulsive interactions
with the membrane surface. Such a polymer forms a mushroom, see Fig. 9. The
size of these mushrooms is comparable to the size of the free polymer, i.e., to
Rpo � apoN

ν
mo with the persistence length apo and the size exponent ν. The latter

exponent is ν � 3/5 for good solvents and ν = 1/2 for θ–solvents or ideal chains,
see, e.g., [22].

Because the membrane reduces the configurational entropy of the mushroom,
one has an entropic force which acts to bend the membrane away from the poly-
mer. As a result, the adjacent membrane segment acquires the ’spontaneous’
curvature [18]

Msp ∼ +T/κRpo ∼ +T/κapoN
ν

mo for mushrooms (11)

where T is the temperature in energy units.

4.1.1 Mushroom with several anchors

If the polymer chain is anchored at both ends, one has two competing effects.
When the two ends are close together, the polymer forms an anchored ring and
the membrane again bends away from the chain. On the other hand, if both ends
are far apart, the polymer is in a stretched state and then pulls on the membrane.
For ideal chains with ν = 1/2, these two competing effects cancel to leading order.
[15]
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FIG. 9: Polymer mushrooms at membrane segments of different shapes which
reflect the entropic repulsion between the polymer and the membrane.

Next, consider an ideal chain with several anchors which partition the chain
into m segments. Its partition function factorizes into a product of m partition
functions where each factor represents one chain segment. Those chain segments
which are bounded by two anchors do not contribute to the ’spontaneous’ cur-
vature. Therefore, bending moments arise only from those ends which are not
anchored. If both end segments are free and consist of N1 and Nm monomers,
respectively, they lead to

Msp � (T/κ)(R1 + Rm)/R2
po (12)

with R1 = apoN
1/2
1 and Rm = apoN

1/2
m for ideal chains.

4.2 Adsorbed chains

If the non–anchored segments of the chain experience attractive interactions with
the membrane surface, the polymer will form an adsorbed pancake. Scaling ar-
guments predict that the membrane now bends towards the polymer in order to
maximize the number of contact points with the pancake. An expicit calculation
for ideal chains shows, however, that the sign of Msp may, in general, depend on
microscopic parameters. [19]

The attractive potential between the polymer and the surface is usually de-
scribed by the so–called extrapolation length lex, see, e.g., [23]. In general, this
length scale may depend on the curvature of the surface [24] and will then behave
as lex ≈ l0(1 + l1M) for small M . For a planar surface, the inverse extrapola-
tion length 1/l0 measures the distance from the adsorption transition of the ideal
chain; negative and positive values of 1/l0 correspond to adsorbed and desorbed
chains, respectively.
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In the adsorbed regime (away from the adsorption transition), the ’sponta-
neous’ curvature is found to be [19]

Msp � λT/κL⊥ with λ ≡ 1 − l1/l0 (13)

where L⊥ � |l0| decribes the thickness of the pancake.
In principle, the relation as given by (13) predicts that the ’spontaneous’

curvature induced by the pancake could have both signs depending on the relative
size of the length scales l0 and l1. Typically, one expects to have l1/l0 < 1 which
implies that the membrane bends towards the polymer in order to maximize
the number of contact points. On the other hand, sufficiently long–ranged forces
might lead to l1/l0 > 1 and, thus, to the opposite curvature. Such a non–universal
behavior depending on the microscopic length scales of the system could also
apply to adsorption layers consisting of many polymer chains. In the latter case,
it has been proposed by de Gennes [25] that the membrane bends away from the
adsorption layer whereas Brooks et al [26] found from a self–consistent calculation
that the membrane bends towards the adsorbed polymers.

4.3 Anchored molecular switches

So far, I have considered anchored molecules in a certain conformation or state.
Now, let us look at molecules which can attain several distinct conformations or
states depending on the external conditions. In the simplest case, these molecules
may assume just two different conformations, say (α) and (β).

In principle, there are many molecules which can undergo transitions between
two different states. For the anchored polymers discussed in the previous sub-
sections, two examples are (i) a polymer chains which can undergo a transition
from a random coil (α) to a collapsed (or globular) state (β) ; and (ii) a polymer
chain which transforms from a desorbed mushroom (α) to an adsorbed pancake
(β).

In both cases, the transitions between the conformational states (α) and (β)
induce changes in the ’spontaneous’ curvature from Msp(α) to Msp(β). The sign
and the magnitude of these changes can be estimated using the relations (11)
- (13 ) as given above. In particular, if the anchored polymer transforms from
an adsorbed pancake to a desorbed mushroom, the preferred curvature of the
adjacent membrane segment should change its sign, compare Fig. 10.

Other examples for such curvature switches are provided by molecules which
can undergo transitions between a trans state (α) and a cis state (β). In general,
these transitions may be triggered by various control parameters or ’effectors’
such as temperature, osmotic conditions, chemical reactions and light. In some
cases, the forward and the backward transition can be induced using light of
two different frequencies. One interesting example is provided by azobenzene
chromophores which exhibit a cis and a trans isomer, and which can be switched
reversibly between these two different states using infrared and ultraviolett light,
respectively.
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FIG. 10: An anchored polymer which undergoes an adsorption–desorption transi-
tion induces a downward curvature Msp > 0 for desorption (left), and an upward
curvature Msp < 0 for adsorption (right).

In summary, both dispersed particles and anchored molecules can be used in
order to control the vesicle volume and the ’spontaneous’ curvature of the mem-
brane. In order to simplify the discussion in the previous sections, I have focussed
on membranes which are laterally homogeneous and which are characterized by
a uniform bending rigidity κ. New morphologies arise if the membranes con-
tain distinct intramembrane domains. One example is domain–induced budding
which occurs as soon as these domains are sufficiently large. [27, 28, 2]

5 Membrane machines and swimming vesicles

In this last section, I will speculate about some possibilities to construct soft mat-
ter machines which are built from membranes and vesicles. One rather obvious
’device’ would be a vesicle which swims.

5.1 Basic principles of colloidal machines

In general, a colloidal machine must have three basic ingredients:
(i) A colloidal subsystem which can attain several distinct conformations or states
and which is able to undergo cyclic transitions between these states;
(ii) A driving mechanism which induces such transitions and moves the subsystem
out of equilibrium;
(iii) A transduction mechanism which transforms the cyclic transitions between
the states into mechanical work.

In the following, I discuss shape cycles of vesicles which lead to a swimming
motion. Since the vesicle size is in the micrometer range, this motion represents
self–propulsion at low Reynolds number, a process which has been previously
studied in some detail for bacteria and other microorganisms, see, e.g., [29].
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5.2 Self–propulsion at low Reynolds number

In the limit of small Reynolds numbers, a body which swims via shape deforma-
tions has no inertia, i.e., it stops moving as soon as it stops changing its shape.
This implies that the body cannot swim by ’reciprocal shape changes’. The lat-
ter type of motion corresponds to a shape sequence from Sα to Sβ and back
to Sα where the second sequence of shapes is the first sequence in reverse. In
the absence of inertia, such a combined sequence of shape changes cannot lead
to an overall center–of–mass motion of the body (this is known as the ’scallop
theorem’).

Thus, in order to obtain an overall motion of the center–of–mass at low
Reynolds number, the body has to go through a cycle in shape space. It will
then move by a certain distance Lcyc per cycle. If it takes the time tcyc to perform
one cycle, the swimming velocity is of the order of Lcyc/tcyc.

5.3 Cycles in shape space

Since vesicles can attain a large variety of shapes, it is not difficult to imagine
shape cycles which should lead to a swimming motion. One example is shown in
Fig. 11.

FIG. 11: Cycle in shape space which should lead to a swimming motion in the
upward direction. The four steps of the cycle correspond to (I) deflation, (II)
decrease of the ’spontaneous’ curvature Msp, (III) inflation, and (IV) increase of
Msp.

A shape cycle as shown in Fig. 11 corresponds to a closed path in the shape
diagrams of Fig. 3 and Fig. 4. In order to perform such a cyclic change of the
vesicle shape, one must, in general, change both the vesicle volume υ and the
membrane curvature msp (or m′

sp). In principle, one may also get an overall mo-
tion of the center of mass by changing only one parameter such as msp provided
the corresponding shape trajectory moves across a discontinuous shape transfor-
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mation with a hysteresis loop. However, this latter shape cycle is not expected
to be very efficient.

In order to think in terms of a vesicle motor, one would like to use localized
control mechanisms for the required shape changes. For the cycle shown in Fig. 11,
the deflation and inflation steps could be obtained by using the mechanisms shown
in Fig. 5, i.e., by changing the number of particles within the vesicle. The changes
in the ’spontaneous’ curvature, on the other hand, could be most easily done by
anchored molecules which undergo transitions between distinct conformations.

As mentioned, the presumably fasted way to induce such conformational
changes is by irradiation with light. One example are molecular groups which
can be switched between a trans and a cis conformation by using light of two
different frequencies. Likewise, one would like to use light in order to change the
particle number within the vesicle. Such a control method has been realized quite
recently by Petrov and Döbereiner who used the photochemical compound potas-
sium ferrocyanide which exchanges a CN groups with a bound water molecule
under illumination. [30]

5.4 Directed versus diffusive motion

The basic time scale for the shape transformation of a vesicle of linear size Rve

in the micrometer range is given by the relaxation time trel ∼ ηR 3
ve/κ where η is

the dynamical viscosity of the surrounding solution. This relation follows from
dimensional analysis and was first derived for the hydrodynamic relaxation of
bending modes [31].

If the control parameters can be varied sufficiently fast, i.e., on time scales
which are small compared to trel (one example is provided by light), the time tcyc

for a cyclic shape change is set by trel and one has

tcyc = coηR
3
ve/κ (14)

with the dimensionless coefficient co
>∼ 1. For lipid membranes in water, one has

κ � 10−19 J and η � 10−3 Js /m3 which leads to tcyc � co(Rve/µm)3 10−2 s.
For a shape cycle as shown in Fig. 11, the translation of the vesicle arising

from one such cycle will be of the order of Rve. This leads to the maximal
swimming velocity

vmax � Rve/tcyc � κ/coηR
2
ve (15)

For the aforementioned parameters as appropriate for lipid membranes in water,
this leads to vmax � (µm/Rve)

2 (102/co) µm/s.
The shape cycle displayed in Fig. 11 consists of shapes which are nearly ax-

isymmetric. Thus, I tacitly assume here that this symmetry is not broken during
the induced shape changes. In general, there are various ways in which this sym-
metry could be lost: (i) the membrane could become laterally inhomogenous or
nonuniform because of domain formation or similar processes; or (ii) dynamic
instabilities could lead to non–equilibrium shapes which are not axisymmetric.
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If the cycle involves shapes which are far from axisymmetric, the vesicle may
exhibit a tumbling motion and it is not obvious in which direction it will go. On
the other hand, if the shapes in the cycle are nearly axisymmetric, the vesicle will
initially move in the direction of its symmetry axis until it loses its orientation
as a result of thermal fluctuations.

Indeed, as the vesicle is propelled by the shape cycle, it also undergoes trans-
lational and rotational diffusion since it is in direct contact with the surrounding
solvent at temperature T . For a spherical body of linear size Rve, one has the
translational and rotational diffusion coefficients

Dtra = T/6πηRve and Drot = T/8πηR 3
ve , (16)

respectively. At room temperature T � 4×10−21 J, this implies Dtra � (µm/Rve)×
2 × 10−9 cm2/s and Drot � (µm/Rve)

3 × 0.2 s−1 for thermally–excited diffusive
motion in water.

The swimming motion arising from the shape cycle will be directed as long
as the vesicle keeps its orientation. Because of the thermal fluctuations, this
orientation is lost after the rotation time

trot � 1/Drot � 8πηR 3
ve/T (17)

which is the time it takes to rotate the body by an angle of order π/2. This
implies that the swimming motion of the vesicle exhibits the persistence length

ξper � vmaxtrot � (8π/co)(κ/T )Rve (18)

for a given spatial direction. For lipid bilayers in water, one has (κ/T ) � 20
which implies that the vesicle can be translated in a certain direction by as much
as (500/co)Rve.

For times t � trot and length scales L � ξper, the self–propulsion of the
vesicle will lead to an overall diffusive motion which is governed by the effective
translational diffusion coefficient

D′
tra � ξ 2

per/trot � (8π/c 2
o )(κ2/TηRve) . (19)

The usual translational motion arising from thermal fluctuations is governed by
Dtra as given by (16). If one combines this latter relation with (19), one obtains

D′
tra/Dtra � (48π2/c 2

o )(κ/T )2 . (20)

For lipid membranes with (κ/T ) � 20, this leads to D′
tra/Dtra � 104/c2

o. Thus,
the effective diffusive motion should be much faster than the usual Brownian
motion arising from thermal fluctuations.

Finally, let us check that the vesicle always stays in the low Reynolds number
regime as assumed. In the present context, the Reynolds number Re is given by

Re = Rvevmaxρ/η � (1/co)(κρ/η
2Rve) (21)
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where ρ is the mass density of the solution. If one again inserts the parameters
appropriate for lipid membranes and water, one obtains Re � (µm/Rve)(10−4/co)
which is indeed quite small.

The above estimates about the swimming motion of vesicles are somewhat
crude and it would be highly desirable to study this motion more systematically.
From the theoretical point of view, one should then include the hydrodynamic
interactions between different membrane segments as described by the appropri-
ate Oseen tensor. This can be done with the same numerical algorithm as used
previously for vesicles in an external shear flow [32].

Glossary: List of symbols

All symbols are treated as words which are ordered alphabetically.

apo persistence length of flexible polymer
A surface area
c dimensionless coefficient
Ci principal curvatures of surface with i = 1, 2
∆P osmotic pressure difference
∆A area difference between monolayers
E curvature energy of membrane
Ē additional curvature energy for membranes without flip flops
η dynamical viscosity
Dtra diffusion coefficient for translational diffusion
Drot diffusion coefficient for rotational diffusion
G Gaußian curvature
κ bending rigidity
κG modulus of Gaußian curvature
κ̄ second bending rigidity
lme thickness of membrane
lex extrapolation length for polymer adsorption and desorption
L characteristic length
M mean curvature of the membrane surface
msp reduced, dimensionless ’spontaneous’ curvature
Msp preferred or ’spontaneous’ curvature
M ′

sp effective ’spontaneous’ curvature for membranes without flip flops
M total mean curvature
Mo total mean curvature corresponding to optimal molecular packing
Nj particle number density of species j
Nmo number of monomers of a linear polymer
Nj number of dispersed particles of species j
Rpa linear size of dispersed particles
Rpo linear size of anchored polymer
Rve vesicle size as defined by the surface area
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Re Reynolds number
ρ mass density of solvent
t time
tcyc time for one shape cycle
trot time to rotate diffusing body
T temperature (in energy units)
υ reduced, dimesionless volume
vmax maximal swimming velocity
V volume
W adhesion energy per unit area
ξper persistence length of swimming motion

References

[1] Structure and dynamics of membranes, Vol. 1 of Handbook of biological
physics, edited by R. Lipowsky and E. Sackmann (Elsevier, Amsterdam,
1995).

[2] R. Lipowsky, Current Opinion in Structural Biology 5, 531 (1995); and in
Vol. 23 of Encyclopedia of Applied Physics, edited by G. L. Trigg (Wiley–
VCH Verlag, 1998) p. 199.

[3] W. Helfrich, Z. Naturforsch. 28c, 693 (1973).

[4] T. Willmore, Total curvature in Riemannian geometry (Ellis Horwood,
Chicester, 1982).

[5] U. Seifert, K. Berndl, and R. Lipowsky, Phys. Rev. A 44, 1182 (1991).

[6] L. Miao, U. Seifert, M. Wortis, and H.-G. Döbereiner, Phys. Rev. E 49, 5389
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