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Wetting of ring-shaped surface domains
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PACS. 68.45.Gd – Wetting.
PACS. 68.10.Cr – Surface energy (surface tension, interface tension, angle of contact, etc.).

Abstract. – Wetting of ring-shaped surface domains is studied both theoretically and experi-
mentally. The liquid channels covering these domains exhibit a volume-induced morphological
transition from a homogeneous to a bulge state. The continuous symmetry of the low-volume
channels is spontaneously broken by the transition to the high-volume regime. Therefore, an
angular displacement of the bulge does not cost any (free) energy and the corresponding inter-
face deformation represents a “Goldstone boson” which should be observable for domains in
the micrometer regime.

Modern experimental methods make it possible to laterally structure a substrate in a
controlled way, i.e. to endow a given substrate with a pattern of distinct surface domains,
see, e.g., refs. [1–6]. If such a structured surface is in contact with a liquid, the 2-dimensional
pattern within the substrate leads to boundary conditions for the liquid which determine its
3-dimensional morphology.

These wetting systems are interesting both as templates for technologically relevant mi-
croscale structures, as, e.g., microfluidic devices [7], and as models for fundamental research
with unique geometric and topological properties. The interplay between the pattern of sur-
face domains and the wetting layer morphology leads to a variety of new wetting phenomena
such as i) non-spherical droplet shapes; ii) novel transitions of liquid channels [8]; and iii) mor-
phological wetting transitions between different droplet patterns [9].

The channels studied in [8] were located on long striped surface domains which had a
width of about 30 micrometers. These channels were found to undergo a transition from a
homogeneous state with constant cross-section to an inhomogeneous state with a single bulge.
For a stripe domain with a finite length, the bulge state has lowest free energy if the bulge
sits in the middle between the two ends of the stripe. From the theoretical point of view, it
would be appealing to have a stripe with periodic boundary conditions. In this latter case,
the appearance of the bulge would break the translational symmetry in the direction parallel
to the stripe, and the bulge state would be degenerate since its displacement along the stripe
would not cost any energy.

In real systems, such periodic boundary conditions can be realized by ring-shaped surface
domains consisting of an annulus with a constant width. This is the geometry which will be
c© EDP Sciences
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Fig. 1 – Morphological transition of wetting channels on a ring-shaped surface domain which is
bounded by two concentric circles with diameters aγ and aδ < aγ . The channels displayed on the
left have a relatively small volume and are axially symmetric; the channels on the right have a
somewhat larger volume and exhibit a single bulge which breaks the axial symmetry. The shapes in
the two upper rows have been calculated by numerical minimization; the shapes in the bottom row
represent experimental observations on the millimeter scale. The shape of the bulge-state depends
on the lyophilic area fraction X ≡ (aγ/aδ)

2. The top, middle and bottom row correspond to X = 4,
X = 1.44, and X = 1.21, respectively.

studied in this article. First, we calculate the corresponding shapes of the wetting channels
i) by using analytical results for special constant-mean-curvature surfaces, so-called nodoids,
and ii) by minimizing the interfacial free energies by numerical methods. These calculations
predict a morphological transition from a nodoid channel to a ring channel with a single bulge.
We also report experimental observations which confirm these theoretical predictions.

In fig. 1, we display examples of the calculated and observed shapes. The left and the
right column in fig. 1 corresponds to shapes for relatively small and relatively large liquid
volume, respectively. Inspection of these figures clearly shows that channels on ring-shaped
surface domains undergo a volume-induced morphological transition from a state with constant
cross-section, which is axially symmetric, to a bulge state for which this continuous symmetry
is spontaneously broken. Note that, after the transition, both the theoretical and the real
channels exhibit only a single bulge.

The experiments shown in the bottom row of fig. 1 were performed with channels of
molten tin-lead alloys on ring-shaped domains of copper with a width of 1mm. Thus, our
study also shows that the morphological transitions which have been previously observed
in the micrometer regime are also present on much larger scales. In fact, there are several
well-established technologies, such as, e.g., flatbed printing and soldering processes, which use
wetting and dewetting of laterally structured surfaces in the millimeter regime. It seems likely
that a systematic understanding of the morphological wetting transitions discussed here will
find some applications in these technologies.

The channel shape. – To proceed, denote the vapor and the liquid phase by (α) and (β),
and the hydrophilic (or lyophilic) and hydrophobic (or lyophobic) surface domains by (γ) and
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(δ), respectively. The interfacial region between phase (i) and phase (j) has surface area Aij

and interfacial tension Σij . The two surface regions are characterized by two contact angles
θγ and θδ which are related to the interfacial tensions via the usual Young relations. We
generally assume 0 ≤ θγ < π/2 < θδ ≤ π. In the following, we will concentrate on relatively
large domains with a size which exceeds a few µm. Then, the equilibrium state of the wetting
layer with prescribed volume V corresponds to the global minimum of the total interfacial
free energy as given by [9]

F = ΣαβAαβ +Aαw(Σβw − Σαw) + ∆P (Vβ − V ), (1)

with w = γ or w = δ. Since we work in an ensemble of constant volume, the pressure difference
∆P = (Pα − Pβ) represents a Lagrange multiplier which guarantees the volume constraint.

We neglect the effects of gravity since it should only have a small influence on the channel
shapes but can lead to symmetry-breaking contributions which cannot be handled analytically,
cf., e.g., [10]. In the absence of gravity, the (αβ) interface is a surface of constant mean
curvature M which satisfies the Laplace equation 2MΣαβ = Pβ − Pα.

Next, we introduce a coordinate system with its origin at the center of (γ) and its z-
axis perpendicular to the substrate surface. The domain then lies in the xy-plane and its
boundary is given by two concentric circles with diameters aγ and aδ < aγ . The substrate is
thus hydrophobic for 0 ≤ r < aδ/2 and r > aγ/2 and hydrophilic for aδ/2 < r < aγ/2.

It is now possible to calculate analytically the axisymmetric channel shapes which cover the
hydrophilic ring completely. In three spatial dimensions, any surface which has both constant
mean curvature and axial symmetry must be a plane, sphere, cylinder, catenoid, unduloid or
nodoid as first shown by Delaunay [11]. For a ring-shaped surface domain, the channel shape
must correspond to a certain segment of a nodoid since the remaining surfaces cannot fulfill
the boundary conditions.

In order to calculate the channel shape explicitly, we will now proceed in three steps:
i) First, we choose a parameterization for the nodoids; ii) we derive the conditions, which
determine the nodoid segment representing the channel shape for θγ = 0 and θδ = π; and
iii) we generalize this analysis to θγ > 0 and θδ < π.

The vector R(zN , ϕ) = (r(zN ) cosϕ, r(zN ) sinϕ, zN ) parameterizes the contour of the
nodoid, with [12]

zN (r|r0, r1) ≡ −r0F(κ, p)− r1E(κ, p) +
1
r

√
(r2

1 − r2)(r2 − r2
0). (2)

Here, sin2 κ ≡ r2
1(r

2 − r2
0)/r

2(r2
1 − r2

0), p
2 ≡ (r2

1 − r2
0)/r

2
1 and F and E denote elliptic integrals

of the first and second kind [13], respectively. Equation (2) generates the parameterization
of the contour of a nodoid or more precisely of a whole sequence of nodoids. This sequence
has two free parameters r0 < 0 and r1 > 0, where |r0| represents the minimal distance of the
contour from the axis of rotation and r1 its maximal distance. Thus, one has |r0| ≤ r(zN ) ≤ r1
in (2). By periodic continuation of zN (r|r0, r1), one obtains a surface which is defined for all
values of z [14]. An example of such a nodoid contour is displayed in fig. 2(a). In this figure,
the bold segment corresponds to the analytical expression (2), and its periodic continuation
leads to the full contour of the axisymmetric shape (which is, in general, self-intersecting).

Now, the values of r0 and r1 have to be chosen in such a way that the boundary conditions
at the contact lines are fulfilled. First, consider the special case θγ = 0 and θδ = π. Then, the
channel covers the whole domain and, for a given ring geometry, one has to choose a nodoid
which satisfies

zN (r = aγ/2|r0, r1) = zN (r = aδ/2|r0, r1). (3)
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(a)

(b) (c)

Fig. 2 – Construction of axially symmetric nodoid channels: (a) Contour of the nodoid in the (r, z)-
plane. The segment representing the channel shape is obtained by cutting the nodoid perpendicular
to the z-axis. For intermediate volumes V the channel covers the whole domain and one has to choose
a segment whose boundaries lie on the domain boundaries and which fulfills the volume constraint
Vd = V . These conditions can be satisfied by adjusting the free parameters r0 and r1. Depending on
V one then obtains channels with interior contact angle (b) θin < π/2 or (c) θin > π/2. Both channel
shapes correspond to a segment of the nodoid which is drawn as solid line in the box of panel (a).

This represents an implicit equation for r1 = r1(r0). The remaining parameter r0 has to be
adjusted in such a way that the volume Vd = Vd(r0, r1) of the ring channel satisfies Vd = V .
Finally, denote by θin the interior contact angle at r = aδ/2 and by θout the outer contact
angle at r = aγ/2. Then, one has 0 ≤ θin, θout ≤ π with values which depend only on the
volume Vd = V .

In this way, one may calculate the functional dependence r1 = r1(r0) [12]. An analysis
of this dependence shows that r1 diverges in the limit of small |r0|. This implies that such
a solution exists for all ring geometries with 0 < aδ < aγ . In all cases, one has θout < π/2
provided |r0| > 0.

For the general case θγ > 0 and θδ < π, the values of θin and θout must satisfy θγ ≤
θin, θout ≤ θδ. Thus, the outer contact line detaches from the domain boundary at r = aγ/2
below a critical volume V < V (1) = V (1)(θγ). Likewise, the interior contact line retracts from
the domain boundary at r = aδ/2 above a critical volume V > V (2) = V (2)(θδ). In this case,
the above analysis applies to V (1) < V < V (2).

From the explicit solution for the channel shape, the mean curvature M can be calculated.
Again, by first concentrating on θγ = 0 and θδ = π, the divergence theorem implies

M =
2

a2
γ − a2

δ

(aγ sin θout + aδ sin θin) . (4)

For a given channel volume Vd = V , the contact angles θout and θin are not independent. Thus,
θin can be chosen as an order parameter characterizing the channel shape. As shown in fig. 3,
the mean curvature M has a maximal value M = Mmax at θin = θmax

in , with π/2 < θmax
in < π.
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Fig. 3 – Mean curvature M of nodoid channel as a function of the interior contact angle θin for
ring-shaped surface domains with aγ/aδ = 2.

The location of this maximum depends on the geometry, which can be characterized by the
area fraction of the hydrophilic domains X ≡ a2

γ/a
2
δ . Thus, contrary to the case of circular or

stripe domains [9], θmax
in has no universal value here.

Since d2M/dθ2
in < 0 and M(0) = M(π) = 0 one has a “thin” and a “fat” homogeneous

channel for each value of M < Mmax. This already indicates the possibility of channel states
with position-dependent order parameter, i.e., with an interior contact angle θin = θin(x). As
shown in fig. 1 and described in the next section, we find indeed ring channels with a single
bulge. These latter channels are built up from “thin” and “fat” channel segments with the
same mean curvature [15].

Morphological transition. – The ring channels with a bulge are found for sufficiently small
aγ/aδ and sufficiently large volumes using an extension of the numerical algorithm developed
in [8]. Thus, our system undergoes a volume-induced morphological phase transition between
an axisymmetric and a non-axisymmetric channel state. This transition corresponds to an
exact symmetry breaking. Figure 1 shows the transition in two special geometries, for aγ/aδ =
2 and aγ/aδ = 1.2. In the first geometry the critical volume [16] is V ∗/((aγ − aδ)/2)3 ≈ 3.9,
whereas in the second one V ∗/((aγ − aδ)/2)3 ≈ 13.63. In both geometries, the bulge state
attains its largest contact angle along the interior domain boundary at r = aδ/2. For aγ/aδ = 2
and 1.2, the largest contact angle is given by θin ≡ θ> = 2.2 and 2.65, respectively.

These results can be easily generalized to θδ < π. At the interior domain boundary, the
maximum contact angle fulfills θ> < π at the critical volume. Thus, if θδ is sufficiently large,
one has θ> < θδ and the contact line cannot detach from the domain boundary. Such a
detachment is possible for small θδ < θ>; since the interior contact angle is larger than the
outer one, the contact line detaches only from the interior boundary. Similar arguments apply
to θγ > 0.

Shape diffusion. – Since a displacement of the bulge along the ring does not change
its interfacial free energy, the bulge state of the channel should undergo thermally excited
shape diffusion. To be specific, let us assume that (α) is a vapor phase. The main source of
dissipation for a moving bulge should then arise from the viscous flows within the bulge. If Lb

and vb are the linear dimension and the velocity of the bulge, the dissipated energy per unit
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time should be proportional to η(vb/Lb)2L3
b = ηLbv

2
b as follows from the standard theory of

hydrodynamics [17]. This implies a friction coefficient fb ∼ ηLb and a diffusion coefficient

Db = T/fb � T/ηLb. (5)

For water at room temperature, one has η � 0.9 × 10−3 kg/ms and T � 4 × 10−21 J, which
implies Db � 5(µm/Lb)µm2/s. Thus, for ring-shaped domains in the micrometer range, it
should take of the order of seconds for the bulge to diffuse around the domain. In practice,
this diffusion process may be blocked by energy barriers arising, e.g., from inhomogeneities in
the domain thickness aγ − aδ or from pinning centers such as dust particles.

Experimental observations. – We have also performed a relatively simple experimental
study of the wetting behavior on ring-shaped surface domains. Thus, we have produced a
lyophilic ring with a width of 1 mm on a planar, lyophobic substrate using standard printed
circuit board technology. Thus, the (δ)-regions are given by an epoxy-glass laminate and the
(γ)-regions by copper. The wetting liquid consists of a metallic tin-lead alloy as used for sol-
dering in electronics. The contact angles as determined by direct inspection are approximately
θγ � 0 deg and θδ � 120 deg. The alloy was heated above the melt-point and brought onto
the substrate; when subsequently cooled down to room temperature, it solidified.

The experimental observations confirm our theory. Depending on the amount of molten
metallic alloy, i.e. depending on the volume of liquid, the wetting layer morphology was either
given by a homogeneous channel or a channel with a single bulge. One example for these
experimentally observed transitions is shown in fig. 1. Inspection of this figure shows that the
theoretical and experimental channel shapes are in good agreement. The only difference arises
from the fact that gravity cannot be completely neglected on the millimeter scale, and the
experimentally observed shapes are slightly flattened. Due to the large value of θδ, the contact
line does not detach from the domain boundary at the critical volume. Since the channel and
the bulge had a size in the millimeter range, the thermally excited shape diffusion was not
accessible in these experiments.

In summary, we have studied the wetting of ring-shaped surface domains both theoreti-
cally and experimentally. The wetting layers covering these domains display a volume-induced
shape transition from a homogeneous channel state with constant cross-section to an inhomo-
geneous channel with a single bulge. At this transition, the rotational symmetry is sponta-
neously broken. Because of this broken symmetry, there is no restoring force for an angular
displacement of the bulge, and, for surface domains in the micrometer domain, this bulge
should undergo thermally excited diffusion along the ring.
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