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Abstract. Wetting of structured or imprinted surfaces which leads to a variety of different morphologies
such as droplets, channels or thin films is studied theoretically using the general framework of surface
or interface thermodynamics. The first variation of the interfacial free energy leads to the well-known
Laplace equation and a generalized Young equation which involves spatially dependent interfacial tensions.
Furthermore, we perform the second variation of the free energy for arbitrary surface patterns and arbitrary
shape of the wetting morphology in order to derive a new and general stability criterion. The latter criterion
is then applied to cylindrical segments or channels on homogeneous and structured surfaces.

PACS. 68.45.Gd Wetting – 68.10.Cr Surface energy (surface tension, interface tension,
angle of contact, etc.) – 47.20.Dr Surface-tension-driven instability

1 Introduction

During the last years, several experimental methods have
been developed by which a substrate can be laterally
structured ([1–9]), i.e. endowed with a pattern of spa-
tial regions (domains) with modified chemical and physical
properties. A brief review of these methods can be found
e.g. in references [10,11]. If a liquid wets such a structured
or imprinted surface, then the interface between the wet-
ting layer and the substrate has a position-dependent free
energy which reflects the underlying surface pattern. As a
result, the shape of the wetting layer will be influenced by
the 2-dimensional structure of the substrate. This inter-
play between the pattern of surface domains and the wet-
ting layer morphology leads to new wetting phenomena
such as non-spherical droplet shapes which can undergo
shape instabilities [12] and morphological transitions be-
tween different wetting states [13].

Such morphological wetting transitions are a generic
feature for wetting of structured surfaces. They are inti-
mately related to the fact that droplets on surface domains
can exhibit contact angles which do not fulfil the classical
Young equation. To be more precise, depending on its vol-
ume, a droplet belongs to one of three droplet regimes, in
the sequel denoted as droplet regimes (I), (II) and (III). If
a hydrophobic substrate with a single hydrophilic domain
is considered, then regime (I) corresponds to a contact
area between droplet and surface which is smaller than
the surface domain. In regime (II) the hydrophilic region is
completely covered and in regime (III) the droplet spreads
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onto the hydrophobic substrate. Whereas in regime (I)
and (III), the Young equation is fulfilled, the contact an-
gle in regime (II) is determined by the volume1 of the
droplet only, see reference [13]. One should note that the
droplets belonging to droplet regimes (I)–(III) are in (me-
chanical) equilibrium. However, in experiments situations
can be encountered where the (interfacial) forces acting on
the droplet are not balanced out leading thus to various
additional dynamical droplet regimes, see e.g. references
[15,16].

Since in regime (II) the hydrophilic domains are com-
pletely covered, the morphology of the wetting layer can
be influenced in a controlled way by prescribing the
contact area with appropriately chosen domain geome-
tries. As an example, liquid channels were realized in
reference [12] by prescribing rectangular contact areas.
Such morphologies of the wetting layer are unstable on
homogeneous substrates where they decay into a chain of
(spherical) droplets. On structured surfaces they are sta-
bilized against this classical Rayleigh-Plateau instability,
but exhibit a new kind of instability leading to a channel
with a single bulge.

The aim of the present article is to deepen the formal
understanding of the difference between the instability of
wetting layer morphologies on structured and on homo-
geneous substrates. To reach this goal, a general classifi-
cation of the stationary states and a general investigation
of their stability is necessary. This will be done here by

1 Our approach can be extended to the grand-canonical en-
semble where morphological transitions can occur for wetting
layers on scales comparable with the range of the microscopic
forces. One example is provided in reference [14].
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deriving a general stability criterion valid for stationary
morphologies of the wetting layer on homogeneous and
structured substrates.

The experimentally observable droplet shapes are
given by the minima of the free energy F of the system.
These correspond to wetting morphologies which are so-
lutions of the Laplace equation, i.e. morphologies with a
liquid-vapor interface which is a surface of constant mean
curvature and which fulfills the geometrical boundary con-
ditions2. However, not all solutions of the Laplace equa-
tion correspond to minima of F . In general, they only
correspond to stationary states of the free energy. They
are not necessarily stable, but could correspond to a max-
imum or a saddle point of the free energy. Thus, in order
to determine the stable solutions one has to investigate
the local behavior of the free energy. By performing a
linear stability analysis of the stationary states the so-
lutions corresponding to the minima can be classified. In
this method, the state under investigation is transformed
to a neighboring state of the configuration space by a small
perturbation. Since the original state is stationary, the free
energy changes only in second order of this perturbation.
As in the case of regular functions, the eigenvalues of this
second variation δ(2)F reflect the local behavior of F at
the stationary points. The stationary state is a minimum if
all eigenvalues are positive, it corresponds to a maximum
if all are negative.

If the eigenvalues depend, in general, on external pa-
rameters, a change of these parameters can lead to a
change of the local behavior of the functional at the sta-
tionary state. In the situation considered here, the eigen-
values depend on V , the volume of the droplet. If for a
certain volume range V < V max all eigenvalues of a mor-
phology (A) are positive and if for V > V max at least
one eigenvalue is negative, then the state (A) becomes
unstable at V = V max. For V > V max there must be
a different minimum (B) in the configuration space and
one encounters a physical situation where a morphological
transition between (A) and (B) takes place3. For a first
order transition between (A) and (B) the spinodal tran-
sition, i.e. the transition where no activation barriers has
to be overcome, takes place at V max. Then, (A) is already
only metastable in a volume range V ∗ < V < V max. If the
transition is second order, then it takes place at the criti-
cal volume V max. One should be aware that with the help
of the stability analysis neither the state (B) nor the order
of the transition can be determined. Analytical methods
which go beyond this linear approximation in the context
of wetting on structured surfaces are described elsewhere
[13,19].

2 Here, the question under which conditions such solutions
exist shall not be considered. Corresponding investigations can
be found in the mathematical literature, see e.g. references
[17,18].

3 In the system considered here, fluctuations are very weak
at room temperature T . Thus, even though the system is finite
and T > 0, this transition leads to an experimentally observ-
able sharp change in the morphology.

One possibility to realize this program is to chose
suitable coordinates for a given geometry of the surface
domains. For example, the droplets could be parameter-
ized by cylindrical coordinates or by the Monge represen-
tation. The free energy is then a functional of the radius
vector r(ϕ, z) or of the height function h(x, y). The dis-
placement of the configuration is given by a displacement
of r and h, respectively. The second variation δ(2)F can
be calculated by expanding the functional in this pertur-
bation. However, one should be aware that this is a vari-
ational problem with constraints. Not all displacements
are allowed since the contact line of the perturbed config-
uration has to stay on the substrate. The corresponding
additional constraints have to be taken into account in
order to determine the appropriate eigenmodes [20,21].
Although it is often more convenient to calculate in given
coordinates, the main disadvantage of such a procedure
is that one obtains results which depend on the chosen
parameterization.

For that reason a different approach shall be pur-
sued here. Formally, the liquid-vapor interface bounding
the wetting layer in three dimensions represents a two-
dimensional surface which can be parameterized by lo-
cal coordinates. In this formulation, the free energy has a
functional dependence on the geometry of the interface.
With the help of the local calculus of differential geome-
try it is possible to expand the change in the free energy
caused by a general displacement in terms of the small pa-
rameters of this displacement. In particular, it is then pos-
sible to calculate the second variation of the free energy
in a coordinate independent fashion. The corresponding
calculation is somewhat tedious but the final result holds
both for homogeneous and for structured substrates with
arbitrary surface domain geometries. Furthermore, if the
general stability criterion is evaluated in special systems
the most convenient coordinates for the particular geom-
etry can be chosen.

Similar coordinate independent formulations have
been used previously for related problems. For example,
this calculus can also be used to derive the shape equa-
tion of minimal surfaces [22], to investigate the stability of
fluid [23] or polymerized vesicles [24]. Compared to these
previous studies the main technical difficulty, which arises
from the application of these methods to wetting mor-
phologies, is the treatment of the boundary conditions
originating from the presence of the wall.

This paper is organized as follows. First, the theoreti-
cal framework necessary to describe the wetting morpholo-
gies is introduced in Section 2. Then, in Section 3 the coor-
dinate independent parameterization of the droplet shapes
is introduced and the functional dependence of the free
energy on the geometry of the system is discussed. After-
wards, the change of metric and the change of the various
contributions to the free energy caused by the perturba-
tion of the stationary state is calculated. The first- and
second-order contributions of this general expansion yield
the conditions for the stationary states and the general
stability criterion, respectively. Finally, in Section 5 this
general stability criterion is applied to special geometries.
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Fig. 1. Partial wetting of a substrate w by a droplet of phase
(β) in the presence of a third phase (α). The shape of the
droplet is characterized by a contact angle θ, which is here
measured inside the droplet.

2 Free energy of droplet

As mentioned in the introduction, a physical situation
shall be considered where two fluid phases are in contact
with a wall or a solid substrate. The theoretical descrip-
tion given below holds both for a liquid vapor system and
a binary mixture of liquids which wet either a homoge-
neous or a structured substrate.

To proceed, denote the vapor and the liquid phase by
(α) and (β), and the hydrophilic and hydrophobic sur-
face regions by (γ) and (δ), respectively, see also Figure 1.
The interfacial region between phase (i) and phase (j) has
surface area Aij and interfacial tension Σij .

In the following, we will concentrate on domains and
corresponding droplets in the micrometer-range. Then,
the free energy of a wetting layer consists of the contribu-
tions arising from the interfacial free energy of the (αβ)
interface, from the free energy of wetting the contact area
and from the volume. For convenience, all free energies are
given in units of the interfacial tension Σαβ . The equilib-
rium state of the wetting layer with prescribed volume V
then corresponds to the global minimum of the free energy
functional as given by [13,10]

F = Fαβ + Fβw +
∆P

Σαβ
V

≡
∫

dAαβ −
∫

dAβw cos θβw +
∆P

Σαβ

∫
dV, (1)

with w = γ or w = δ. If larger length scales are consid-
ered, gravity has to be taken into account (see e.g. Refs.
[25–28]), while for smaller scales corrections arising from
line tensions (see e.g. Refs. [29,30]) and intermolecular
interactions will become important [31,32].

Here, dAαβ ≡ dA denotes the area element of the (αβ)
interface, dAβw the contact area element and dV the vol-
ume element. If structured substrates are considered, the
interfacial tensions have a position dependency which re-
flects the underlying surface pattern [13]. Then, the con-
tact angle θβw is defined by

cos θβw ≡
Σαw −Σβw

Σαβ
· (2)

Nevertheless, equation (1) holds both for wetting layer
morphologies on homogeneous and for morphologies on

Fig. 2. Definition of normal vector n(s) and tangential vec-
tor t(s) of the contact line ∂R. All integrals are performed in
a counterclockwise fashion (when viewed from the half space
with positive z).

structured surfaces. For structured surfaces θβw = θβw(x),
i.e. the interfacial tensions depend on the position x on the
surface. If θ(s) denotes the contact angle at the position
s of the contact line ∂R, then θ(s) = θβγ ≡ θγ if ∂R(s)
lies on (γ) and θ(s) = θβδ ≡ θδ if ∂R(s) lies on (δ), see
Figure 2. On the other hand, for homogeneous substrates
θ(s) = θβw for all positions s on the tripelline.

Finally, ∆P ≡ Pα − Pβ denotes the pressure differ-
ence between outside and inside the droplet. Due to the
curvature of the (αβ)-interface the pressure is increased
inside the droplet, i.e. Pβ > Pα. The physical meaning
of this parameter depends on the ensemble one is consid-
ering. Here, in an ensemble of constant volume, ∆P is a
Lagrange multiplier which guarantees that the constraint
on the volume is fulfilled.

3 Parameterization of droplet shape

As explained in the introduction, the aim of this study is
to investigate the stability of droplets which are station-
ary states of the free energy. To perform this analysis in a
coordinate independent fashion, it is useful to parameter-
ize the (αβ)-interface by its surface vector R: Ω → IR3.
Here, (s1, s2) ∈ Ω are local coordinates. Then, the free
energy (1) becomes a functional of the vector R(s1, s2).
To be more precise, it depends on the two fundamental
forms determined by R, which characterize the geomet-
rical properties of this surface and, thus, of the droplet
shape. In order to determine the stability of a station-
ary state R, one has to investigate the local behavior of
F [R] by considering a surface R′ = R + δR which lies in
the infinitesimal neighborhood ofR. Then, the free energy
F [R′] of R′ has to be compared with that of R. As shown
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in the following, it is possible to express the second varia-
tion δ(2)F in terms of the second-order perturbation δ(2)R
by using the local calculus of differential geometry. Hence,
it is possible to calculate the second variation of the free
energy in a coordinate independent fashion.

3.1 Differential geometry of shape

Here, we collect various formulas from differential geome-
try which refer to the droplet shape, i.e. formulas which
relate R and its derivatives with fundamental geometrical
quantities.

The surface area and the volume depend on the metric,
given by the first fundamental form

gij ≡ Ri ·Rj , (3)

with the covariant vector Rj ≡ R,j ≡ ∂sjR ≡ ∂R/∂sj.
The contravariant components are given by Rk = gkiRi,
with gijgjk = δik, see Appendix A. Here and below, it is
understood that repeated indices are summed over. The
position of the index thus determines the behavior un-
der transformations. If a coordinate change s→ s is con-
sidered, then the transformation of covariant vectors is
given by the Jacobian of the coordinate change, whereas
the contravariant vectors transform via the inverse of the
Jacobian as given by

Ri(s) =
∂sk

∂si
Rk(s) and Ri(s) =

∂si

∂sk
Rk(s). (4)

The area element depends on the first fundamental form
dA =

√
gds1ds2 with

g ≡ det(gij) =
1
2
εijεklgikgjl. (5)

Here, εij = εij denotes the two-dimensional Levi-Civita
symbol, see Appendix A.

The second fundamental form is defined as

hij ≡ Rij ·N = −Ri ·Nj, (6)

where N(s1, s2) ≡ R1(s1, s2)×R2(s1, s2)/
√
g denotes the

(local) normal vector to the surface. The curvature of the
surface is determined by hij . The mean curvature H and
the Gaussian curvature K are given by

2H = −hii and K = det(hij) =
h

g
≡ det(hij)

det(gij)
· (7)

The variation of the droplet shape as discussed below will
lead to contributions depending on Rij and Ni. The sec-
ond derivatives Rij can be expressed as

Rij = Γ kijRk + hijN, (8)

since Ri and N form a local basis.

The coefficients Γ kij are the Christoffel symbols of the
second kind. They are related to the Christoffel symbols
of the first kind via

Γikj = gklΓ
l
ij with Γikj ≡

1
2

(∂igkj + ∂jgik − ∂kgij) ,
(9)

see reference [22]. In this convention, the Christoffel sym-
bols of the first kind Γikj are symmetric in the first and
last index

Γikj = Γjki. (10)

Furthermore, they are related to the first fundamental
form via

Γ jjk =
1
√
g

(
∂

∂sk
√
g

)
≡ (
√
g),k√
g

, (11)

where the notation “,k” denotes a derivative with respect
to sk.

Finally, the Weingarten equations (see e.g. [22]) as
given by

Ni = −hkiRk, (12)

express the change of the normal vector in terms of the two
tangent vectors. From the last equation and the Hamilton-
Cayley theorem (see e.g. [33]) one obtains the useful rela-
tion

hni hnl = −2Hhil −Kgil. (13)

Likewise, one has hilhli = 4H2 − 2K.

3.2 Displacement of shape

In order to determine the stationary states of the free en-
ergy F and to investigate their stability, it is necessary to
transform a given configuration R into a neighboring con-
figuration R′, see Figure 3. At every point R = R(s1, s2),
a local basis is given by R1, R2 and N . Hence, the dis-
placement R′ − R is a linear combination of these basis
vectors and one has

R′ = R+ ηiRi + ψN, (14)

with local coefficients ψ = ψ(s1, s2) and ηi = ηi(s1, s2),
i = 1, 2. Note, that we use the same intrinsic coordinates
for both R and R′.

Thus, a general displacement consists of a normal and
a tangential component. For free droplets, it is sufficient to
consider only normal displacements (ηi ≡ 0) since the tan-
gential displacement only reparameterizes the normal one.
However, in the system considered here, the presence of
the substrate surface leads to additional boundary condi-
tions, since the contact line of R′ has to lie on this surface.
This requirement can not be fulfilled by considering only
normal displacements (as can be seen e.g. by disturbing a
cylindrical segment with contact angle 0 < θ < π/2) and
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δg/g =
2√
g

�
ηi
√
g
�
,i

+ 4Hψ + ψ2(4H2 + 2K) + ψiψi + det(ηj,i + η,ji )

+ηk,iη
,i
k − 2ψη,li h

i
l + 2ψjηlhjl − 2Hηkηlhkl −Kηlηl − 2ψεikεjlh

l
k

�
ηj,i + η,ji

�

+2η,jl Γ
l
jkη

k + ηmηnΓ kimΓ
l
jng

ijgkl − 2ψhikη
mΓ kim + det(λji ) + εikεjlλ

l
k

�
ηj,i + η,ji − 2ψhji

�
+O(ψ3, η3). (24)

Fig. 3. Perturbation of a stationary configuration parameter-
ized by the surface vector R into a neighboring one parame-
terized by R′.

one has to introduce tangential displacements. Far from
the contact line, the tangential displacements ηi still lead
only to a reparameterization of ψ. It is therefore sufficient
to consider displacements ηi which vanish at a certain dis-
tance form the contact line.

As the following investigation shows, it is possible with
the help of the local calculus of differential geometry to
express F [R′] in terms of R, ψ and ηi. For a linear sta-
bility analysis it is sufficient to consider only small dis-
placements. Then, the second variation of the free energy
is given by an expansion up to second order in ψ and ηi.

Before calculating the difference F [R′]−F [R] one has
to determine the change of metric caused by the displace-
ment. The new tangent vectors are given by

R′i = Ri + ξki Rk + νiN, (15)

with

ξki = ηk,i + ηjΓ kij − ψhki and νi = ψi + ηjhij , (16)

where equations (8, 12) have been used. Here, ηk,i =
∂ηk/∂si. This notation has been introduced in order to
distinguish between ηi,k and η,ik . This is for later conve-
nience. In order to have more freedom in the choice of ηi
it is useful not to assume that η = (η1, η2) is a differential,
i.e. it shall not be assumed that a function f exists with
fi = f,i = ηi = gijη

j . Furthermore, one should note that
generally ξjk 6= ξkj .

The first fundamental form then changes as

δgij ≡ g′ij − gij
= R′i ·R′j −Ri ·Rj
= ξkj gik + ξki gkj + ξki ξ

l
jgkl + νiνj . (17)

By using equation (A.7) one obtains

δg ≡ g′ − g

= ggijδgij +
1
2
εikεjlδgklδgij

≡ δg1 + det(Λij) +O(η3, ψ3), (18)

with

Λij ≡ ηi,j + ηj,i + ηl (Γlij + Γlji)− 2ψhij (19)

δg1 = g
(
2ξii + ξki ξ

l
jg
ijgkl + νiν

i
)
. (20)

By using the identities (A.9, A.10, 13) one obtains

det(Λij)/g = det(ηj,i + η,ji ) + 4Kψ2 + det(λji )

+ εikεjl

[
λlk

(
ηj,i + η,ji − 2ψhji

)
−2ψhlk(ηj,i + η,ji )

]
, (21)

with

λkl ≡ ηm (Γmkl + Γmlk) ,

λlk ≡ λksgsl = ηm
(
Γmksg

sl + Γ lmk
)
. (22)

The term δg1 can be treated in a similar way. In particular,
one obtains from equation (11) that

ξjj =
1
√
g

(
ηi
√
g
)
,i

+ 2Hψ. (23)

Finally, by collecting all contributions, one ends up with

see equation (24) above.

4 Variation of droplet free energy

Now, the change in the free energy caused by the displace-
ment R→ R′ can be calculated. The contributions which
have to be taken into account are: (i) change of the (αβ)
interfacial area; (ii) change of the contact area; and (iii)
change of the volume. Correspondingly, one has to calcu-
late the contributions (i) δFαβ ; (ii) δFβw; and (iii) δV .

The difference in the free energy F [R′]− F [R] will be
expanded in ψ and ηi. The expansion up to first order gives
the first variation of the free energy. By requiring that
this variation vanishes, one obtains the Laplace equation
and a generalized Young equation. The expansion up to
second order in the coefficients ψ and ηi then determines
the second variation of the free energy, which leads to a
general stability criterion for the stationary states.
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a(2) ≡ Kψ2 +
1

2

�
ψiψi + ηk,lη

,l
k − η

i
,iη

j
,j

�
− 2Hψηi,i +

1

2
det(ηj,i + η,ji )− ψ

�
η,li h

i
l + εikεjlh

l
k

�
ηj,i + η,ji

��

+ψjηlhjl −Hηkηlhkl −
1

2
Kηlηl +

1

2

�
ηmηnΓ kimΓ

l
jng

ijgkl − ηmηnΓ kkmΓ lln + det(λji )
�

+ η,jl Γ
l
jkη

k

−ψhikηmΓ kim − Γmmj(ηi,iηj + 2Hψηj) +
1

2
εikεjlλ

l
k

�
ηj,i + η,ji − 2ψhji

�
. (27)

4.1 Area change of the fluid-vapor interface

Here, the change in free energy associated with the area-
change of the (αβ)-interface will be calculated. In the fol-
lowing, the first-order contributions shall be partitioned
into two parts denoted by δ(1)Fαβ and δ(1)F ∗αβ . Here,
δ(1)F ∗αβ is given by the terms depending on ηi, whereas
δ(1)Fαβ depends on ψ only. Hence, δ(1)F ∗αβ will contribute
to the transversality condition of the variational problem,
whereas δ(1)Fαβ will determine the Euler-Lagrange equa-
tion. The second-order contributions shall be denoted by
δ(2)Fαβ . Therefore,

δFαβ =
∫
Ω

ds1ds2
(√

g + δg −√g
)

= δ(1)Fαβ + δ(1)F ∗αβ + δ(2)Fαβ +O(η3, ψ3), (25)

with

δ(1)Fαβ ≡
∫
Ω

dA 2Hψ,

δ(1)F ∗αβ ≡
∫
Ω

dA
1
√
g

(
ηi
√
g
)
,i
,

δ(2)Fαβ ≡
∫
Ω

dAa(2). (26)

Here, all integrals extend over the domain Ω of intrinsic
coordinates (s1, s2).

The second order contribution is given by

see equation (27) above.

By using the Gauss (or Green) theorem in two dimensions
one obtains

δ(1)F ∗αβ =
∫
∂Ω

√
g
(
η1ds2 − η2ds1

)
, (28)

where the line integral is performed in a counterclockwise
fashion4, see Figure 2. This can be rewritten using [22]

√
g
(
η1ds2 − η2ds1

)
= (R′ −R) · (dR×N), (29)

4 Sometimes, it is more convenient to choose a clockwise ori-
entation of ∂R, since then (t, n, ez) is a right-handed coordi-
nate system. If such a parameterization is chosen here, equa-
tion (28), correspondingly equation (31) and the first term of
equation (32) change sign, therefore also equation (42). How-
ever, the second term in equation (32) and correspondingly in
equation (46) do not change their sign.

α

Fig. 4. Definition of normal vector N(s), the tangential vector
T (s) and the contact angle θ of the surface R at the contact
line.

with dR = R1ds1+R2ds2. If ω(s) is a representation of ∂Ω
in terms of the arclength s of the contact line ∂R ≡ R|∂Ω
(that is the restriction of R(s1, s2) on the border of Ω),
then dR(ω(s)) = t(s)ds holds, with the tangent vector t(s)
of the boundary. The tangent vector T (s) of the droplet
is then given by

T (s) ≡ t(s)×N(ω(s)), (30)

as illustrated in Figure 4. Thus, one arrives at

δ(1)F ∗αβ =
∫
∂Ω

(R′ −R) · (dR×N)

=
∫
∂R

ds (R′(s)−R(s)) · T (s). (31)

4.2 Change of contact area with solid wall

Next, the change of the free energy arising from the change
of the wetted area will be calculated. Again, this contri-
bution will be split up into the first-order contribution
δ(1)Fβw and the second-order contribution δ(2)Fβw.

In this study, only planar substrates shall be consid-
ered. It is therefore sufficient to consider only normal dis-
placements of the contact line for which R′(s) − R(s) is
parallel to n(s) at the tripelline, with n(s) denoting the
(outward) normal vector of the contact line, see Figure 4.
The change of contact area is then given by a sum over
rectangles with area |R′ − R|ds and triangles with area
(1/2)|R′ − R||n × ns|ds. By using the Frenet formulas
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(see e.g. Ref. [34]) one obtains

δFβw = δ(1)Fβw + δ(2)Fβw +O(η3, ψ3)

≡ −
∫
∂R

ds cos θβw
(
ψN + ηiRi

)
· n(s)

− 1
2

∫
∂R

ds cos θβw
(
ψ2 + ηiηi

)
C(s) +O(η3, ψ3).

(32)

Here, C(s) denotes the curvature of the contact line. The
sign of C(s) is chosen in such a way that the curvature of
a circle of radius r is positive and given by C = 1/r. The
restriction R′(s) − R(s) parallel to n(s) implies that the
tangential displacements have to be parallel to the tangent
vector T (s), i.e.

ηiRi = ξT on the contact line ∂R, (33)

with some function ξ. Thus ψN + ξT is parallel to n ev-
erywhere at the tripelline and the scalar product of the
substrate normal and ψN + ξT must vanish, which im-
plies

ψ(s) cos θ(s)− ξ(s) sin θ(s) = 0, (34)

since the local contact angle θ(s) is the angle between n(s)
and T (s). One may set

ξ(s) ≡ τ(s) cos θ(s) and ψ(s) ≡ τ(s) sin θ(s), (35)

with an arbitrary function τ(s).

4.3 Change of volume

Finally, the change of the volume δV caused by the dis-
placement R′−R has to be determined. It can be written
as a sum of properly chosen polyhedra

δV =
∫

ds1ds2∆V (s1, s2). (36)

Here, VP ≡ ds1ds2∆V (s1, s2) is the volume of the poly-
hedron with the upper and lower face given by the paral-
lelograms spanned by the vectors

(R1(s1, s2)ds1, R2(s1, s2)ds2)

and

(R′1(s1, s2)ds1, R′2(s1, s2)ds2).

These two parallelograms are connected by the vector
ψN + ηiRi. With the help of the Gauss theorem the vol-
ume VP can be calculated. By introducing Cartesian co-
ordinates with the z-axis parallel to ψN +ηiRi and origin
at (ψN + ηiRi)/2 one obtains

VP =
∫
VP

dV =
∫
VP

dV div(zez) =
∫
∂VP

dA · ezz, (37)

where ∂VP denotes the surface of the polyhedron.
As shown in Appendix B, the side faces contribute

only in higher order O(ψ3, η3). Then, the only relevant
contribution is that of the upper and lower face. Here,
zez ·dA = (1/2)(ψN+ηiRi)·dA+O((ds1)2ds2, (ds2)2ds1)
holds, since dA is already of the order ds1ds2. Therefore,

∆V =
1
2
(
ψN + ηiRi

)
· (R1 ×R2 +R′1 ×R′2) +O(ψ3, η3)

=
√
g

(
ψ+Hψ2+

1
2
ηi,iψ+

1
2
ηjΓ iijψ−

1
2
ηiψi−

1
2
ηiηjhij

)
+O(ψ3, η3). (38)

Thus, one ends up with the first and second order contri-
butions

δ(1)V ≡
∫

dAψ (39)

δ(2)V ≡
∫

dAv(2)

≡
∫

dA
(
Hψ2 +

1
2
ηi,iψ +

1
2
ηjΓ iijψ

−1
2
ηiψi −

1
2
ηiηjhij

)
. (40)

4.4 First variation of free energy

The contributions arising from Sections 4.1–4.3 can be
combined to

δF = δ(1)F + δ(2)F +O(η3, ψ3)

≡ δ(1)F1d + δ(1)F2d + δ(2)F +O(η3, ψ3). (41)

The first-order contributions can be split up into to a term
δ(1)F1d depending on ηi and into a term δ(1)F2d indepen-
dent of ηi. Then, the contributions δ(1)Fβw and δ(1)F ∗αβ
determine δ(1)F1d

δ(1)F1d ≡ δ(1)Fβw + δ(1)F ∗αβ

=
∫
∂R

ds τ(s) (cos θ(s)− cos θβw) . (42)

The contribution independent of the subsidiary condition
is given by

δ(1)F2d = δ(1)Fαβ +
∆P

Σαβ
δ(1)V. (43)

The terms δ(1)F1d and δ(1)F2d are independent. Hence, a
stationary state has to fulfill δ(1)F1d = 0 and δ(1)F2d = 0
separately. These conditions are equivalent to the Laplace
equation

∆P

Σαβ
= −2H, (44)

and a generalized Young equation

cos θ(p) = cos θβw(p)
for all p ∈ ∂R on the contact line. (45)
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4.5 Second variation of free energy

In second order one obtains

δ(2)F = δ(2)Fαβ +
∆P

Σαβ
δ(2)V + δ(2)Fβw

=
∫

dA
(
a(2) − 2Hv(2)

)
− 1

2

∫
∂R

ds cos θβw(ψ2 + ηiηi)C(s). (46)

This equation together with equations (27, 40) is the main
result of this study. It is the desired coordinate indepen-
dent stability criterion which is valid for arbitrary droplet
morphologies on arbitrary domains.

5 Applications

Now, this general stability criterion can be applied to spe-
cial geometries. The following investigation concentrate
mainly on stripe domains. However, some results can be
generalized to arbitrary domain geometries.

Generally, droplets on stripe domains are given by
cylindrical segments with contact angle θ = θ(s) and ra-
dius Rcy. Then,

R = (Rcy cos(ϕ+ π/2− θ), Rcy sin(ϕ + π/2− θ), z) ,

with ϕ ∈ [0, 2θ]. By setting s1 ≡ ϕ and s2 ≡ z the non-
vanishing elements of the first and second fundamental
form are given by

g11 = R2
cy, g22 = 1, h11 = −Rcy. (47)

Hence,
√
g = Rcy, K = 0 and 2H = 1/Rcy = −h1

1. Espe-
cially, Γ kij = 0.

5.1 Free cylinder

The simplest example is that of a free cylinder, i.e. a cylin-
der which does not wet a substrate. The contact angle is
here θ = π and thus only normal displacements have to
be taken into account, i.e. ηi ≡ 0 holds. To proceed, de-
note by L the length of the cylinder. Then, conservation
of volume implies

δV =
∫

dA
(
ψ +Hψ2

)
= 0. (48)

The second variation of the free energy becomes here

δ(2)F =
∫

dA
(

1
2
ψiψi − 2H2ψ2

)
. (49)

Due to the symmetries in ϕ and z the second variation
becomes diagonal for

ψ(z, ϕ) =
∑
m,n

bm,nψm,n ≡
∑
m,n

bm,nein2πz/Leimϕ, (50)

with b∗−m,−n = bm,n. The coefficient b0,0 is determined by
the conservation of the volume

b0,0 = − 1
2Rcy

∑
m,n

|bm,n|2. (51)

The function ψ0,0 ≡ 1 is an eigenfunction, implying thus∫
dAψm,n = 0 for m 6= 0 or n 6= 0. Conservation of

volume thus determines only the coefficient b0,0. Since
it is already of second order, this volume reducing mode
does not contribute to the second variation. This implies
for δ(2)F

δ(2)F =
πL

Rcy

∑
m,n

|bm,n|2
(
m2 +

(
2πRcy

L

)2

n2 − 1

)
.

(52)

Thus, the free cylinder becomes unstable (for m = 0) if
L/Rcy becomes sufficiently large. This is the well-known
Plateau-Rayleigh instability, see e.g. references [35,36].

5.2 Cylindrical segment or channel on a homogeneous
substrate

Here 0 < θ(p) = θ < π holds for all p ∈ ∂R. Since
the stationary state has a translational symmetry no tan-
gential displacements along the z-axis have to be taken
into account, i.e. η2 ≡ 0, η1 = η1(ϕ, z) 6= 0. Further-
more, C(s) ≡ 0 holds in this geometry. Equation (35)
and the conditions X1(ϕ = 0, z) = −RcyT (ϕ = 0, z) and
X1(ϕ = 2θ, z) = RcyT (ϕ = 2θ, z) imply

η1(0, z) =
1
Rcy

ξ(0, z) = − 1
Rcy

ψ(0, z)cotanθ (53)

η1(2θ, z) =
1
Rcy

ξ(2θ, z) =
1
Rcy

ψ(2θ, z)cotanθ (54)

for arbitrary z. The second variation of the free energy
now becomes

δ(2)F =
∫

dA
(

1
2
ψiψi − 2H2ψ2 −Hψη1

,1 −Hψ1η
1

)
.

(55)

As already mentioned, η1 can be chosen in such a way
that it contributes only locally at the contact line. For
example, η1 can be defined as a bell function. Then, η1

has the properties (see e.g. Ref. [37])

η1(ϕ) = C1 for 2θ − α1 ≤ ϕ ≤ 2θ + α1 (56)

η1(ϕ) = C2 for − α2 ≤ ϕ ≤ α2 (57)

η1(ϕ) = 0 for α2 + ε2 ≤ ϕ ≤ 2θ − α1 − ε1, (58)

see Figure 5. Equations (53, 54) determine the ϕ-indepen-
dent functions C1 = C1(z) ≡ (1/Rcy)ψ(2θ, z)cotanθ and
C2 = C2(z) ≡ −(1/Rcy)ψ(0, z)cotanθ. Here, the values
of εi > 0 and αi > 0 with i = 1, 2 have to be chosen
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appropriately. By using the integral version of the mean-
value theorem one obtains∣∣∣∣∣
∫ 2θ−α1

2θ−α1−ε1
dϕψ1(ϕ)η1(ϕ)

∣∣∣∣∣ =

∣∣∣∣∣ψ1(ϕ)
∫ 2θ−α1

2θ−α1−ε1
dϕη1(ϕ)

∣∣∣∣∣
<
∣∣ψ1(ϕ)C2

1

∣∣ (59)

with 2θ−α1−ε1 ≤ ϕ ≤ 2θ−α1. The last inequality holds
if one chooses ε1 ≡ |C1|. Furthermore,∣∣∣∣∣

∫ 2θ

2θ−α1

dϕψ1η
1

∣∣∣∣∣ = |α1C1ψ1(2θ)|+O(α2
1C1). (60)

Similar results hold locally at 0. By choosing αi ≡ |Ci|,
one obtains ∫ 2θ

0

dϕψ1η
1 = 0 +O(ψ3). (61)

By performing a partial integration one ends up with∫ 2θ

0

dϕψη1
,1 = ψη1

∣∣2θ
0

+O(ψ3)

=
1
Rcy

(
ψ2(2θ) + ψ2(0)

)
cotanθ. (62)

Therefore, the second variation of the free energy is
given by

δ(2)F = Rcy

∫ L

0

dz
∫ 2θ

0

dϕ
{

1
2
ψiψi − 2H2ψ2

− H

Rcy
ψ2cotanθ (δ(ϕ− 2θ) + δ(ϕ))

}
. (63)

The translational symmetry in the z-direction suggests the
ansatz

ψ(ϕ, z) =
∑
n

bnein2πz/Lf(ϕ). (64)

By performing a partial integration one obtains

δ(2)F =
L

2Rcy

∑
n

|bn|2
∫ 2θ

0

dϕf(ϕ)D̂f(ϕ), (65)

with the differential operator

D̂ ≡ − d2

dϕ2
+ (δ(ϕ− 2θ)− δ(ϕ))

d
dϕ

+
(

2πRcy

L
n

)2

− 1− cotanθ (δ(ϕ − 2θ) + δ(ϕ)) . (66)

Diagonalizing the operator of the second variation is
equivalent to finding a solution of the differential equa-
tion

D̂f = λn(θ)f, λn(θ) =
(

2πRcy

L

)2

n2 − 1− λ(θ). (67)

Fig. 5. Definition of η1 as a bell function. η1 has thus constant
values C1 and C2 for 2θ−α1 ≤ ϕ ≤ 2θ+α1 and −α2 ≤ ϕ ≤ α2,
respectively. The regions in which η1 drops to 0 have widths
ε1 and ε2.

Here, λ(θ) denotes the shift of the eigenvalues caused by
f(ϕ), see equation (52). In Appendix C the solution of
this differential equation is derived.

By using the explicit solution (C.4) and equation (C.3)
one can show that the eigenvalues are determined by

tan
(

2θ
√
−λ(θ)

)
=

2
√
−λ(θ)cotanθ

cotan2θ + λ(θ)
· (68)

This equation reads for λ > 0

tanh
(

2θ
√
λ(θ)

)
=

2
√
λ(θ)cotanθ

cotan2θ + λ(θ)
· (69)

In the following, one can restrict the discussion to the pos-
itive branches

√
λ > 0 and

√
−λ > 0. The left hand side

of equation (68) is positive for λ > 0, whereas it can be
positive or negative for λ < 0. For λ > 0 the right hand
side is positive only for θ < π/2. Thus, the eigenvalues can
only be positive for θ < π/2. The right hand side of equa-
tion (68) goes to 0 for large λ, the left hand side goes to 1.
In this case, there is exactly one positive eigenvalue. For
small θ the left hand side of equation (69) goes to 1. In this
case, λ(θ) ≈ 1/θ2 holds in agreement with reference [20]5.

For θ > π/2 only negative eigenvalues λ < 0 exist.
Here, only the eigenvalues of minimal absolute value are
of interest. Then, λ(θ) is monotonously decreasing in θ,
with λ(π) = −1/4, see Figure 6.

One should note, that the cases θ = π/2 and θ = π
are special. For θ = π/2 the eigenvalues are determined
by tan(

√
−λ2θ) = 0, i.e. λ = −m2, with m = 1, 2, ..., in

agreement with Section 5.1. For θ = π in equation (C.4)
f(0) = f(2π) must hold, i.e. λ = −m2. Generally, for
large |λ| the spectrum becomes discrete, λ ∼ −(mπ/2θ)2,
with a constant correction to the free cylinder.

The fact, that for all θ an eigenvalue λ(θ) > −1
exists implies that the cylindrical segments become

5 In reference [20] the stability of cylindrical segments on
homogeneous substrates has been investigated in the limit of
small contact angles θ � 1.



258 The European Physical Journal E

Fig. 6. Largest eigenvalue λ as function of the contact an-
gle θ as obtained from the second variation of the free en-
ergy of a cylindrical segment on a homogeneous substrate, see
equation (68).

unstable, as can be seen by considering e.g. ψ(ϕ, z) =
fλ(ϕ)[b0 + b1ei2πz/L]. Then, conservation of volume again
only determines the coefficient b0 (which is of second
order). Therefore, the second variation of the free en-
ergy δ(2)F becomes negative for sufficiently large L/Rcy.
Hence, cylindrical segments of arbitrary contact angles on
homogeneous substrates are unstable. This instability has
been experimentally observed for instance in [38].

5.3 Channel on a hydrophilic stripe

Here, a cylindrical segment wetting a hydrophilic
stripe (γ) shall be examined, which belongs to droplet
regime (II). Hence, θγ < θ < θδ. In order to determine the
stability of this droplet one has to distinguish between
those variations of the shape which displace the contact
line and those which leave it fixed.

(i) Variations with displaced contact line

Here, one has to take into account the transition region
between (γ) and (δ). As shown in reference [13] it is useful
to consider first a transition region which has finite width.
For stripes one can introduce local coordinates x and z,
where the line x = 0 lies in the middle of the domain.
Thus, generally θ will depend on x and z. If only transition
regions are considered which are translational invariant in
the z-direction and symmetric with respect to x = 0, then
θ(x) = θγ holds for |x| ≤ (aγ − a)/2 and θ(x) = θδ holds
for |x| > (aγ + a)/2. Here, aγ is the width of the stripe,
a the width of the transition region and x = x(z) the

position of the contact line. Then, one obtains for x > 0
the first order contribution

δ(1)Fβw = 2
∫ L

0

dz tan(θ(x))ψ

= 2
∫ L

0

dz τ(z) cos(θ(x)). (70)

Together with equation (42) this yields the generalized
Young equation cos θ = cos θ(x), in accordance with
reference [13]. The second order contribution is given by

δ(2)Fβw = −
∫ L

0

dz ψ2(z)
dθ(x)/dx
sin θ(x)

· (71)

Here, the derivative dθ(x)/dx is of the order 1/a. As the
width of transition region tends to zero, a→ 0, this term
becomes dominant in the second variation of the free en-
ergy, since the linear stability analysis is only valid, if
|ψ| � a holds locally at the domain border. Equations (53,
54) then imply |η1| � a. If θγ < θδ then dθ(x)/dx is posi-
tive and for small width a the remaining contributions to
δ(2)F are negligible. Hence, δ(2)F > 0 for θγ < θ < θδ and
for variations which displace the contact line. For a → 0
also ψ|∂X → 0 must hold. In the limit of a sharp transition
region only variations are allowed which keep the contact
line fixed since in this limit the generalized forces δF/δx
associated with an displacement δx of the contact line di-
verge. For θ = θδ this argumentation does no longer hold,
since these channels can be unstable against variations of
their shape which displace the contact line, as seen in the
last section.

Thus, the structure of the substrate stabilizes cylin-
drical segments belonging to droplet regime (II) against
variations of their shape which displace the contact line.
However, these channels can be unstable against varia-
tions which keep the contact line fixed, as will be shown
now.

(ii) Variations with fixed contact line

Here, the variations fulfil the special boundary condition

ψ(0, z) = ψ(2θ, z) = 0. (72)

Hence, only normal displacements have to be considered,
i.e. ηi ≡ 0. The symmetry of the problem suggests the
ansatz

ψ(ϕ, z) =
∑
m,n

bm,nein2πz/L sin (mπϕ/2θ) , (73)

with m = 1, 2, ... and bm,n = b∗m,−n. Conservation of vol-
ume yields the quadratic equation for bm′,0, with m′ =
1, 3, 5, ...

∑
m=1,3,5,...

(
bm,0
m

+
π

8Rcy

∑
n

|bm,n|2
)

=

− π

8Rcy

∑
m=2,4,6...

∑
n

|bm,n|2, (74)
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which has the solution

bm,0 = −m π

8Rcy

∑
n6=0

(
|bm+1,n|2 + |bm,n|2

)
+O(|bm,n|4).

(75)

The second variation of the free energy is given by

δ(2)F =
Lθ

2Rcy

∑
m,n

|bm,n|2
(
m2π2

4θ2
+
(

2πRcy

L

)2

n2 − 1

)
.

(76)

Hence, the cylindrical segment is stable against distur-
bances with m ≥ 2. For m = 1 the channel becomes un-
stable, i.e. δ(2)F ≤ 0 if

L2

(
1− m2π2

4θ2

)
≥ (2πRcy)2. (77)

Thus, cylindrical segments on stripe domains with contact
angle θ > π/2 are unstable against variations which rear-
range the liquid within the droplet by keeping the contact
line fixed. This novel instability has indeed been observed
experimentally, see reference [12].

5.4 Other surface domain geometries

The general stability criterion can now be applied to other
surface domains and droplet morphologies. As an exam-
ple, it is possible to show that spherical droplets are stable
for arbitrary contact angle θ. This holds both for homoge-
neous substrates and for droplets belonging to regime (II)
on structured substrates with circular domains. Further-
more, it is possible to show rigorously that for arbitrary
surface domain geometries the droplets of regime (II), i.e.
the droplets covering the domain completely, are stabi-
lized against variations of their shape which displace the
contact line if θ(s) < θδ holds everywhere. This result can
be obtained by generalizing the argument involving the
separation of length scales of the last section to arbitrary
domain geometries. However, the corresponding calcula-
tions are straightforward and shall not be given here.

6 Summary and outlook

In summary, we have studied the stability of various wet-
ting morphologies on homogeneous and structured sur-
faces. On the latter substrates, the free energy of the
droplet depends on the geometry of the system, i.e. it
depends on the underlying structure of the substrate. As
shown, the local calculus of differential geometry provides
the appropriate framework to treat this functional depen-
dence analytically. Using this approach, it is possible to
rigorously derive the conditions for the stationary states,
i.e. the Laplace equation and the generalized Young equa-
tion. By performing the second variation of the free energy,
a coordinate independent stability criterion is obtained

which is valid for arbitrary droplet morphologies on arbi-
trary surface domains. The application of this criterion to
liquid channels shows that these morphologies of the wet-
ting layer are unstable on homogeneous substrates against
shape deformations which displace the contact line. On
appropriately structured surfaces, these channels are sta-
bilized against such perturbations, but can exhibit a new
kind of instability characterized by a rearrangement of
the liquid within the droplet at fixed contact line. This
difference between the instabilities of droplets on homo-
geneous and appropriately structured substrates is funda-
mental. Droplets of regime (II), i.e. droplets covering a
domain completely, are generally stabilized by the
substrate-structure against displacements of their contact
line.

The theoretical approach used here can be extended
in various ways. For example, one may consider different
wetting geometries such as ring-shaped surfaces domains
or the interaction of two structured surfaces arising from
stabilized liquid bridges.

The ambition of the experimental groups working in
this field is to create smaller and smaller surface patterns
with domain sizes in the nanometer range. For sufficiently
small structures, the morphology will no longer be gov-
erned by the interfacial tensions alone but will also de-
pend on the contact line tension. As discussed in refer-
ence [10], these line tension contributions should become
noticeable as soon as the linear dimension Lβ of the wet-
ting structures is a few hundreds nanometers, and they
should become rather strong for Lβ ' 30 nm.

From a theoretical point of view, the line tension makes
additional contributions to the generalized Young equa-
tion as recently derived for location-dependent line ten-
sions [30]. The corresponding free energy term will also
change the stability of the wetting morphologies but a
general stability analysis which includes line tension terms
remains to be done [39].

We thank W. Fenzl, G. Gompper, S. Herminghaus, P. Leiderer,
U. Seifert and P. Swain for valuable discussions.

Appendix A: The Levi-Civita symbol

In this appendix a collection of useful formulas related to
the Levi-Civita symbol is given.

The Levi-Civita symbol in 2 dimensions is defined
as [40]

εij ≡ δi1δj2 − δi2δ
j
1, εij ≡ εij , (A.1)

where δji denotes the Kronecker delta, i.e. δji = 0 for j 6= i

and δji = 1 for i = j.
As can be easily seen, one has the general relation

εijε
mn = δmi δ

n
j − δmj δni . (A.2)

This implies for an arbitrary second-rank tensor A ≡
((aij))

det(A)εij = εklaikajl. (A.3)
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Contracting this expression with εij , the determinant of
A can thus be written as

det(A) =
1
2
εijεklaikajl. (A.4)

In particular, one obtains then for the first fundamental
form

g ≡ det(gij) =
1
2
εijεklgikgjl. (A.5)

The inverse of A is given by

(A−1)ij =
1

det(A)
εikεjlalk. (A.6)

This implies correspondingly for the first fundamental
form G ≡ (gij)

gij ≡ (G−1)ij =
1
g
εikεjlgkl. (A.7)

To proceed, denote by aji , b
j
i arbitrary second-rank tensors.

Then, the tensor indices can be raised and lowered via the
first fundamental form

aijg
jk = aki , aki gkj = aij , etc. (A.8)

By using equation (A.3) the following identity can be
shown

εikεjlaijbkl = gεikεjla
j
ib
l
k. (A.9)

This implies especially,

det(aji ) =
det(aij)

g
· (A.10)

Finally, one should note that εij does not transform as
a tensor. To obtain the completely antisymmetric tensor
one has to define

ε̃ij ≡ gεij. (A.11)

In this case ε̃kl = ε̃ijgikgjl holds.

Appendix B: Change of volume

Here, it is shown that the side faces do not contribute in
second order to the change of volume δV caused by the
displacement R′−R. By using the notation of Section 4.3
and defining v ≡ ψN + ηiRi one can enumerate the side
faces from 1 to 4 in a counterclockwise fashion, starting
with the side face spanned by R1ds1 and v. Then, up to
orderO(ψ, η) the normal ν(i) of the side face (i) is given by

ν(1) = (R1ds1)× v (B.1)

ν(2) = (R2ds2)× (v + (R′1 −R1)ds1) (B.2)

ν(3) = (v + (R′1 −R1)ds1

+ (R′2 −R2)ds2)× (R1ds1) (B.3)

ν(4) = v × (R2ds2), (B.4)

since R′i and Ri differ only by O(ψ, η). The vector m(i)

pointing from the origin to the center of mass of face (i)
is given by

m(1) =
1
4

(R1 +R′1)ds1 (B.5)

m(2) =
1
2

(R1 +R′1)ds1 +
1
4

(R2 +R′2)ds2 (B.6)

m(3) =
1
4

(R1 +R′1)ds1 +
1
2

(R2 +R′2)ds2 (B.7)

m(4) =
1
4

(R2 +R′2)ds2. (B.8)

Thus, for the side face (i)

zezdA = m(i) · v|v|

(
v

|v| · ν
(i)

)
= 0 +O((ds1)2ds2,ds1(ds2)2). (B.9)

The last identity holds since |m(i)| is of order O(ds1,ds2)
and the deviation of v · ν(i) from 0 is at least of or-
der O((ds1)2,ds1ds2, (ds2)2). Hence, the side faces do not
contribute to ∆V as given by (38).

Appendix C: Channel eigenmodes
for homogeneous substrate

Here, the solution to the differential equation (67) is de-
rived by performing a Laplace-transformation. Then, the
differential equation becomes an algebraic equation in
Y (s) ≡

∫∞
0 dϕf(ϕ)e−sϕ

Y (s) =
1

s2 − λ(θ)
(f(0)(s− cotanθ)

−cotanθf(2θ)e−2sθ + f ′(2θ)e−2sθ
)
, (C.1)

with f ′(ϕ) ≡ df/dϕ. By transforming back, one obtains
the function f̃(ϕ)

f̃(ϕ) = f(0) cos
(√
−λ(θ)ϕ

)
− f(0)cotanθ√

−λ(θ)
sin
(√
−λ(θ)ϕ

)

+
sin
(√
−λ(θ)(ϕ− 2θ)

)
√
−λ(θ)

(f ′(2θ)− f(2θ)cotanθ) .

(C.2)

The function f̃(ϕ) is a solution f(ϕ) of the differential
equation if it fulfills the self-consistency condition f̃(0) =
f(0). Hence

f ′(2θ)− f(2θ)cotanθ = 0. (C.3)

The eigenfunctions to the eigenvalue λ(θ) are then
given by

fλ(ϕ) = f(0)
{

cos
(√
−λ(θ)ϕ

)
− sin

(√
−λ(θ)ϕ

) cotanθ√
−λ(θ)

}
. (C.4)
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One should note that the solution is not symmetric in ϕ.
The eigenvalues λ(θ) are determined by equations (68, 69)
as can be seen by using equations (C.4, C.3).

Finally, the meaning of the self-consistency condition
becomes clear if equation (C.4) is used as an ansatz for
the solution. Then, equation (C.4) is a solution of the dif-
ferential equation if and only if equation (C.3) is fulfilled.
Equation (68) guarantees the orthogonality of the eigen-
functions fλ1 and fλ2 to different eigenvalues λ1 6= λ2 on
the interval [0, 2θ].

Appendix D: List of symbols

Aij surface area of interfacial region between
phase (i) and phase (j),

C(s) curvature of the contact line,
Ci, αi, εi constants characterizing bell function,
D̂ differential operator,
dA = dAαβ surface area element of the (αβ) interface

of the droplet,
dAβw area element of the contact area of

the droplet
dV volume element,
δ(1)F1d terms of first variation contributing to the

generalized Young equation,
δ(1)F2d terms of first variation contributing to the

Laplace equation,
δ(1)F ∗αβ contribution from δ(1)Fαβ to δ(1)F1d,
δ(2)F second variation of F ,
∂R(s)≡R|∂Ω contact line parameterized by arclength s,
εij Levi-Civita symbol,
ηi coefficients of the tangential component of

R′ −R,
θβw contact angle defined by equation (2),
θγ contact angle on (γ),
θδ contact angle on (δ),
θ(s) local contact angle of the droplet
F free energy,
Fαβ (αβ) interfacial free energy,
Fβw interfacial free energy of contact area,
f, f̃ solutions to differential equation,
gij first fundamental form,
g determinant of first fundamental form,
Γ kij Christoffel symbols,
H mean curvature,
hij second fundamental form,
K Gaussian curvature,
L length of cylinder,
λ shift of λn due to f ,
λn eigenvalue,
N (surface) normal vector,
n(s) normal vector of ∂R(s),
ξ(s) arbitrary function at the contact line,
ξki , νi, Λij ,
δg1, λkl abbreviations,
∆P pressure difference between (α) and (β),
R(s1, s2) surface vector,
Rcy radius of cylinder,

Ri (surface) tangent vector,
si local coordinates,
Σij interfacial tension between phase (i) and

phase (j),
T (s) tangent vector of R(ω(s)),
t(s) tangent vector of ∂R(s),
τ(s) arbitrary function at the contact line,
Y (s) Laplace transform of f ,
ψ coefficient of the normal component of

R′ −R,
Ω parameter domain of R(s1, s2),
ω(s) representation of ∂Ω.
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