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Abstract. – Flexible membranes with anchored polymers are studied using both analytical
methods and Monte Carlo simulations. The anchored polymers exert an entropically induced
pressure on the membrane which is calculated explicitly using a small-gradient expansion.
Likewise, we are able to determine both the shape profile of the membrane, which approaches
a cone-like shape close to the anchor and a catenoid far away from it, and the profile of
the induced mean curvature. We also consider membranes decorated by many polymers and
identify two coverage regimes; one of which is governed by polymer/membrane and the other
by polymer/polymer interactions.

At the supramolecular scale, biological systems consist of different types of macromolecules
and biocolloids [1,2]. These structures experience a variety of weak and competing interactions
which lead to many levels of supramolecular organization. Biomimetic systems are model
systems which are constructed and studied in order to focus on certain aspects of this self-
organization. Two relatively simple examples for such systems are provided by water-soluble
polymers and lipid bilayer membranes, both of which exhibit an interesting combination of
flexibility and structural stability. New levels of self-organization are found in compound
systems which are composed of both membranes and polymers attached to these membranes
via anchor segments, for a short review, see [3].

Systems composed of lipid membranes with anchored polymers have been studied by var-
ious experimental methods [4–8]. It was found in these experimental studies that anchored
polymers can have drastic effects on the shape of the lipid membranes. From a theoretical
point of view, it was shown that the anchored polymer exerts an entropic force on the mem-
brane which bends the membrane away from the polymer [9,10]. So far, the membrane shape
arising from this entropic interaction has not been determined. In this article, we develop
a theoretical approach with which we can calculate analytically this shape to first order in
a small gradient expansion. As shown below, the resulting shape is cone-like close to the
polymer anchor and a catenoid far away from it.

In addition to these analytical calculations, we performed extensive Monte Carlo (MC)
simulations of the compound polymer/membrane system. In order to give some intuitive idea
about the behaviour of this system, we summarize the results of the MC simulations in figs. 1,
c© EDP Sciences
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Fig. 1 – Snapshot configuration after 104 MC steps. The lateral membrane size is four times larger
than the polymer end-to-end distance. The membrane contains 17 × 17 = 289 lattice sites and the
polymer consists of 33 beads. Bending rigidity κ/T = 1, harmonic potential parameter v2Rp

4/T = 2.

2(a) and (b), where we show a typical MC configuration of the compound system, the average
MC profile of the membrane and the segment density of the anchored polymer, respectively.

In the main part of this article, we first describe the analytical calculation of the membrane
shape induced by the polymer. These analytical results are then compared with the results
obtained from the MC simulations. Finally, we also estimate the effective interaction between
two anchored polymers arising from the membrane fluctuations.

The compound polymer/membrane system is characterized by: i) the bending rigidity of
the membrane, which measures the energy needed to curve a piece of membrane [11]; ii) the
end-to-end distance of the polymer Rp, which is related to the mean squared distance between
the first and the last monomer in the chain. The chains are treated as ideal or Gaussian, i.e.,
we ignore any effects from the excluded volume of the polymers. Experimentally, this situation
corresponds to a polymer in a solvent close to the θ-temperature, where the excluded-volume
effect is balanced by the attractive interaction between polymer segments due to van der
Waals forces. For the ideal chain, one has Rp = ap

√
N , where ap and N are the persistence

length and the total number of monomers, respectively.
Now, we will calculate the mean profile of the membrane with an anchored polymer by a

perturbation expansion. The membrane is not subject to any additional forces or constraints
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Fig. 2 – (a) Membrane profile averaged over 107 MC steps. The lateral membrane size is 8 times the
polymer end-to-end distance. Bending rigidity κ/T = 1, harmonic potential parameter v2Rp

4/T = 2.
The membrane contains 65 × 65 = 4225 lattice sites, the polymer has 65 beads. (b) The segment
density of the polymer on top of the membrane cut in the x1-direction. The density is obtained by
counting the probability of polymer beads to be localized at position (x1/Rp, z/Rp) in the cut-plane.
The parameters have the same values as in (a).
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arising, e.g., from its boundaries. Thus, it is tensionless (1) and governed by its bending
rigidity κ; it is parametrized by its surface height l(x), where x = (x1, x2) is the plane of
reference. The membrane Hamiltonian is then given by

Hme{l} =
∫

d2x
1
2

(
κ

(∇2l(x)
)2

+ v2l(x)2
)

. (1)

In order to organize the calculation, we added a harmonic potential of strength v2. The
physical case corresponds to the limit of vanishing v2 as explicitly discussed below.

The internal length of the polymer is parametrized by s with 0 ≤ s ≤ 1 where Ns is the
number of monomers between the anchor and the polymer segment labeled by s. The polymer
partition function is given by

Zp{l} =
∫ ′

D{r} δ[r1(0)] δ[r2(0)] δ[r3(0)− l(0)] exp
[
− 3
2R2

p

∫ 1

0

ds [dr(s)/ds]2
]

, (2)

where the prime at the path integration indicates that r3(s) ≥ l(r1(s), r2(s)). The partition
function of the compound system now has the general path integral form

Z =
∫

D{l} exp[−Hme{l}/T ] Zp{l} , (3)

where T denotes the temperature in energy units. We normalize the polymer partition function
Zp{l} by the half-space partition function Zp{l = 0} of a polymer anchored on a flat surface
[12]. Expanding the partition function Zp to first order in l and integrating out the polymer’s
degrees of freedom, one obtains after some computation the explicit expression

Zp{l}
Zp{0} ≈ 1 −

∫ 1

0

ds

∫ ∞

−∞
d2x P (s, x) l(x) , (4)

with the total pressure

P (x) =
∫ 1

0

ds P (s, x) =




1
2πx3

(
1 + 3

x2

R2
p

)
exp

[
−3
2

x2

R2
p

]
, for x > 0 ,

−∞ , for x = 0 ,

(5)

where x = |x|. The explicit form of the pressure is consistent with the intuitive picture that
the polymer pulls the membrane at the anchor point and pushes the membrane away from it.

It follows from the explicit path integral expression for the first-order term that the ex-
pansion used here is, in fact, an expansion in powers of the derivatives ∂l/∂x1 and ∂l/∂x2

which implies that this term is invariant under the transformation l(x) → l(x) + ∆l of the
shape profile. As a consequence, one must have

∫
d2x P (s, x) = 0 for any polymer segment s

as can be verified for the explicit form given by

P (s, x) =
2

Rp
3

(
3
2π

)3/2 (
1− s

s

)1/2 (
3
2

x2

Rp
2

1
s3

− 1
s2

)
exp

[
−3
2

x2

Rp
2s

]
. (6)

Note that, for fixed s, P (s, x) is negative and positive for small and for large x, respectively.

(1) A lateral tension Σ introduces the additional crossover length scale ξ∗ = (κ/Σ)1/2. The shape profile
derived here for the tensionless case also applies for the tense membrane on length scales x � ξ∗.
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Fig. 3 – The profile of the membrane as obtained by the perturbative calculation: (a) for different
nonvanishing values of v2Rp

4/κ, (b) for vanishing v2. The inset displays the corresponding curvature
in a linear-logarithmic plot.

Using the polar symmetry of our problem, the average height of the membrane is given by

〈l(x)〉 =
1
2

√
π

6
T

κ
Rp

∫ ∞

0

dq

2π
q3

(q4 + v2/κ)
×

× exp

[
−R2

p

12
q2

] [
I0

(
R2

p

12
q2

)
+ I1

(
R2

p

12
q2

)]
J0(qx) , (7)

where J0, I0, I1 denote Bessel functions of integer order [13]. The shape profile 〈l(x)〉 as given
by (7) is shown in fig. 3(a) for different nonvanishing values of v2Rp

4/κ. It is obvious, that
the height of the membrane must increase with decreasing v2. As long as the potential is
present, the membrane will be localized at 〈l(x)〉 = 0 for large x. This limit is approached
by exponentially damped oscillations. The height of the anchor is given by 〈l(x = 0)〉. In
order to consider the limit of small confining potential, i.e., of small v2, it is useful to shift
the coordinate system in such a way that the anchor is located at the origin. In the latter
coordinate system, the height profile is given by 〈l(x)〉 − 〈l(0)〉 which stays finite in the limit
of zero v2. In the latter limit, one finds

〈l(x)〉−〈l(0)〉 = −Rp

8π
T

κ

{
x

Rp
exp

[
−3
2

x2

Rp
2

]
+

√
π

6

[(
1+3

x2

Rp
2

)
erf

(√
3
2

x

Rp

)
−3

x2

Rp
2

]
+

+ 2
(

x

Rp

)
2F2

({
1
2
,
1
2

}
,

{
3
2
,
3
2

}
,−3

2
x2

Rp
2

)}
, (8)

where 2F2 is a generalized hypergeometric function [13]. The profile as given by (8) attains
the cone-like shape described by

〈l(x)〉 − 〈l(0)〉 ≈ −(T/2πκ)x , (9)

for small x, and the catenoid-like shape given by

〈l(x)〉 − 〈l(0)〉 ≈ −(T/κ)(Rp/4
√
6π) ln(x/Rp) , (10)
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Fig. 4 – (a) Membrane profile: Comparison of analytical calculation (solid line) and Monte Carlo data
for different polymer and membrane discretizations ap/Rp and am/Rp, respectively, and κ/T = 1,
v2Rp

4/T = 2. The shape profiles are averaged over 107 MC steps. (b) The pairwise, membrane-
induced interaction energy between polymers for different values of v2Rp

4/κ.

for large x. The profile for v2 = 0 and intermediate x-values is displayed in fig. 3(b).
The mean curvature m(x) = −1/2〈∇2l(x)〉, which we define to be positive if the membrane

bends away from the polymer, is shown in the inset of fig. 3(b). The curvature has the
asymptotic behavior

m(x) ≈ T/4πκx , (11)

for small x, and

m(x) ≈ (T/12πκ)(Rp
2/x3) exp[−3x2/2Rp

2] , (12)

for large x. Due to the strong decay of m(x) for large x, the integral of m(x) over the infinite
plane of reference stays finite and leads to

∫
d2xm(x) =

√
π/6(T/4κ)Rp for a single anchored

polymer as considered so far.
Now, let us consider a membrane of area A which is covered by Np anchored polymers

in the dilute regime. Up to first order in the surface height l, we may simply superimpose
the separate shape deformations arising from these polymers (2). Thus, for the coverage
Γp = Np/A one obtains the mean (spontaneous) curvature Msp =

√
π/6(T/4κ)ΓpRp.

We will now compare the analytically calculated membrane shape profile with profiles
obtained by Monte Carlo simulations, as shown in fig. 4(a). The Monte Carlo simulation
was performed using the Metropolis algorithm. The membrane can move continuously in the
vertical direction above a two-dimensional lattice with lattice parameter am. For the anchored
polymer we used the bead-spring model with harmonic spring potential and pointlike beads.
The average bond length is given by the persistence length ap. Periodic boundary conditions
have been applied in the lateral directions, which implies that our system consists of a periodic
array of anchored polymers. The distance between these polymers which is equal to the lateral
membrane size was chosen to be eight times larger than the end-to-end distance of the polymer,
which corresponds to a dilute coverage regime (mushroom regime).

As can be seen in fig. 4(a) the simulation data depend on both the polymer discretization
ap and the membrane discretization am. The approach to the continuum limit is slow, and

(2) A similar superposition of membrane deformations has been considered in the so-called hat model in [14].
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one has to decrease both length scales simultaneously in order to further reduce the difference
between the simulation data and the analytical result.

In the main part of this paper, we have focussed on the membrane degrees of freedom and
determined the effective pressure P (x) arising from the polymer configurations. It is also of
interest to assume a different viewpoint in which one focusses on the polymers and determines
the effective interactions between these polymers arising from the membrane fluctuations. A
similar approach has been used for the effective interactions between membrane inclusions
[15,16]. We start from the partition function (3) where Zp is now given by

Zp{l} = exp


− Np∑

i=1

∫
d2xP (x − xi) l(x)


 , (13)

and perform the path integral over all l-configurations. Using the methods of [16], we find the
effective pair interaction

F(xD) = −R2
p

48
T 2

κ

∫ ∞

0

dq
q5

(q4 + v2/κ)
×

× exp

[
−R2

p

6
q2

][
I0

(
R2

p

12
q2

)
+ I1

(
R2

p

12
q2

)]2

J0(qxD) , (14)

between two polymers at separation xD. In fig. 4(b) the interaction energy is shown for
different values of v2Rp

4/κ. For small distances, it is always attractive. As long as v2 does
not vanish, one also finds regions with repulsive interaction due to damped oscillations in F .
For vanishing v2, the interaction energy is monotonic and attractive for all values of xD. The
interaction vanishes for stiff membranes because of F(xD)/T ∼ T/κ, as we expect for this
fluctuation-induced phenomenon. However, the attractive tail in F(xD) occurs for distances of
the order of Rp and smaller, where the polymers intersect. Therefore, if we include excluded-
volume effects between the polymers, the attraction interaction will be strongly suppressed.

In order to compare our previous results on the spontaneous curvature of membranes with
experiments we will now focus on vesicles with attached polymers, since it is possible to deduce
changes in the spontaneous curvature of vesicles by examining their shape transformations [17].
We will consider three contributions to the spontaneous curvature of vesicles: i) We already
calculated the spontaneous curvature M

(pm)
sp =

√
π/6(T/4κ)ΓpRp from mushroom/membrane

interactions. This contribution is linear in the coverage density Γp. ii) A second contribution,
which is also linear in Γp, arises from the size and geometry of the anchor molecules inserted
into the membrane. If there is no exchange of molecules between both monolayers (flip-flops)
one has M

(an)
sp = ΓpAan/2lme, where Aan is the lateral anchor area (≈ 0.7 nm2) and lme is

the thickness of the bilayer (≈ 4 nm). iii) A third contribution becomes important, if the
mushrooms start to squeeze each other because of excluded-volume effects. In a low-density
approximation the repulsive polymer/polymer interaction is characterized by the second virial
coefficient b2, which in this case is given by b2 = 4πRp

2. Minimizing the sum of both the
repulsive interaction free energy and the free energy of bending of the membrane leads to the
spontaneous curvature M

(pp)
sp = b2Γp

2RpT/4κ. This contribution is quadratic in the coverage
density Γp. Equating the spontaneous curvature contributions from polymer/membrane and
polymer/polymer interactions gives an estimated crossover coverage Γ∗

p � 1/4
√
6πRp

2, which

is proportional to but smaller than the overlap concentration Γ(ov)
p = 1/πR2

p. In this way, one
can identify two different mushroom regimes 1 and 2. Regime 1 with Γp < Γ∗

p is dominated by
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the entropically induced polymer/membrane interaction. Regime 2 with Γp > Γ∗
p is governed

by the polymer/polymer interaction arising from the excluded volume.
For a typical polymer end-to-end distance Rp = 10−2µm and a giant vesicle radius Rve =

10 µm, a coverage density Γp of about ten percent of the overlap coverage and a bending
rigidity of κ/T = 10 all three contributions discussed above are of comparable size. We find
M

(pm)
sp ≈ 0.06 µm−1, M

(an)
sp ≈ 0.03 µm−1 and M

(pp)
sp ≈ 0.03 µm−1. For the total reduced

curvature (M (pm)
sp +M

(an)
sp +M

(pp)
sp )Rve, which determines the equilibrium shape of the vesicle,

we find a value of about 1.2, which according to the area-difference-elasticity model presented
in [17] leads to a measurable change in the shape of vesicles.

In summary, we have introduced a theoretical approach with which one can explicitly
calculate the membrane shape arising from the interaction with anchored polymers. This
approach has been applied to the case of linear polymers which are anchored to the membrane
at one end. We have derived explicit expressions for the effective pressure which such a
polymer exerts on the membrane, see (6), for the resulting shape profile which interpolates
between a cone and a catenoid, see (8), (9), (10), and for the mean curvature arising from the
polymer/membrane interactions, see (11), (12). The same approach can be applied to other
cases such as polymers which either translocate through the membrane, are anchored at both
ends, or are adsorbed onto the membrane [18]. Furthermore, one may use the same methods
in order to study membranes under lateral tension.
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