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We investigate, both theoretically and experimentally, the wetting morphology of a liquid which is
adsorbed onto a chemically structured substrate consisting of circular lyophobic domains in a lyophilic
matrix. For thick films, the adsorbate morphology is not affected by the underlying domain pattern but
reduction in the film thickness leads to the formation of stable holes and, thus, to perforated wetting films.
These perforated films, which exist for an intermediate range of volumes, are bounded by surfaces of both
constant mean curvature and high topological genus. By making use of nodoids, we are able to derive an
approximate analytical parametrization of these surfaces. This “muffin-tin” parametrization captures the
essential features of the wetting layer morphology as shown by comparison with direct numerical
minimization of the free energy. Furthermore, the theoretical shapes are in very good agreement with
experimental data obtained by atomic force microscopy.

1. Introduction

Minute modifications on surfaces are well-known to
influence the wettability of a substrate by an adjacent
adsorbate. If, for example, water condenses onto a surface,
an irregular pattern of small drops develops (forming so-
called breath figures, cf. ref 1) which probes the natural
heterogeneity of the surface. In contrast, if the substrate
surface is artificially structured, the morphology of the
liquid adsorbate is crucially influenced by the underlying
pattern of surface domains. The shape of the liquid can
then be controlled by adjusting the corresponding geo-
metrical boundary conditions. It has already been dem-
onstrated that the physical properties of these wetting
systems depend on their morphology; cf. for example refs
2 and 3. Therefore, these novel possibilities to control the
shape might be used in order to produce artificial physical,
chemical, or biological systems with unique properties.

Up to now, the theoretical and experimental investiga-
tions of such structured substrates have mainly concen-
trated on their wetting properties.2-7 These studies are
fundamental both for the extension to more complex
systems and for possible applications. The theoretical and
experimental investigation of the interplay between the
geometrical boundary conditions and the morphology of
the wetting layer has already led to the discovery of a
variety of novel wetting phenomena. Examples are (i)
nonspherical droplets which are stabilized by the structure
of the substrate.2,3 Such droplets are unstable on homo-
geneous substrates against shape deformations which

displace their contact line.5 However, these droplets can
exhibit (ii) novel shape instabilities which are character-
ized by a rearrangement of the liquid within the droplet
at fixed contact line.2,3 Additionally, (iii) morphological
wetting transitions between wetting layer morphologies
are observed which extend over several domains as for
example droplet patterns on an array of circular patches.4

In this paper, we extend our studies to a system which
has unique topological and geometrical properties. It is
given by a wetting layer whose liquid-vapor interface is
a constant mean curvature surface of high topological
genus. It is stabilized by a lyophilic substrate with many
circular lyophobic domains. We derive an analytical
description of its morphology and give a detailed math-
ematical analysis of the geometrical properties of the
liquid-vapor interface.

We demonstrate both theoretically and experimentally
that the Laplace equation (i.e., the equation which
determines the shape of the liquid-vapor interface) indeed
has solutions with many “holes”, that is, solutions of high
topological genus. Furthermore, an exact solution for
special geometries is presented (valid for a single hole)
and its approximate extension to the many-hole case is
comparedwithnumerical solutions.Althoughtheseresults
might appear to be very technical, they are fundamental
for any further investigations.

We also show how wetting layers with many holes can
be temporarily or permanently stabilized. By use of
appropriate sol-gel reactions, the system can be solidified
without disturbing its morphology. In this way, the system
described here can be seen as a first step toward novel
artificial materials which have unique (prescribed) geo-
metrical and topological properties.

We expect the physical properties of this system to be
crucially influenced by its morphology. For example, the
spectrum of fluctuations will depend on the structure of
the substrate: if the domains form a periodic grid on the
substrate, the capillary waves will have a band structure.
Deviations from the periodicity of the domain array on
the substrate might lead to “defectlike” disturbances of
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the liquid-vapor interface. More generally, it might be
possible to use this wetting system as a realization of a
soft crystal since many of its physical properties are
dominated by symmetry.

Finally, from a mathematical point of view, this inves-
tigation is complementary to earlier ones. General argu-
ments suggest6,8 that the phase diagram derived in ref 4
is valid for a wide class of domain geometries. Thus, one
expects that the completely wetting film and the homo-
geneous and heterogeneous droplet patterns are relevant
(and experimentally observable) states in many patterned
systems with (topologically) connected lyophobic regions.
The system investigated here is topologically different,
since the lyophilic regions are connected. Correspondingly,
the structure of the substrate is only relevant for a small
volume range in which this dewetted state exists. The
phase diagram is dominated by the film state.

This paper is organized as follows. First, the theoretical
framework for the following study is introduced in section
2. Then, in section 3 the experimental investigation of the
liquid structures is described. In section 4, the approximate
analytical solution is derived. Next, the results of the
numerical minimization are presented and the three
approaches are compared. We conclude with a summary
and an outlook.

2. Preliminaries

The system which is investigated here consists of an
array of N circular lyophobic domains (δ) on a lyophilic
substrate (γ). In principle, the arrangement of the domains
on the substrate could be arbitrary, but for simplicity we
specialize here on a periodic grid. This system is thus
complementary to the one studied in ref 4, where a
lyophobic substrate with many circular lyophilic domains
has been considered. Formally, these two systems can be
transformed into each other by interchanging the lyophilic
and lyophobic regions. Thus, in the present study, the
lyophobic regions of the substrate are spatially separated
whereas the lyophilic ones are connected.

Under suitable experimental conditions, which can be
realized by for example adding appropriate walls to the
system, a completely wetting film exists as a stable
configuration. At high volumes, that is, at sufficiently large
amounts of adsorbed liquid, the equilibrium configuration
of the wetting layer is given by this film which covers the
whole substrate. Thus, at high volumes the morphology
of the wetting layer is not influenced by the structure of
the substrate. However, if the volume is continuously
decreased, then for small film heights the structure of the
substrate becomes more and more important. Finally, at
a critical volume the film state becomes energetically
unfavorable since it also covers the lyophobic regions (δ).
Then,amorphological wetting transition toa configuration
takes place where the lyophobic domains are dewetted.
Here, the liquid-vapor interface of the wetting layer is
given by a connected two-dimensional surface with many
holes. The properties of this dewetted state are investi-
gated in this article by using both experimental and
theoretical methods.

In both cases, we will always be interested in the
equilibrium configuration of the wetting layer which
corresponds to the global minimum of the free energy. To
proceed, we denote the vapor and the liquid phase by R
and â, respectively; see Figure 1. The interfacial region
between phase i and phase j has surface area Aij and
interfacial tension Σij, with i, j ) R, â, γ, or δ. The two

surface regions γ and δ are characterized by contact angles
θγ and θδ which are related to the interfacial tensions via
the usual Young relations.

The droplet regimes I, II, and III introduced in ref 4 can
be distinguished here as well. For small volumes of
adsorbed liquid, the wetting layer belongs to regime I.
Here, only the γ regions are (partially) covered by spatially
separated droplets. In regime II, γ is completely covered,
and in regime III also parts of δ are covered. In regimes
I and III, the Young equation is fulfilled, whereas in regime
II the contact angle is determined by the volume only.

To keep the discussion as simple as possible, we will
restrict the analysis to regime II. We will thus implicitly
assume that an intermediate amount of volume is ad-
sorbed. Furthermore, we will concentrate on domains and
corresponding droplets in the micrometer range. In this
situation, the free energy of a wetting layer consists of the
contributions arising from the interfacial free energy of
the Râ interface, from the free energy of wetting the contact
area and from the volume. Then, if the volume V of the
wetting layer is prescribed, its free energy functional is
given by4,6

with w ) γ or w ) δ. The pressure difference appearing
in the last term is a Lagrange multiplier which guarantees
that the constraint on the volume is fulfilled.

If larger length scales are considered, gravity has to be
taken into account (see e.g. refs 9-10), while for smaller
scales corrections arising from line tensions (see e.g. refs
6, 11-13) and intermolecular interactions will become
important.14,15

In the following sections, the wetting layers are studied
by experimental, analytical, and numerical methods. In
all three cases, we focus on equilibrium configurations
corresponding to the global minima of the free energy
functional (eq 1).

3. Experimental Investigation
Chemically patterned substrates were fabricated by micro-

contact printing (µCP)16 of alkanethiols on gold-coated glass
sheets. Since this technique has become well established in the
last couple of years,17 we will only briefly describe our experi-
mental procedure. We printed a 1 mM ethanolic solution of
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Figure 1. Wetting geometry: a liquid (â) dewets the circular
lyophobic domains (δ) on a lyophilic substrate (γ).

F(A, V) ) ΣRâ ARâ + ARw(Σâw - ΣRw) + (PR - Pâ)V (1)
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unpolar octadecanethiol HS(CH2)17-CH3 with a patterned stamp
of elastomeric material (poly(dimethylsiloxane)) onto the sub-
strate and subsequently dipped the substrate in a 1 mM ethanolic
solution of polar 11-mercaptoundecanol HS(CH2)11-OH. This
produces substrates with well-defined arrays of lyophobic and
lyophilic domains. The resulting structures were confirmed to
have the geometry of the stamp by monitoring the phase signal
during imaging of the surface with atomic force microscopy (AFM)
in tapping mode.

Liquid structures in the micrometer range can be successfully
imaged with AFM in tapping mode.18 However, this requires the
liquid structures under investigation to be stable (e.g., against
evaporation) during a typical scan time which is of the order of
several minutes. This difficulty becomes even more severe for
the system studied here since the dewetted state exists only in
a small volume range (see section 5). Therefore, we produced
and stabilized such delicate structures by means of a chemical
reaction which eventually “froze” the initial liquid into a solid
structure and could be imaged by AFM without the aforemen-
tioned problems. This solidification is achieved by using highly
reactive liquids such as metal alkoxides which are well-known
to undergo a gelation process when exposed to air humidity.
Since the gelation process starts at the adsorbate surface, this
surface shape is stabilized by forming a highly viscous macro-
molecular network. Therefore, although some volume loss occurs
during gelation, the morphology of the adsorbate is essentially
preserved in a state where its shape is still dominated by
interfacial tensions. As a result, the obtained structures cor-
respond to those of simple liquids.19

In this process, which is well-known as the sol-gel technique,20

an inorganic or organic molecular precursor M(OR)n, a sol, is
used as the starting material, where M is a metal and (OR) is
an organic compound. When such low viscous precursors are
applied to substrates by spin- or dip-coating, a macromolecular
oxidic network (M-O-M) forms in a moist environment through
hydrolysis and polycondensation. This transforms the precursor
into a highly viscous (gel-like) hydrated metal oxide MOx. For
details, we refer to the literature.20 We used two different
procedures corresponding to two different precursors: (i) tet-
raisopropylorthotitanate (TiC12H28O4, TIOT, purchased from
Merck Schuchardt) and (ii) tungsten alkoxide. In both cases, it
is difficult to measure the values of the contact angles θγ and θδ
directly. However, the comparison between theory and experi-
ment as described in the following clearly indicates that the
experimentally observed wetting morphologies belong to droplet
regime II with θγ < θ < θδ.

In procedure i, we added ethanol and acetylacetone (C5H8O2)
with a volume ratio of 1:2:18 in order to improve the dewetting
properties of the lyophobic patches. After the sol-gel process is
completed, this mixture finally leads to the formation of titanium
oxide. Thus, in this system the R phase is air, the wetting liquid
â is the TIOT solution, γ is given by OH-terminated thiol, and
δ is given by CH3-terminated thiol SAMs (self-assembled
monolayers) on gold substrates. Figure 2a shows a typical result
after the TIOT solution has been applied by dip-coating to a
substrate composed of lyophobic circular regions which form a
square lattice in the lyophilic matrix. The liquid dewetted the
lyophobic domains and formed a connected structure. The AFM
image was taken after the gelation process of the precursor.

Inprocedure ii, the tungstenalkoxide precursors wereprepared
by dissolving 3 g of tungsten hexachloride (WCl6) in 10 mL of
ethanol21 and adding 10-20 mL of acetylacetone.22 The final
mixture contained also 7 mL of dilute (1 M) hydrochloric acid.
Figure 3 shows an example where this precursor was applied to
a substrate composed of circular patches (δ) which form a
triangular lattice on the matrix (γ). Here, the γ regions are given
by CH3-terminated thiol SAMs and the δ regions are given by
OH-terminated thiol SAMs on gold. In contrast to case i, the liquid did not dewet the substrate but

formed a thin liquid film on the whole substrate which underwent
a subsequent microphase separation. During this process, the
volatile component preferentially adsorbed at the δ sites thus
leaving only the γ areas for the tungsten-containing component.
While the volatile component evaporates, the gelation of the
tungsten-containing phase is nucleated at the γ regions of the
substrate. Correspondingly, the wetting liquid â is here given by
the tungsten alcoholate and the R phase corresponds to the
volatile component of the solution.
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Figure 2. (a) TiO2 on a substrate with lyophobic circles in a
lyophilic matrix as a result from a dewetting process of a liquid
sol and a subsequent gelation as obtained via procedure i; see
text (size, 9.4 × 9.4 µm2; height, 35 nm; AFM tapping mode).
(b) Wetting layer morphology as determined by numerical
minimization as described in section 5. Direct comparison of
(a) and (b) shows that the theoretical and experimental
morphologies are in fair agreement and exhibit the same
characteristics.

Figure 3. WO3 structure on a substrate with lyophobic circles
in a lyophilic matrix as a result of a phase separation process
(lateral size of AFM picture, 11 µm × 11 µm; height, 740 nm).
This corresponds to procedure ii as described in the text.
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In addition, Figure 2b shows the result of the numerical
minimization of the free energy (eq 1). The details of the numerical
procedure are explained in section 5. The similarities between
experiment (Figure 2a) and theory (Figure 2b) are obvious.

A magnified view of the wetting layer as obtained from
procedure ii is shown in Figure 4a which displays the shape of
the adsorbate (light regions) between two circular lyophobic
domains (dark regions). From the cross section along the straight
line, we obtained the experimentally determined profile of the
wetting layer corresponding to the dark symbols in Figure 4b.
It is difficult to estimate the uncertainties of these experimental
data: first, the AFM technique has some limited resolution; in
addition, the gelation procedure may induce small shape
deformations of the wetting layer surface. In any case, we find
that these experimental data are in fair agreement with an
appropriately chosen segment of a nodoid (Figure 4b, solid line)
which is the predicted theoretical solution of the corresponding
Laplace equation. This will be shown in the next section where
we use an analytical approach to investigate the geometrical
properties of this liquid-vapor interface.

4. Analytical Approach

The unit cell of the domain lattice considered here is a
square with side length aγ. The wetting layer morphology
has this symmetry as well since it corresponds to a solution
of the Laplace equation which is defined on the whole
system. Thus, to obtain the shape of the complete Râ
interface one has to find solutions of the shape equation
which are defined on the unit cell of the lattice. In general,
this two-dimensional nonlinear partial differential equa-
tion cannot be solved analytically. However, it is possible
to approximate the solutions of this two-dimensional
problem by slightly modified solutions of a related one-
dimensional problem. This can be achieved by replacing
the square unit cell by a circular one. More precisely, the
Laplace equation is first solved on an (axisymmetric)
circular domain. This solution is then extended to the
square unit cell. This procedure resembles the use of the
muffin-tin potential for the conduction electrons in a metal.
As will be shown below, this approximation turns out to
be very good.

4.1. A Model System. To derive this approximate
description of the wetting layer configuration, we first
consider a model system. It is given by a structured
substrate with a single lyophobic domain. To be more
precise, the system consists of a circular lyophilic substrate

γ with contact angle θγ ) 0. Since this model system will
be set in relation to the square unit cell of the lattice, aγ

will be used in this section to denote the diameter of γ,
whereas in the next section aγ will be used to denote the
side length of the (quadratic) unit cell of the lattice.
Furthermore, γ contains a single circular lyophobic domain
δ whose center coincides with the center of γ. The domain
has diameter aδ < aγ, and its contact angle is θδ ) π. Thus,
in this system all wetting layer configurations which dewet
δ belong to the droplet regime II. Along the domain
boundary of γ, perpendicular walls ε with contact angle
θε ) π/2 are added. The whole system is thus a cylinder
with a (structured) face at the bottom. In this system, the
axisymmetric shape of the wetting layer configuration
which dewets δ can be calculated exactly. Determining
the Râ interface is equivalent to finding a surface of
constant mean curvature whose boundary is given by two
concentric circles with diameters aδ and aγ. In three spatial
dimensions, any surface which has both constant mean
curvature and axial symmetry must be one of the Delaunay
surfaces (cf. Appendix), that is, must be a plane, sphere,
cylinder, catenoid, unduloid, or nodoid. For the system
considered here, the solution must be given by an appro-
priately chosen segment of a nodoid since the remaining
surfaces cannot fulfill the present boundary conditions;
compare Figure 5. Nodoid segments also determine the
shape of homogeneous channels on lyophilic ring domains
as studied in ref 3. The two geometries differ in the
boundary conditions at the outer boundary of the γ domain
but lead to the same shapes in the limit of large aγ.

To derive the parametrization of the shape of the wetting
layer explicitly, we first choose a parametrization for the
nodoids. Then, we discuss the conditions which determine
the nodoid segment representing the wetting layer which
dewets δ.

If the z axis is parallel to the surface normal of the
substrate and if its origin coincides with the center of γ,
then the surface of the nodoid is parametrized by the
surface vector given by eq A.1. Note that a nodoid is a
surface of revolution and therefore its surface is obtained
by rotating the curve z ) zN(r|r0, r1) around the z axis. The
explicit form of zN is given by eq A.9 of the Appendix,
where further details about the parametrization can be
found. This curve has two free parameters r0 < 0 and r1

Figure 4. (a) Enlarged view of a wetting layer as in Figure 3 but with a smaller volume (lateral size of AFM picture, 3 µm × 3
µm; height, 415 nm). Here, the dark regions represent the nonwetted domains (δ); the light regions are the adsorbate (γ). (b)
Corresponding height profile along the straight line in (a) as obtained from the AFM data (symbols) and as calculated within the
muffin-tin approximation (solid line); see section 4. The contact angle for this shape is θ ) 59° = π/3.

Perforated Wetting Layers from Surface Domains Langmuir, Vol. 17, No. 25, 2001 7817



> 0, where |r0| is the minimal and r1 the maximal distance
of the curve from the axis of rotation. Thus, r ∈[|r0|,r1]
holds in eq A.9. By periodic continuation of zN(r|r0, r1), one
obtains a surface which is defined for all values of z. Surface
area AN and volume VN of the nodoid are then given by
eqs A.10 and A.11. An example of such a nodoid contour
is displayed in Figure 5a. In this figure, one segment
corresponds to the analytical expression eq A.9, and its
periodic continuation leads to the full contour of the axi-
symmetric shape (which is, in general, self-intersecting).

Now, the appropriate nodoid segment has to be chosen
which represents the Râ interface of the wetting layer
configuration which dewets δ. Geometrically, it can be
obtained by cutting the nodoid perpendicular to the z axis
locally at r ) |r0|; see Figure 5. Mathematically, this
corresponds to choosing the values of r0 and r1 in such a
way that the boundary conditions at the γδ domain
boundary and at the wall ε are fulfilled. Since θε ) π/2,
the tangent of the wetting layer has to vanish at the wall
ε which implies

This condition determines r0 ) r0(r1) ) -(aγ/2)2/r1. In
addition, one must impose the volume constraint V )
VN(r|r0, r1). This can be achieved by adjusting the
remaining parameter r1.

To proceed, denote by θ the contact angle at r ) aδ/2 as
defined in Figure 5b,c. Then, the value of θ depends on
the choice of the nodoid segment. If the cut is performed
at z > 0 in Figure 5, one obtains θ e π/2; for z < 0, one
obtains θ > π/2.

By distinguishing the last two cases, one can derive the
remaining formulas which characterize the wetting layer
morphology. In eq A.9, the origin is chosen in such a way
that zN(r ) |r0||r0, r1) ) 0 holds. By still restricting the
discussion to the droplet regime II, one obtains

for r ∈ [aδ/2, aγ/2] and θi < π/2.
Surface area and volume of the wetting layer are then

given by

with r0 ) -(aγ/2)2/r1 in all equations. Furthermore, AN(r
) |r0||r0, r1) ) 0 and VN(r ) |r0||r0, r1) ) 0; see Appendix.
Similar expressions can be derived for r < aγ/2.

The case θ > π/2 is slightly more complicated since
overhangs have to be taken into account; see Figure 5.
The profile must therefore be divided into functions
z-

>(r|r0, r1) and z+
>(r|r0, r1). For r ∈[|r0|, aδ/2], the â phase

lies then between z-
>(r|r0, r1) and z+

>(r|r0, r1) > z-
>(r|r0, r1).

Consequently,

Surface area and volume are in this case given by

The formulas can be generalized to r < aγ/2 where again
one has to distinguish between the two profiles. However,
one should note that the parameter r1 which is determined
by the volume constraint has to fulfill the inequality r1 g
aγ

2/2aδ, since |r0| e r e r1 has to hold. (Our analysis can
be extended to the droplet regimes I and III by choosing
appropriate boundary conditions. In both regimes, the
contact line is detached from the domain boundaries: in
regime I, it lies on γ and the contact angle θ ) θγ; in regime
III, it lies on δ with θ ) θδ.)

With this exact solution, the free energy of the Râ
interface can be calculated as a function of the height
difference δz between the boundary circles; see Figure 6.
One then finds that the configuration of the wetting layer
which dewets the lyophobic regions δ exists only up to a
critical distance δzcr. Since the volume V is monotonic in
δz, this implies that the solution exists only up to a critical
volume Vcr and corresponding critical contact angle θcr.
Thus, for V < Vcr (respectively for θ >θcr) the boundary
conditions of the dewetted state cannot be fulfilled.
Furthermore, for every volume V < Vcr two solutions exist;
see Figure 6. This behavior originates from the functional

Figure 5. (a) Contour of a nodoid in the (r, z) plane (full line).
The complete shape is obtained by rotating this contour around
the z axis. The values of the radial r coordinate are restricted
to the interval |r0| < r < r1, and the shape is periodic in the z
direction. For the muffin-tin approximation considered here,
the only relevant part of the contour corresponds to the “nose”
inside the dotted rectangle with |r0|< r < aγ/2. (b, c) Two contours
of wetting layers close to the lyophobic δ domain with 0 < r <
aδ/2. Both contours are obtained by intersection of the nose in
(a) with a straight line given by z ) zin. For zin > 0, one obtains
a contour as in (b) with contact angle θ < π/2. For zin < 0, the
contour has the shape as shown in (c) with θ > π/2.

ARâ
> (r ) aγ/2|r0, r1) ) AN(r ) aγ/2|r0, r1) +

AN(r ) aδ/2|r0, r1) (8)

Vd
>(r ) aγ/2|r0, r1) ) πr2 z+

>(r ) aγ/2|r0, r1) -

VN(r ) aγ/2|r0, r1) - VN(r ) aδ/2|r0, r1) (9)

dzN(r|r0,r1)
dr

|r)aγ/2 ) -
r2 + r0r1

x(r1
2 - r2)(r2 - r0

2)
|r)aγ/2 ) 0

(2)

z<(r|r0, r1) ) zN(r|r0, r1) - zN(r ) aδ/2|r0, r1) (3)

ARâ
< (r ) aγ/2|r0, r1) ) AN(r ) aγ/2|r0, r1) -

AN(r ) aδ/2|r0, r1) (4)

Vd
<(r ) aγ/2|r0, r1) ) πr2 z<(r ) aγ/2|r0, r1) -

VN(r ) aγ/2|r0, r1) + VN(r ) aδ/2|r0, r1) (5)

z+
>(r|r0, r1) ) zN(r|r0, r1) + zN(r ) aδ/2|r0, r1) (6)

z-
>(r|r0, r1) ) zN(r ) aδ/2|r0, r1) - zN(r|r0, r1) (7)
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dependence of z+
>(aγ/2) on r1 or θ(r1). The function z+

> is not
monotonic in θ but exhibits a maximum.

This behavior of the solution is characteristic for systems
where the boundary conditions correspond to geometrical
constraints. In the case studied here, one wants to obtain
a surface which is bounded by two circles and exhibits a
certain contact angle at the larger circle. This is very
similar to the well-known problem of finding a minimal
surface (i.e., a surface of zero mean curvature) which is
bounded by two coaxal circles of identical diameter. In
the latter case, one obtains a catenoid for sufficiently small
distances of the circles. To be more precise, one obtains
two catenoids, a stable and an unstable one.23 In fact,
these two solutions are also found if the boundaries of the
minimal surface are given by two coaxal circles with
different diameters provided their height difference
z+

>(aγ/2) is sufficiently small.
4.2. Extension to the Lattice. To obtain an ap-

proximate description of the wetting layer morphology on
the complete array of lyophobic domains, one has to extend
this special solution (of the circular unit cell) to the square
unit cell with length aγ. Since the square unit cell is not
axisymmetric, this extension breaks the rotational sym-
metry. However, if one assumes that for r e aγ/2 the
breaking of the axial symmetry is only weak, then the
above solution can be used as an ansatz for r e aγ/2. On
the remaining part of the unit cell, a plane can then be
used as extension. In this case, the solution stays differ-
entiable since dz/dr ) 0 holds at r ) aγ/2. One expects this
approximation to become exact for large aγ, but in fact it
also yields good results for small aγ.

To proceed, introduce local Cartesian coordinates (x, y)
with origin (0, 0) at the center of every unit cell. Then, for
|x| e aγ/2 and |y| e aγ/2 the approximate (“muffin-tin”)
solution on the lattice is given by

where r ≡ xx2+y2 and H(x) denotes the Heaviside
function, that is, H(x) ) 1 for x > 0, H(x) ) 0 for x < 0,

and H(0) ) 1/2. Here, again one has to distinguish between
θ e π/2 and θ > π/2 and between r e aδ/2 and r > aδ/2.
Correspondingly, z ) z< or z ) z(

> holds in the last
equation depending on the values of θ and r. The surface
area AL and the volume VL per unit cell can be derived
similarly for the different cases. Equation 10 holds only
for quadratic unit cells, but it is straightforward to
generalize the analysis to triangular lattices or even more
general lattice structures.

By restricting the solution to be constant for r > aγ/2,
one makes an error, since one does not take into account
the mean curvature of the Râ interface along the side
boundaries of the unit cell, that is, between the points (x,
y) ) (aγ/2, 0) and (x, y) ) (aγ/2, aγ/2). However, |r0| e aδ/2
and r1 g aγ/2 and eq A.8 implies

Hence, in the limit of large aγ/aδ at constant aδ this error
becomes small.

5. Numerical Investigation and Discussion

To show that this analytical approximation captures
the essential properties of the wetting layer morphology,
we also calculated the shape of the Râ interface by direct
numerical minimization of the free energy functional (eq
1). In principle, one should be able to do this using available
software packages such as the Surface Evolver.24 In
practice, we found it more convenient to use a slight
modification of the numerical algorithm which we devel-
oped previously for a different domain geometry.2 Using
the latter code, we determined the wetting layer mor-
phology of minimal surface area which (i) fulfills the
boundary conditions arising from the structured substrate
and which (ii) has a given volume V.

One example for the wetting layer morphology found
by this method is presented in Figure 7a, which demon-
strates that the Laplace equation indeed has solutions of
high topological genus.

(23) Taylor, G. I.; Michael, D. H. J. Fluid Mech. 1973, 58, 625. (24) Brakke, K. Exp. Math. 1990, 1, 141.

Figure 6. (a) Surface area ARâ of the nodoid segments as a function of the height difference δz of the boundary circles. The solid
curve corresponds to the stable branch, the dashed curve to the unstable one. (b) Height profile z as a function of the radial coordinate
r for three nodoid segments where the dashed profile corresponds to an unstable configuration. The length scales r, z, and δz are
measured in units of the diameter aδ of the lyophobic δ domain; the area ARâ is measured in units of aδ

2. The numerical values
displayed in this figure are for aγ/aδ ) 2; in this case, the critical height difference δzcr up to which the dewetted state exists is
δzcr = 1.33.

zL(r|r0, r1) ) z(r|r0, r1)H(aγ/2 - r) +
z(r ) aγ/2|r0, r1) H(r - aγ/2) (10)

M e
2/aδ

aγ/aδ - 1
(11)
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On the other hand, Figure 7b shows the wetting layer
morphology corresponding to the approximate muffin-tin
solution. Direct inspection of Figure 7 shows that the two
solutions look quite similar and that the approximate
solution captures the main features of the numerical
solution. In addition to the obvious similarity between
parts a and b of Figure 7, the surface area of the dewetted
states as a function of the adsorbate volume is identical
for both solutions; see Figure 8a,b. This underlines the
excellent agreement of the two approaches.

The numerical lattice solution has the same properties
as the solution of the single-domain system. In particular,
the dewetted state exists only for a certain volume range
V < Vcr; see Figure 8. This is in agreement with the
experimental and the analytical investigation.

Furthermore, the numerically, analytically, and ex-
perimentally obtained morphologies show the same
characteristics, as is evident from Figures 2a,b, 3, and
7a,b. A closer inspection of for example Figures 2a,b and
3 reveals that both the numerically and the experimentally
obtained morphologies show slightly elevated regions
between the lyophobic domains. The analytical ap-
proximation neglects these regions, as displayed in Figure
7a,b. However, eq 11 implies and the excellent agreement
between the approximate and the numerical solution
shows that the contributions to the physical quantities
arising from these regions are negligible. Furthermore,
the geometrical characteristics of the wetting layer do not
seem to have a strong dependence on the details of the
lattice structure; see Figure 2a and Figure 3. This is
supported by the finding that the experimentally mea-
sured height profile on a triangular lattice is in excellent
agreement with the height profile obtained within the
muffin-tin approximation; cf. Figure 4.

The analysis presented here can be extended to study
morphological wetting and dewetting transitions in these
systems. In this case, one has to take competing states
into account: the perforated film state, the completely
covering film, and patterns of droplets. These droplets
have the shape of spherical caps, and their contact areas
are completely contained within the γ domains. For θγ )
0, only the first two states fulfill the boundary conditions.

The energy of the completely covering film state is equal
to that of the unstable branch of the dewetted state with
vanishing volume V; see also Figure 8. This is a conse-
quence from the fact that for small V, the Râ interface of
the unstable branch attains a limit shape which consists
of a thin layer with small pores above the lyophobic surface
domains. As V goes to zero, the Râ interface touches the
lyophilic γ domains (i.e., z+

>(r ) aγ/2|r0, r1) vanishes) and
folds onto itself above the lyophobic δ domains. At the
same time, the pores close (since r0 vanishes as V goes to
zero) and the surface area of the Râ interface becomes
equal to the area of the γ domains plus twice the area of
the δ domains. Thus, the perforated film has a free energy
Fp/ΣRâ ) AL(V) - Aâδ cos θδ with Aâδ ) aγ

2 - π (aδ/2)2 whereas
the film state has a free energy Ffi/ΣRâ ) AL(V ) 0) - Aâδ
cos θδ. Thus, the transition between these two states takes
place at a volume Vc < Vcr (which corresponds to a critical
film height lc) with AL(V ) 0) ) AL(V ) Vc). The transition
is first order and shows hysteresis effects.

For θγ > 0, spherical caps on γ are an additional
alternative to the connected dewetted state. Our experi-
mental investigation shows that this state dominates for
small volumes V.

For large ratios aγ/aδ and sufficiently large contact
angles θγ, the droplet state will make a direct transition
to the completely wetting film state. Therefore, the film
state which dewets the δ regions will not be experimentally
observable. Finally, for smaller ratios aγ/aδ, for example,
larger lyophobic areas, and appropriately chosen small
values of θδ with π/2 < θδ < π, droplet regime III (in which
θ ) θδ) does not exist since then the completely covering
film state is energetically favored.

In the present geometry, the mean curvature of the
wetting layer seems to have, as a function of the contact
angle θ, only one stable branch which is terminated by
other, competing states. If the breaking of axial symmetry
is only small for r e aγ/2, as assumed above, then there
is no analytical evidence that the wetting layer morphology
can become unstable with respect to the development of
bulges in contrast to the case of liquid channels; see refs
2 and 3. The experimental and numerical investigation
support this conjecture.

6. Summary and Outlook
In summary, we have investigated the geometric

properties of wetting layer morphologies on substrates
consisting of lyophobic patches in a lyophilic matrix. For
sufficiently small liquid volumes, a perforated film with
many holes is present which is investigated both experi-
mentally and theoretically.

By using a sol-gel technique, we deposited wetting
liquids, which undergo a subsequent solidification process
upon exposure to air humidity, on chemically patterned
substrates. Afterwards, the topography of the samples
was investigated by atomic force microscopy.

In addition, we have performed a detailed mathematical
analysis of the geometrical shape of the wetting layer. We
demonstrate that the Laplace equation has solutions of
high topological genus, that is, solutions with many holes.
The results of the approximate analytical calculations are
in excellent agreement both with those of numerical
calculations and with the experimental data.

By comparing this system with those studied earlier,
one sees that the topology of the substrate influences its
phase diagram. Since the dewetted or perforated film state
is topologically connected, it has to fulfill rather different
boundary conditions. These conditions restrict the volume
range in which the perforated film state exists. Thus, the
dominating state of the system is the film with uniform

Figure 7. The wetting layer morphology which dewets the
lyophobic regions (δ) as determined numerically (a) and as
given by the analytical approximation (b). In both cases, the
parameters are chosen to be aγ/aδ ) 2, V/(aδ

3) ) 1, θγ ) 0, and
θδ ) π.
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thickness since it exists for all volumes V and has minimal
energy for V > Vcr.

Finally, the classification of constant mean curvature
surfaces with complex topologies is a timely subject in
differential geometry (see, for example, refs 25-27), and
similar surfaces also play a role in other physical systems
such as, for example, two-component membranes.28 The
results derived here might also be useful for the inves-
tigation of the breakup of films, as studied in refs 10 and
29. Indeed, our calculations show that axisymmetric holes
disturb the whole film. This is a consequence of the fact
that there is no axisymmetric liquid-vapor interface with
holes which has vanishing mean curvature M ) 0; compare
section 4. Since a flat film fulfills M ) 0, a hole cannot be
axisymmetric if it disturbs the film only locally.
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Appendix: The Surfaces of Delaunay
The French mathematician Delaunay was the first to

prove that there are exactly six different two-dimensional
surfaces of revolution which have constant mean curva-
ture.30 These are planes, catenoids (both with vanishing
mean curvature), spheres, cylinders, unduloids, and
nodoids (all with nonvanishing mean curvature). This fact
is often mentioned in textbooks on differential geometry,
but explicit parametrizations for unduloids and nodoids
are difficult to find. In this appendix, we will describe
such a parametrization which is equivalent to the one
used in ref 31.

A two-dimensional surface of revolution can be param-
etrized by a surface vector

Then, the mean curvature is given by32

where the sign is chosen in such a way that a sphere of
radius R has positive mean curvature M ) 1/R. Here, rz
≡ dr/dz, rzz ≡ d2r/dz2. By introducing the inverse func-
tion z ) z(r) and by using the substitution y ) 1 + 1/z′2,
z′ ≡ dz/dr, one can transform the last equation to a
differential equation of Bernoulli type iny. Then, by solving
it one obtains the first integral of eq A.2.

where C1 is a constant of integration. The solutions of
this differential equation correspond to the sought sur-
faces. The last equation can be interpreted geometric-
ally.33 If an ellipse is rolled along a line, its focus de-
scribes a curve z(r) given by the last equation. The
semimajor axis a and b (with a > b) of the ellipse
determines the constant C1; cf. the right-hand side of

eq A.3. By introduction of the maximum r1 ≡ a + xa2-b2

and minimum distance r0 ≡ a - xa2-b2 of the focus from
the axis of rotation, eq A.3 can be integrated.34 Then, for
r ∈ [r0, r1], the solution corresponds to an unduloid as
given by

(25) Grosse-Brauckmann, K.; Polthier, K. Exp. Math. 1997, 6, 13.
(26) Grosse-Brauckmann, K.; Kusner, R. B.; Sullivan, J. M. Proc.

Natl. Acad. Sci. U.S.A. 2000, 97, 14067.
(27) Kilian, M.; McIntosh, I.; Schmitt, N. Exp. Math. 2000, 9, 595.
(28) Góźdź, W. T.; Gompper, G. Phys. Rev. Lett. 1998, 80, 4213.
(29) Jacobs, K.; Seeman, R.; Schatz, G.; Herminghaus, S. Langmuir

1998, 14, 4961.
(30) Delaunay, C. J. Math. Pures Appl. Sér. 1841, 1, 309.
(31) Roe, R.-J. J. Colloid Interface Sci. 1975, 50, 70.

(32) Dierkes, U.; Hildebrandt, S.; Küster, A.; Wohlrab, O. Minimal
Surfaces I; Springer-Verlag: Berlin, 1992.

(33) Loria, G. Curve piane speciali; U. Hoepli: Milano, 1930.
(34) Gradshteyn, I. S.; Rhyzik, I. M. Table of integrals, series and

products, 5th ed.; Academic Press: San Diego, CA, 1994.

Figure 8. The surface area AL (per unit cell) of the Râ interface of the dewetted state as function of its volume VL (per unit cell).
The solid curve corresponds to the analytical muffin-tin solution; the points correspond to the results of the numerical minimization.
The data in (a) and (b) are for aγ/aδ ) 2 and aγ/aδ ) 5, respectively. In both cases, the dashed line represents the branch of the
unstable solution. Here, AL is measured in units of aδ

2, V in units of aδ
3.

M ) -
rrzz - (1 + rz

2)

2r(1 + rz
2)3/2

(A.2)

dz
dr

)
Mr2 + C1

xr2 - (Mr2 + C1)
2
≡ r2 + b2

x4a2r2 - (r2 + b2)2
(A.3)

zU(r|r0, r1) ) r0F(κ, p) + r1E(κ, p) -
1
r x(r1

2 - r2)(r2 - r0
2) (A.4)

AU(r|r0, r1) ) 2π(r0 + r1) (r1E(κ, p) -

1
r x(r1

2 - r2)(r2 - r0
2)) (A.5)

R(z, æ) ) (r(z) cos æ, r(z) sin æ, z) (A.1)
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(The results derived here are equivalent to those obtained
in ref 31.) Here,

and F and E denote elliptic integrals of the first and second
kind, respectively:34

As can be easily checked, the mean curvature then fulfills

A nodoid is obtained by rolling a hyperbola, which can
be seen as an ellipse with complex main axis b ) i|b|.
Here, the curve described by the focus is given by

with r0 < 0 and r ∈ [|r0|, r1]. By using the notation
introduced above, one obtains

In both cases, a surface defined for arbitrary z can be
obtained by periodic continuation. Finally, one should note
that cylinder and sphere are special cases of the unduloid,
which are obtained for (r0 ) r1) and (r0 ) 0), respectively.
The nodoid becomes a catenoid in the limit of large r1.

List of Mathematical Symbols

aδ diameter of lyophobic δ domain
aγ diameter of lyophilic γ domain in the muffin-

tin approximation corresponding to lattice
constant of surface domain lattice

R fluid bulk phase
A interfacial area
AL area of Râ interface per unit cell of lattice
â wetting liquid phase
δ lyophobic surface domain with contact angle θδ

δz height difference of boundary circles
δzcr largest possible height for perforated wetting

layer
ε confining walls with contact angle θε

γ lyophilic surface domain with contact angle θγ

H Heaviside step function
κ parameter for unduloid and nodoid as used in

Appendix
M mean curvature
p parameter for unduloid and nodoid as used in

Appendix
r radial coordinate for axially symmetric shapes

in muffin-tin approximation
r0, r1 parameters for the nodoid shape, see Figure 5
Σ interfacial tension
θ contact angle
θcr largest possible contact angle for perforated

wetting layer
θδ contact angle on the lyophobic δ domains with

θδ > π/2
θγ contact angle on the lyophilic γ domains with

θγ < π/2
V volume of wetting liquid
Vcr largest possible volume for perforated wetting

layer
VL volume per unit cell of lattice
z height of wetting layer
zN(r|r0, r1) parametrization of nodoid with free parameters

r0 and r1

z< height profile of wetting layer for θ < π/2
z+

>, z-
> two height profiles describing wetting layer

shapes with overhangs for θ > π/2

LA010661P

VU(r|r0, r1) ) π
3 {E(κ, p)(3r0r1

2 + 2r1
3 + 2r1r0

2) -

r1r0
2F(κ, p) - 1

r x(r1
2 - r2)(r2 - r0

2)(3r0r1 + r2 +

2r1
2 + 2r0

2)} (A.6)

κ ≡ arcsin xr1
2(r2 - r0

2)

r2(r1
2 - r0

2)
p ≡ xr1

2 - r0
2

r1
(A.7)

F(κ, p) ) ∫0

κ dR

x1 - p2 sin2 R
)

∫0

sin κ du

x(1 - u2)(1 - p2u2)

E(κ, p) ) ∫0

κ
dRx1 - p2 sin2 R ) ∫0

sin κ
dux1 - p2u2

1 - u2

M ) 1
r1 + r0

(A.8)

dz ) -
r2 + r0r1

x(r1
2 - r2)(r2 - r0

2)
dr

zN(r|r0, r1) ) -r0F(κ, p) r1E(κ, p) +

1
r x(r1

2 - r2)(r2 - r0
2) (A.9)

AN(r|r0, r1) ) 2π(r0 + r1) (r1E(κ, p) -

1
r x(r1

2 - r2)(r2 - r0
2)) (A.10)

VN(r|r0, r1) ) - π
3 {E(κ, p)(3r0r1

2 + 2r1
3 + 2r1r0

2) -

r1r0
2F(κ, p) - 1

r x(r1
2 - r2)(r2 - r0

2)(3r0r1 + r2 +

2r1
2 + 2r0

2)} (A.11)
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